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Abstract

This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic
equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical
solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series
solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main
advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does
not generate secular terms or depends of a perturbation parameter.
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Introduction
As widely known, the importance of research on par-
tial differential-algebraic equations (PDAEs) is that many
phenomena, practical or theoretical, can be easily mod-
elled by such equations. Those kinds of equations arise in
fields like: nanoelectronics (Bartel and Pulch 2006), elec-
trical networks (Ali et al. 2005, 2003; Günther 2000) and
mechanical systems (Simeon 1996), among others.
In recent years, PDAEs have received much attention,

nevertheless the theory in this field is still young. For
linear PDAEs the convergence of Runge-Kutta method
is investigated in (Strehmel and Debrabant 2005). The
numerical solution of linear PDAEs with constant coeffi-
cients and the study of indices are given in (Lucht et al.
1997a, 1997b; Lucht and Strehmel 1998; Lucht et al. 1999).
Linear and nonlinear PDAEs are characterized by means
of indices which play an important role in the treatment
of these equations. The differentiation index is defined
as the minimum number of times that all or part of the
PDAEmust be differentiated with respect to time, in order
to obtain the time derivative of the solution, as a con-
tinuous function of the solution and its space derivatives
(Martinson and Barton 2000).
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Higher-index PDAEs (differentiation index greater than
one) are known to be difficult to treat even numerically.
Often such problems are first transformed to index-one
systems before applying numerical integration methods.
This procedure called index-reduction, can be very expen-
sive and may change the properties of the solution. Since
applications problems in science and engineering often
lead to higher-index PDAEs, new techniques are required
to solve these problems efficiently.
Modern methods like homotopy perturbation method

(HPM) (He 1999, 2000, 1998; Vazquez-Leal et al. 2012),
homotopy analysis method (HAM) (Guerrero et al.
2013), variational iteration method (VIM) (Khan Y, et al.
2012), generalized homotopy method (Vazquez-Leal
2013), among others, are powerful tools to approxi-
mate nonlinear and linear problems. The HPM has been
successfully applied to solve various kinds of nonlinear
problems in science and engineering, including Volterra’s
integro-differential equation (El-Shahed 2005), nonlin-
ear differential equations (He 1998), nonlinear oscilla-
tors (He 2004), partial differential equations (PDEs) (He
2005a), bifurcation of nonlinear problems (He 2005b) and
boundary-value problems (He 2006). Recently, the mod-
ifications of the HPM have been used to solve DAEs
(Aminikhah and Hemmatnezhad 2011; Asadi et al. 2012;
Salehi et al. 2012; Soltanian et al. 2010). Nevertheless,
the power series method (PSM) (Forsyth 1906; Ince 1956)
is a well-known classic straightforward procedure from
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literature that can be applied successfully to solve differen-
tial equations of different kind: linear ordinary differential
equations (ODEs) (Coddington 1989; Forsyth 1906; Ince
1956; Kreyszig 1999), nonlinear ODEs (Biazar et al. 2005;
Fairen et al. 1988; Filipich and Rosales 2002; Filipich et al.
2004; Guzel and Bayram 2005; Kreyszig 1999) and linear
PDEs (Kurulay and Bayram 2009), among others. This
method establishes that the solution of a differential
equation can be expressed as a power series of the inde-
pendent variable.
In this paper we present the application of a hybrid

technique combining PSM, Laplace Transform (LT) and
Padé Approximant (PA) (Barker 1975) to find analytical
solutions for PDAEs (Ebaid 2011; Gőkdoğan et al. 2012;
Merdan et al. 2011; Momani and Ertűrk 2008; Momani
et al. 2009; Sweilam and Khader 2009; Tsai and Chen
2010; Yamamoto et al. 2002). Solutions to PDAEs are
first obtained in convergent series form using the PSM.
To improve the solution obtained from PSM’s truncated
series, we apply LT to it, then convert the transformed
series into a meromorphic function by forming its PA.
Finally, we take the inverse LT of the PA to obtain
the analytical solution. This hybrid method (LPPSM),
which combines PSM with Laplace-Padé post-treatment
greatly improves PSM’s truncated series solutions in
convergence rate. In fact, the Laplace-Padé resumma-
tion method enlarges the domain of convergence of the
truncated power series and often leads to the exact
solution.
It is important to remark that LPPSM can obtain

