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Background: Activation of the PI3K/mTOR and Hedgehog (Hh) signalling pathways occurs frequently in biliary tract cancer (BTC).
Crosstalk between these pathways occurs in other gastrointestinal cancers. The respective signalling inhibitors rapamycin and
vismodegib may inhibit BTC synergistically and suppress cancer stem cells (CSCs).

Methods: Gene expression profiling for p70S6k and Gli1 was performed with BTC cell lines. Tumour and pathway inhibitory
effects of rapamycin and vismodegib were investigated in BTC preclinical models and CSCs.

Results: Rapamycin and vismodegib synergistically reduced BTC cell viability and proliferation. This drug combination arrested
BTC Mz-ChA-1 cells in the G1 phase but had no significant effect on the cell cycle of BTC Sk-ChA-1 cells. Combined treatment
inhibited the proliferation of CSCs and ALDH-positive cells. Nanog and Oct-4 expression in CSCs was decreased by the
combination treatment. Western blotting results showed the p-p70S6K, p-Gli1, p-mTOR, and p-AKT protein expression were
inhibited by the combination treatment in BTC cells. In an Mz-ChA-1 xenograft model, combination treatment resulted in 80%
inhibition of tumour growth and prolonged tumour doubling time. In 4 of 10 human BTC specimens, tumour p-p70S6K and Gli1
protein expression levels were decreased with the combination treatment.

Conclusions: Targeted inhibition of the PI3K/mTOR and Hhpathways indicates a new avenue for BTC treatment with combination
therapy.

Biliary tract cancers (BTCs), which include cancer of the biliary
duct, cholangiocarcinoma (CCA), and gallbladder cancer, are
aggressive and have distinct epidemiologic patterns. A high
incidence (85/100 000) of BTC has been reported for northeast
Thailand, where CCA represents approximately 85% of primary
liver cancers (Poomphakwaen et al, 2009). The incidence of
intrahepatic CCA is rising rapidly particularly in the western
world, including the United States, where an estimated 10 650
people will be diagnosed with BTC in 2014, with the majority
presenting at an advanced and inoperable disease stage (Siegel et al,
2014). In Latin America, particularly in Chile, and in South Asia

and East Asia, gallbladder cancer is more common. Systemic
treatment for BTC is commonly gemcitabine plus cisplatin, but
despite treatment, the median overall survival rate is o1 year.
Novel therapeutics based on the underlying molecular profile of
these tumors will be key to changing the treatment paradigm
of BTCs.

Mammalian target of rapamycin (mTOR) is a 289-kDa serine/
threonine protein kinase of the PI3K/AKT/mTOR signalling pathway
that regulates cell proliferation, survival, and angiogenesis. mTOR
expression is common in gallbladder cancer and CCA and may have
prognostic significance (Herberger et al, 2007; Leal et al, 2013;
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Moolthiya et al, 2014; Simbolo et al, 2014). Inhibition of mTOR
has demonstrated anti-tumour effects in preclinical models of
gallbladder cancer and CCA (Wu et al, 2007; Herberger et al, 2009;
Zong et al, 2014). Furthermore, a clinical trial demonstrated a 5.1%
objective response rate in BTC patients treated with the mTOR
inhibitor everolimus (Buzzoni et al, 2014).

In contrast, the Hh pathway plays a fundamental role in stem
cell maintenance, cell differentiation, tissue polarity, and cell
proliferation. Dysregulation of the Hh signalling pathway has been
associated with the presence of cancer stem cells (CSCs) and
implicated in the initiation of pancreatic and other cancers
(Rodova et al, 2012). Constitutive activation of the Hh pathway
leading to tumourigenesis is seen in various cancers, including
basal cell carcinoma and medulloblastoma. Cholangiocellular
injury activates Hh ligands, which promotes dysfunctional repair
and tumourigenesis. Inhibition of the Hh pathway attenuates the
carcinogenesis of CCA cells and enhances necrosis. Expression
analysis of human CCA samples has indicated Hh activation in
almost 50% of cases (El Khatib et al, 2013). In these cases, non-
canonical Hh pathway activation appears to play a key role and can
be inhibited by cyclopamine (Kim et al, 2012; Razumilava et al, 2014;
Riedlinger et al, 2014).