exact solutions without requiring the index-reduction
of the PDAEs. The proposed method does not pro-
duce noise terms also known as secular terms as
the homotopy perturbation based techniques (Soltanian
et al. 2010). This greatly reduces the volume of com-
putation and improves the efficiency of the method in
comparison to the perturbation based methods. What is
more, LPPSM does not require a perturbation param-
eter as the perturbation based techniques including
HPM. Finally, LPPSM is straightforward and can be pro-
grammed using computer algebra packages like Maple or
Mathematica.
The rest of this paper is organized as follows. In the

next section we illustrate the basic concept of the PSM.
The main idea behind the Padé approximant is given
in section “Padé approximant”. In section “Laplace-Padé
resummation method”, we give the basic concept of
the Laplace-Padé resummation method. The application
of PSM to solve PDAE systems is depicted in section
“Application of PSM to solve PDAE systems”. In
section “Test problems”, we apply LPPSM to solve
two PDAEs problems of index-one and index-three. In
section “Discussion”, we give a brief discussion. Finally, a
conclusion is drawn in the last section.

Basic concept of power series method
It can be considered that a nonlinear differential equation
can be expressed as

A(u) − f (t) = 0, t ∈ �, (1)

having as boundary condition

B
(
u,

∂u
∂η

)
= 0, t ∈ �, (2)

where A is a general differential operator, f (t) is a known
analytic function, B is a boundary operator, and � is the
boundary of domain �.
PSM (Forsyth 1906; Ince 1956) establishes that the solu-

tion of a differential equation can be written as

u (t) =
∞∑
n=0

untn, (3)

where u0,u1, . . . are unknowns to be determined by series
method.
The basic process of series method can be described as:

1. Equation (3) is substituted into (1), then we regroup
the equation in terms of powers of t.

2. We equate each coefficient of the resulting
polynomial to zero.

3. The boundary conditions of (1) are substituted into
(3) to generate an algebraic equation for each
boundary condition.

4. Aforementioned steps generate an algebraic linear
system for the unknowns of (3).

5. Finally, we solve the algebraic linear system to obtain
the coefficients u0,u1, . . .

Padé approximant
Given an analytical function u(t) with Maclaurin’s expan-
sion

u (t) =
∞∑
n=0

untn, 0 ≤ t ≤ T . (4)

The Padé approximant to u (t) of order [L,M] which we
denote by [L/M]u (t) is defined by (Barker 1975)

[L/M]u (t) = p0 + p1t + . . . + pLtL

1 + q1t + . . . + qMtM
, (5)

where we considered q0 = 1, and the numerator and
denominator have no common factors.
The numerator and the denominator in (5) are con-

structed so that u (t) and [L/M]u (t) and their derivatives
agree at t = 0 up to L + M. That is

u(t) − [L/M]u (t) = O
(
tL+M+1) . (6)
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From (6), we have

u (t)
M∑
n=0

qntn −
L∑

n=0
pntn = O

(
tL+M+1) . (7)

From (7), we get the following algebraic linear systems
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uLq1 + . . . + uL−M+1qM = −uL+1
uL+1q1 + . . . + uL−M+2qM = −uL+2
...
uL+M−1q1 + . . . + uLqM = −uL+M,

(8)

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p0 = u0
p1 = u1 + u0q1
...
pL = uL + uL−1q1 + . . . + u0qL.

(9)

From (8), we calculate first all the coefficients qn, 1 ≤ n ≤
M. Then, we determine the coefficients pn, 0 ≤ n ≤ L
from (9).
Note that for a fixed value of L + M + 1, the error (6) is

smallest when the numerator and denominator of (5) have
the same degree or when the numerator has degree one
higher than the denominator.