Our group recently reported crosstalk between the mTOR/
S6K1and Hh signalling pathways in oesophageal adenocarcinoma
(Wang et al, 2012). mTOR inhibition is already being investigated
in the clinical setting in BTCs and modest clinical efficacy has been
observed (Buzzoni et al, 2014). We hypothesised that non-
canonical Hh pathway activation via mTOR plays an oncogenic
role in BTC and that simultaneous inhibition of these two
pathways in BTC will provide incremental clinical benefit to
patients.

MATERIALS AND METHODS

Cell lines and cell culture. Human BTC Mz-ChA-1and Sk-ChA-
1cells were obtained from Dr. Reddy’s lab (The University of Texas
MD Anderson Cancer Center). Human BTC M214, M139, M156,
M213, M055, M213LOH, and M213L5H cells were kindly
provided by Dr. Lee’s lab (The University of Texas Medical
Branch). Cells were cultured in 5% CO2 at 37 1C in DMEM
containing 10% foetal calf serum, 100 units ml� 1 penicillin, and
100 mg ml� l streptomycin. Cancer stem cell culture medium
consisting of DMEM/F12, glutaMAX, B27 supplement, epidermal
growth factor and basic fibroblast growth factor were purchased
from Life Technologies (Grand Island, NY, USA).

Reagents and antibodies. Rapamycin was purchased from LC
laboratories (Woburn, MA, USA) and vismodegib was obtained
from Genentech (South San Francisco, CA, USA). Antibodies
recognising p70S6K, Phospho-p70 S6 Kinase (Thr389), mTOR,
phospho-mTOR (Ser2448), AKT, and phospho-Akt (Ser473) were
obtained from Cell Signaling Technology (Danvers, MA, USA)
Antibodies against Gli1and phospho-Gli1(Ser84) were a kind gift
of Dr. Mien-Chie Hung’s lab (The University of Texas MD
Anderson Cancer Center). Monoclonal anti-b-actin antibody was
purchased from Sigma-Aldrich (St. Louis, MO, USA).

Cell viability assay. Biliary tract cancer Mz-ChA-1 and Sk-ChA-1
cells were seeded into white 96-well plates at 5� 103 cells per well.
After incubation overnight, the cells were treated with rapamycin,
vismodegib, or both at serial concentrations from 0.25 to
50 mmol l� 1 for 72 h. The CellTiter-Glo luminescent cell viability
assay kit (Promega, Madison, WI, USA) was used to determine the
number of viable cells in culture. Following treatment, cellular
proliferation was measured according to the manufacturer’s
instructions. All treatments were performed in triplicate and in
three independent experiments.

Colony-formation assay. Colony-formation assay was performed
as described previously. In short, 1� 103 viable cells were
subcultured in 6-well plates in triplicate. Cells were cultured
overnight and then treated with 1mmol l� 1 rapamycin,
10 mmol l� 1 vismodegib, or both for 72 h. Culture medium was
aspirated, the cells were washed, and fresh complete medium was
added. Cells were incubated for an additional 14 days. Thereafter,
the colonies were fixed with 6.0% glutaraldehyde and stained with
0.5% crystal violet. Clonogenic cells were defined as those able to
form a colony consisting of at least 50 cells.

Sphere-formation assay. To evaluate the formation of primary
spheres, Mz-ChA-1 and Sk-ChA-1 cells were transferred to
ultralow-adherence six-well plates (Corning, Inc., Corning, NY,
USA) at a density of 5000 per well in 4 ml of CSC medium
consisting of DMEM/F12 plus glutaMAX, B27 supplement,
20 ng ml� 1 epidermal growth factor and 20 ng l� 1 basic fibroblast
growth factor. Tumour spheres were allowed to grow for 7 days. To
establish spheres, cells were individualised by enzymatic dissocia-
tion, strained, and then plated at a density of 5� 102 or 1� 103

cells per well in 24-well plates (3 wells per treatment). Cells were
treated with rapamycin1 mmol l� 1, vismodegib10 mmol l� 1, or
both for 7 days, after which the culture medium was changed to
fresh CSC medium. The resultant spheres were photographed after
14 days of culture.

Cell cycle assay. Mz-ChA-1 and Sk-ChA-1 cells were seeded in
25-cm2 tissue culture flasks and then incubated with 1 mmol l� 1

rapamycin, 10 mmol l� 1 vismodegib, or both agents. After treat-
ment for 48 h, cells (2� 106) were harvested by trypsinisation.
Then, cells were fixed in 70% ethanol and then incubated with
RNase A (100 mg ml� 1) and propidium iodide (100 mg ml� 1) for
30 min. The data from 10 000 cells for each sample were collected
and assessed using a FACS scan (Becton Dickinson, Franklin
Lakes, NJ, USA).

Quantitative reverse-transcriptase polymerase chain reaction
(qRT-PCR). Total RNA was extracted from cells using the RNeasy
mini kit (Qiagen, Valencia, CA, USA) according to the
manufacturer’s instructions. cDNA was synthesised from 1mg of
total RNA using an iScript cDNA synthesis kit (Life Technologies
Corp., Hercules, CA, USA). Real-time RT-PCR analysis was
performed using a QuantiFast SyBR green PCR kit (Qiagen). The
primer sequences were synthesised by Sigma (Supplementary
Information 1). Gene expression levels were normalised against the
average cycle threshold (Ct) values for the internal control gene
GAPDH. Cycle threshold values were extracted using SDS version
2.3 software (Applied Biosystems, Foster City, CA, USA). Data
analysis was performed using the DDCt method.

Flow cytometric analysis of aldehyde dehydrogenase (ALDH)
activity. Mz-ChA-1 and Sk-ChA-1 cells (2.5� 105) were treated
with 1mmol l� 1 rapamycin, 10 mmol l� 1 vismodegib, or both for
72 h. The cells were then harvested via trypsinisation and stained
for 30 min at 37 1C using an Aldefluor kit (Stem Cell Technologies,
Durham, NC, USA) following the manufacturer’s instructions.
Cells treated with diethylaminobenzaldehyde, a specific ALDH
inhibitor, were used as a control. The ALDH-positive control
population was detected using the FACS scan. ALDH-positive cells
were identified with a dot plot.

Western blotting assay. Biliary tract cancer cells were treated with
vehicle, 1mmol l� 1 rapamycin, 10 mmol l� 1 vismodegib, or the
combination of the two drugs for 48 h. Total cellular lysates were
obtained by lysing cells in a buffer containing RIPA buffer (50 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 1% v/v Nonidet P-40, 0.5% v/v
sodium deoxycholate, and 0.1% SDS) and a mixture of protease
and phosphatase inhibitors. The protein concentration was
measured using a bicinchoninic acid protein assay kit
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(Pierce, Rockford, IL, USA). Electrophoresis was carried out through
a 4%–20% Ready Gel Tris-HCl precast polyacrylamide gel
(Life Science Technology, Hercules, CA, USA). Gels were transferred
to Hybond–C extra nitrocellulose membrane (Amersham Bioscience,
Freiburg, Germany). Proteins were detected with antibodies against
Gli1, p-Gli1, mTOR, p-mTOR, p70S6K, p-p70S6K, AKT, and
p-AKT(Ser473) Cell Signaling Technology, Danvers, MA, USA).
Signals were detected by incubating the membrane with Pierce ECL
western blotting substrate (Thermo Scientific, Rockford, IL, USA)
and exposed to X-ray (BioExpress, Kaysville, UT, USA).

Mouse xenograft model. All experiments were performed at The
University of Texas MD Anderson Cancer Center and were
approved by the Institutional Animal Care and Use Committee.
We examined the anti-tumour efficacy of rapamycin, vismodegib,
or both in a subcutaneous cancer cell xenograft model. Nude (nu/nu)
6– 8-week-old mice were purchased from Charles River (Wil-
mington, MA, USA). Five million Mz-ChA-1 cells were sub-
cutaneously injected into each flank in 50:50 PBS:Matrigel (BD
Biosciences, Billerica, MA, USA). When tumours reached a mean
volume of 100 mm3, animals were matched by size and distributed
into four treatment groups consisting of eight mice per group.
Mice were treated by oral gavage twice a day with vehicle,
1 mg kg� g rapamycin, 100 mg kg� 1 vismodegib, or both rapamycin
and vismodegib. Tumour volume was calculated with the formula
1/2(L�W2), where L is length (longest dimension) and W is width
(shortest dimension). To calculate tumour growth inhibition, the
following formula was used: (TuGcontrol � TuGtest)/TuGcontrol �
100%, where tumour growth (TuG) equals the final tumour size
minus the pretreatment tumour size for individual treatment
groups. ‘TuGcontrol’ refers to the growth in mice treated with vehicle
only and ‘TuGtest’ refers to the growth in mice treated with
rapamycin, vismodegib, or both rapamycin and vismodegib. Each
mouse was killed by CO2 asphyxiation at the experimental end
point or when its tumour was oversized, ulcerated, or necrotic.

Immunohistochemical analysis. Immunohistochemical was per-
formed to examine the p-p70S6K and Gli1 protein expression
levels in tumour xenografts and archival tumours from patients
with resected gallbladder cancer. Xenograft tumour tissue was
covered with OCT embedding compound and stored at � 80 1C
until ready for sectioning. Frozen sections were mounted on
3-aminopropyltriethoxysilane-coated slides. For xenograft tumour
tissue slides, the tissue sections were immersed in pre-cooled
acetone (� 20 1C) for 10 min and the acetone was allowed to
evaporate from the tissue sections. Human formalin-fixed,
paraffin-embedded tissue sections were deparaffinised using xylene
and ethanol. All sections were heated for epitope retrieval in citrate
buffer (pH 6.0). Endogenous peroxidase was blocked by incubation
in 3% hydrogen peroxide. Sections were incubated with the

primary polyclonal rabbit anti-p-p70S6K antibody at a dilution of
1 : 400, rabbit anti-Gli1 antibody for 30 min at 37 1C, and then
biotin-conjugated secondary goat anti-rabbit antibody (Vector
Laboratories, Burlingame, CA, USA) for 30 min. Sections were
stained with the avidin–biotin complex technique using reagents
as described by the manufacturer (Vectastain kit, Vector
Laboratories). Positive labelling was visualised by incubating
the slides with horseradish peroxidase–conjugated streptavidin
(DAB substrate kit, Vector Laboratories). Sections were counter-
stained with haematoxylin. Stained slides were dehydrated by
sequential steps through a graded series of alcohol washes and
xylene (Fisher, Suwanee, GA, USA) and were mounted using
cover slips.

Statistical analysis. To determine whether the interaction between
rapamycin and vismodegib was synergistic, additive, or antag-
onistic, we used the combination index (CI) method of Chou and
Talalay (Chou and Talalay, 1984). Combination index¼ 1
indicates an additive effect, CIo1 a synergistic effect, and CI41
an antagonistic effect. Results are expressed as the mean±s.d. of
the indicated number of independent experiments. Student’s t-test
was calculated to compare the mean of each group with that of the
control group. P values of o0.05 were considered significant. The
statistical analysis of data in this study was performed using
Student’s t-test.

RESULTS

Hedgehog and mTOR pathway gene and protein expression in
BTC cell lines. We first examined the mutation profile of nine
known BTC cell lines for commonly mutated human oncogenes.
We used a mass spectroscopy-based profiling for 159 point (‘hot
spot’) mutations in 33 genes commonly involved in solid tumours.
Our results indicated there were no significant hotspot mutations
in these cell lines (Supplementary Information 2). We then
conducted quantitative real-time RT-PCR assays to examine the
relative expression levels of p70S6K and Gli1 in all 9 BTC cell lines,
as indicated by the fold change relative to the gene with the lowest
expression level (Figure 1). The real-time RT-PCR results showed a
relatively high p70S6K and low Gli1 gene expression in Mz-ChA-1
cells and relatively low p70S6K and high Gli1 gene expression in
Sk-ChA-1 cells. On western blotting, downregulation of p-p70S6K
and p-Gli1 with vismodegib and rapamycin was noted in Mz-ChA-
1 and Sk-ChA-1 cell lines (Supplementary Information 3).
Therefore, we chose these two cell lines for further study. Prior
phase I studies with the Hh antagonist, vismodegib, have
successfully examined Gli1 expression using RT-PCR to measure
the pharmacodynamic modulation of the Hh pathway in the
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clinical setting (Von Hoff et al, 2009; Wong et al, 2011). As noted
earlier, the crosstalk between the mTOR/S6K1 and Hh signalling
pathway is through S6K1-mediated regulation of Gli1 in
oesophageal cancer, thus p70 S6K1 was chosen for measurement
of mTOR activity (Wang et al, 2012). We therefore used p70S6K
and Gli1 as the surrogate biomarkers of mTOR and Hh pathway
activation, respectively.

Effects of rapamycin, vismodegib, and both on BTC cell viability
and proliferation. To explore the effects of rapamycin, vismo-
degib, and both on BTC cell proliferation, we used the CellTiter-
Glo (Promega) luminescent cell viability assay to examine
whether the combined treatment enhanced the inhibition of cell
proliferation affected by either agent alone. Mz-ChA-1 and Sk-
ChA-1 cells were treated at serial concentrations for 72 h. Our
results showed that rapamycin and vismodegib inhibited
proliferation in both cell lines in a concentration-dependent
manner and that Mz-ChA-1 cells were more sensitive than Sk-
ChA-1 cells to both drugs (Figure 2A and B). The results also
suggested that combination therapy reduced cell viability more
than either agent alone did.

To determine whether the combined treatment had a synergistic
effect on cell viability, the CI values were calculated according to the
method of Chou and Talalay (Table 1). The combination of
vismodegib and rapamycin resulted in synergistic interaction
in Mz-ChA-1 cells at IC50, IC75, and IC90, and the CI values were

0.40±0.12, 0.39±0.16, and 0.40±0.16, respectively. A modest
additive effect also was observed for Sk-ChA-1 cells at IC50, IC75 and
IC90, and the CI values were 0.96±0.18, 1.08±0.25, and 0.78±0.17,
respectively. In the colony-formation assays, compared with the
control or vismodegib, rapamycin individually, the combination
treatment significantly inhibited Mz-ChA-1 cell colony formation
(Po0.01). For Sk-ChA-1 cell, the combination treatment also
inhibited the colony formation (Po0.05) (Figure 2C and D).

To evaluate whether vismodegib, rapamycin, or their combina-
tion can inhibit cell proliferation via regulation of cell-cycle arrest,
cell-cycle analysis was carried out by flow cytometry (Figure 3).
Cells were treated with rapamycin, vismodegib, or both for 48 h.
Vismodegib alone increased the accumulation of Sk-ChA-1cells in
the S phase but had no notable effect on Mz-ChA-1 cells.
Rapamycin alone arrested Mz-ChA-1 cells in the G1 phase and
decreased the cell population in the S phase but had no notable
effect on the Sk-ChA-1 cell population. For both cell lines, the
combination of vismodegib and rapamycin arrested cells in the G1
phase and decreased the S phase cell population, although
vismodegib alone increased the transition from G1 to S phase in
the SK-ChA-1 cell population.

Effects of vismodegib, rapamycin, or both on BTC stem cell
populations. Cancer stem cells have the exclusive ability to
regenerate tumors. The capacity to generate a tumour sphere in
nonadherent culture condition is a CSC characteristic. Mz-ChA-1
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Table 1. Synergistic effect of combination treatment with rapamycin and vismodegib on BTC cells

IC50±s.d.

Combination treatment

Cell line Rapamycin (lM) Vismodegib (lM) Rapamycin (lM) Vismodegib (lM) Combination index
Mz-ChA-1 3.31±0.26 54.97±3.45 0.82±0.18 8.19±1.02 0.40±0.12

Sk-ChA-1 3.53±0.31 74.54±2.58 2.28±0.21 22.83±1.35 0.96±0.18

Note: IC50 represents the concentration of a test compound required to achieve half maximal inhibition of biological activity of cancer cells.
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cells and Sk-ChA-1 cells were cultured in 24-well ultralow-
attachment plates and treated with vehicle (DMSO; control),
1mmol l� 1 rapamycin,10 mmol l� 1 vismodegib, or both rapamycin
and vismodegib for 7 days. The combination of the two drugs
dramatically reduced the total number and size of the tumour

spheres compared with the control group, especially for Mz-ChA-1
cells (Figure 4A and B).

In order to further evaluate the effects of vismodegib,
rapamycin, and both agents on CSCs, we used real-time RT-PCR
to examine CSC-related gene expression in the tumour spheres.

0%

25%

50%

75%

100%

Control Vidmodegib Rapamycin Combination

D
is

tr
ib

ut
io

n 
of

 c
el

l p
op

ul
at

io
n %S 

%G2

%G1

0%

25%

50%

75%

100%

D
is

tr
ib

ut
io

n 
of

 c
el

l p
op

ul
at

io
n

Control Vidmodegib Rapamycin Combination

%S

%G2

%G1

1111

833

566

278

0

0
0

0 256 512 768 1024 0 256 502 768 1024 0 256 502 768 1024 0 256 502 768 1024

0 256 512 768

FL3 NT LN FL3 NT LN FL3 NT LN FL3 NT LN

FL3 NT LN FL3 NT LN FL3 NT LN FL3 NT LN

1024 0 256 502 768 1024 0 256 502 768 1024 0 256 502 768 1024

1082

Control

812

541

271

1468

1101

734

367

1468

1101

734

367

00

0 0

1487

1115

744

372

1498

1124

748

375

1375

1124

688

344

1551

1163

776

388

0

C
ou

nt

C
ou

nt

C
ou

nt

C
ou

nt

C
ou

nt

C
ou

nt

C
ou

nt

C
ou

nt

Sk-ChA-1

Mz-ChA-1

%G1 65.06

%G2 12.13

%S 22.81

Vidmodegib

%G1 66.51

%G2 11.76

%S 21.73

Rapamycin

%G1 78.90

%G2 10.60

%S 10.50

Combination

%G1 80.08

%G2 8.99

%S 10.93

Control

%G1 78.25

%G2 6.82

%S 14.93

Vidmodegib

%G1 73.89

%G2 7.03

%S 19.08

Rapamycin

%G1 80.73

%G2 5.8

%S 13.47

Combination

%G1 80.34

%G2 7.55

%S 12.1

Figure 3. Cell-cycle analysis. (A) Mz-ChA-1 and (B) Sk-ChA-1 cells were treated with 1 mmol l� 1 rapamycin, 10mmol l� 1 vismodegib, or both for
72 h. Cell-cycle distribution was analyzed by flow cytometry.

0

0.2

0.4

0.6

0.8

1

1.2

G
en

e 
re

la
tiv

e 
ex

pr
es

si
on

Nanog

E-Cadherin

Oct-4

0

0.2

0.4

0.6

0.8

1

1.2

DM
SO

Rap
am

yc
in 

Vism
od

eg
ib 

 

Com
bin

at
ion

DM
SO

Rap
am

yc
in 

Vism
od

eg
ib 

 

Com
bin

at
ion

G
en

e 
re

la
tiv

e 
ex

pr
es

si
on

**
**

**

*
*

*
Sk-ChA-1

Nanog

Oct-4

E-Cadherin

Mz-ChA-1

Figure 4. Effect of rapamycin, vismodegib, or both on stem cell sphere formation. Effects of vismodegib, rapamycin or both on tumoursphere
formation and Nanog, Oct-4, and E-Cadherin gene expression. Mz-ChA-1 (A) and Sk-ChA-1 (B) tumour spheres. Third passage single cells were
cultured for 72 h, and then treated with vehicle, rapamycin (1 mmol l�1), vismodegib (10mmol l� 1), or both for 7 days. Tumourspheres were imaged
by Olympus microscope. Compared with control group, the combination treatment inhibited Nanog, Oct-4, and E-Cadherin expression in
Mz-ChA-1 (C) (**Po0.01) and Sk-ChA-1 (D) (*Po0.05).
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The results showed that combined treatment significantly
decreased the Nanog, Oct-4, and E-cadherin gene expression in
both Mz-ChA-1 and Sk-ChA-1 CSCs compared with the DMSO
(control) group (Figure 4C and D).

Aldehyde dehydrogenase was also investigated as a possible
marker for identifying CSCs, including BTC stem cells. We
performed the ALDEFLUOR assay to explore the effect of the
treatment agents on the Mz-ChA-1 and Sk-ChA-1 CSC popula-
tions (Figure 5A and D). The combined treatment significantly
reduced the ALDH-positive population in Mz-ChA-1 cells but not
in Sk-ChA-1 cells (Figure 5C and D).

Effects of vismodegib, rapamycin, and both on mTOR and Hh
pathway signalling. We investigated the activity of rapamycin,
vismodegib, and both on mTOR and Hh signalling in BTC cells by
using western blots. The Mz-ChA-1 and Sk-ChA-1 cells were
treated with rapamycin, vismodegib, or both for 48 h. We
examined the expression levels of p70S6K, p-p70S6K, AKT,
p-AKT(Ser473), Gli1, p-Gli1, mTOR, and p-mTOR. The initial
ratios of pS6K/S6 in Mz-ChA-1 and Sk-ChA-1 cells were
51.62±9.07% and 13.22±2.03%, respectively. The results showed
that, for both cell lines, the expression of the phosphorylated
proteins was significantly decreased in the combined treatment
group (Figure 6). The western blotting results were repeated three
times and with reproducible results.

Anti-tumour activity of the combination of rapamycin and
vismodegib in a xenograft model. We next evaluated the anti-
tumour activity of vismodegib, rapamycin, or both in vivo with a
xenograft mouse model. Single-cell suspensions of 5� 106 Mz-
ChA-1 cells were subcutaneously injected into the right flank of 32
athymic nude mice. Once tumours grew to approximately
100 mm3, the mice were randomly allocated into four treatment
arms (vehicle only, rapamycin, vismodegib, or both rapamycin and
vismodegib) and treated twice daily through oral gavage.

Compared with the control group, at day 27, tumour xenograft
growth was 39.42±12.33%, 51.03±5.71%, and 80.39±11.18%
(P o0.01) lower in the rapamycin, vismodegib, and combination
groups, respectively (Figure 7A). The xenograft tumour doubling
time was 7.11±0.88, 9.31±1.29, 12.40±2.01, and 20.04±5.48
days in the control, rapamycin, vismodegib, and combined
treatment groups. Nude mice were killed on day 27 because of
the tumour size.

The mice tolerated the treatments without overt signs of
toxicity. Body weight did not differ significantly between treatment
groups (Figure 7B), and no adverse effects such as hunched
posture, ruffled fur, and hypothermia were observed. Immunohis-
tochemical assay results for the xenograft tumour tissues showed
that the combined treatment significantly decreased p-p70S6K and
Gli1 protein expression levels as compared with the control
(vehicle only) group in vivo (Figure 7C).

Immunohistochemical analysis of human samples of gallbladder
cancer. In order to identify potential predictive biomarkers for
vismodegib and mTOR inhibitors in human specimens, we
investigated the protein expression levels of Gli1 and p-p70S6K
in cases of resected gallbladder cancer. Our immunohistochemical
results revealed a relatively high p-p70S6K protein level and low
Gli1 protein expression level in 4 of 10 cases examined (Figure 8).
This immunohistochemical pattern was similar to those we found
in Mz-ChA-1 cell lines.

DISCUSSION

The combination of rapamycin and vismodegib significantly
inhibited BTC cell viability and proliferation in our study; this
effect was confirmed with our in vivo study. The protein expression
levels of p-p70S6K, p-mTOR, p-Gli1, and p-AKT in Mz-ChA-1
and Sk-ChA-1 cells were decreased by the combination regimen.
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Decreased expression of p-p70S6K and Gli1 was noted in the BTC
xenografts treated with this combination. High p-p70S6K expres-
sion along with low Gli1 expression was observed in Mz-ChA-1
cell lines, which were sensitive to the combination regimen. This
expression pattern was also noted in 40% of the human BTC cases
we examined.

Biliary tract cancer represents a diverse and genetically
heterogeneous group of cancers, which makes the implementation
of molecular therapy challenging. CCA and gallbladder cancer are
often grouped together as BTCs in clinical trials despite their
divergent clinical presentation and genetic background. Further-
more, there are very few BTC cell lines and preclinical in vivo
models. All of these factors make the development of novel
therapies in BTC challenging. Recently, there have been promising
genomic and transcriptional profiling studies in intrahepatic CCA
that suggest that this disease has distinct molecular subsets, some
of which may be amenable to targeted therapy (Andersen et al,
2012; Borger et al, 2012; Sia et al, 2013; Voss et al, 2013).

The activation of Hh signalling is common in BTC and has
prognostic implications. Tang et al (2013) recently demonstrated

that Gli1 expression was associated with a poor prognosis in CCA
and demonstrated that inhibition of Hh signalling with cyclopa-
mine led to apoptosis in CCA cells (Tang et al, 2013). Canonical
activation of Hh signalling involves Hh ligand binding to its
receptor, PTCH, which results in the activation of Smo and is
followed by activation of Gli transcription factors. A critical role of
Smo-independent regulation of Gli activity by several other
signalling pathways, including the PI3K/AKT and RAS/RAF/
MEK/ERK pathways, has been suggested (Lauth and Toftgard,
2007; Jenkins, 2009). Canonical Hh signalling is attenuated in
CCA, and non-canonical Hh signalling contributes to disease
progression, thereby supporting a role for Hh and other targeted
inhibitors in this disease (Razumilava et al, 2014). In our study,
combined mTOR- and Hh-directed therapy had the optimal anti-
tumour effect in BTC cell lines, particularly Mz-ChA-1. Although
combined therapy was superior, inhibition of p70S6K also
occurred with vismodegib and p-Gli1 with rapamycin, which
supports the idea of bi-directional cross talk between the pathways.
Our group described the proposed mechanism of this cross talk in
a previous report: activated mTOR pathway promotes Gli1
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transcriptional activity and oncogenic function through p70S6K1-
mediated Gli1 phosphorylation at Ser84, which releases Gli1 from
its endogenous inhibitor, SuFu (Wang et al, 2012).

For studies of the combined inhibition of Hh signalling and
mTOR in BTC cells, it would be useful to identify a potential
clinical phenotype for investigational therapy. For our study, we
first characterised the BTC cell lines for p70S6K and Gli1 gene
expression. We chose the Mz-ChA-1 and Sk-ChA-1 cell lines for
further investigation, as these represented relative extremes of

p70S6K and Gli1 gene expression levels, with Mz-ChA-1 cells
having a high p70S6K gene expression level and Sk-ChA-1 having a
high Gli1 gene expression level. Furthermore, these cell lines have
been widely used in prior BTC preclinical studies. The cell line Mz-
ChA-1, which is derived from gallbladder cancer, was significantly
inhibited by the combination of vismodegib and rapamycin. The
dose of rapamycin and vismodegib used in vivo, when converted to
human equivalent doses are within clinically acceptable dose
ranges (Supplementary Information 4) (LoRusso et al, 2011;
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Acevedo-Gadea et al, 2014). Our results also showed that the
combination of vismodegib and rapamycin significantly inhibited
stem cell tumour sphere formation and downregulated Nanog,
Oct-4, and E-cadherin gene expression level. Nanog and Oct-4 are
essential for maintaining the pluripotency of embryonic stem cells,
whereas aberrant expression of E-cadherin has been associated
with the development of metastases. Although the prevailing belief
is that loss of E-cadherin is a prerequisite for progression to
metastatic disease and tumourigenesis, tumours are actually
remarkably heterogeneous and E-cadherin loss does not always
correlate with invasion. E-cadherin is also highly overexpressed in
prostate cancer, inflammatory breast cancer, and early-stage
ovarian carcinoma. E-cadherin enhances proliferation and survival
by inducing ligand-independent activation of the receptor tyrosine
kinase epidermal growth factor receptor (Putzke et al, 2011; David
and Rajasekaran, 2012). Loss of E-cadherin regulation and
expression levels in stem cells is likely to reflect the different
culture conditions for these cell lines (Mohamet et al, 2011). High
ALDH activity is a characteristic of CSCs in several malignancies,
including BTC (Douville et al, 2009). In our study, ALDH activity
was notably decreased in Mz-ChA-1 cells with the combined
treatment but not in Sk-ChA-1 cells, which supports a role for
combination therapy against CSCs in a subset of BTCs.

In summary, the addition of vismodegib to an mTOR inhibitor
may lead to an incremental anti-tumour effect in BTCs. In
particular, a high p70S6K/Gli1gene expression ratio may predict
responsiveness to the combination in the clinical setting.
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