Laplace-Padé resummationmethod
Several approximate methods provide power series solu-
tions (polynomial). Nevertheless, sometimes, this type of
solutions lacks of large domains of convergence. There-
fore, Laplace-Padé (Ebaid 2011; Gőkdoğan et al. 2012;
Merdan et al. 2011; Momani and Ertűrk 2008; Momani
et al. 2009; Sweilam and Khader 2009; Tsai and Chen 2010;
Yamamoto et al. 2002) resummation method is used in lit-
erature to enlarge the domain of convergence of solutions
or inclusive to find exact solutions.
The Laplace-Padé method can be explained as follows:

1. First, Laplace transformation is applied to power
series (3).

2. Next, s is substituted by 1/t in the resulting equation.
3. After that, we convert the transformed series into a

meromorphic function by forming its Padé
approximant of order [L/M]. L andM are arbitrarily
chosen, but they should be of smaller value than the
order of the power series. In this step, the Padé
approximant extends the domain of the truncated
series solution to obtain better accuracy and
convergence.

4. Then, t is substituted by 1/s.
5. Finally, by using the inverse Laplace s transformation,

we obtain the exact or approximate solution.

Application of PSM to solve PDAE systems
Since many application problems in science and engi-
neering are often modelled by semi-explicit PDAEs, we
consider therefore the following class of PDAEs

u1t = φ (u,ux,uxx) , (10)
0 = ψ (u,ux,uxx) , (t, x) ∈ (0,T) × (a, b) , (11)

where uk : [0,T]×[ a, b]→ R
mk , k = 1, 2 and b > a.

System (10)-(11) is subject to the initial condition

u1 (0, x) = g (x) , a ≤ x ≤ b, (12)

and some suitable boundary conditions

B (u (t, a) ,u (t, b) ,ux (t, a) ,ux (t, b)) = 0, 0 ≤ t ≤ T ,
(13)

where g (x) is a given function.
We assume that the solution to initial boundary-

value problem (10)-(13) exists, is unique and sufficiently
smooth.
To simplify the exposition of the PSM, we integrate first

equation (10) with respect to t and use the initial condition
(12) to obtain

u1 (t, x) − g (x) −
t∫

0

φ (u,ux,uxx) dt = 0. (14)

It is important to note that the time integration of
equation (10) is not relevant to the solution procedure
presented here, so one can apply the PSM directly to (10).
In view of PSM, we assume the solution components

uk (t, x) , k = 1, 2 to have the form

uk (t, x) = αk,0 (x) + αk,1 (x) t + αk,2 (x) t2 + . . . , (15)

where αk,n (x), k = 1, 2; n = 0, 1, 2, . . . are unknown
functions to be determined later on by the PSM.
Then substitute (15) into system (11)-(14) and equate

the coefficients of powers of t in the resulting polyno-
mial equations to zero to get an algebraic linear system for
these coefficients. Finally, we use equation (15) to obtain
the exact solution components uk , k = 1, 2 as series.
The solutions series obtained from PSMmay have limited
regions of convergence, even if we take a large number
of terms. Therefore, we apply the Laplace-Padé resum-
mation method to PSM truncated series to enlarge the
convergence region as depicted in the next section.

Test problems
In this section, we will demonstrate the effectiveness and
accuracy of the LPPSM presented in the previous section
through two PDAE systems of index-one and index-three.
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Nonlinear index-one system:
Consider the following nonlinear index-one PDAE which
arises as a similarity reduction of Navier-Stokes equations
(Budd et al. 1994)

u1t = u1xx − u2u1x + u21 − 2
1∫

0

u21dx, (16)

0 = u2x − u1, (17)

where 0 < x < 1 and t > 0.
System (16)-(17) is subject to the following initial condi-

tion

u1 (0, x) = cosπx, 0 ≤ x ≤ 1, (18)

and boundary conditions

u1x (t, 0) = u1x (t, 1) = u2 (t, 0) = u2 (t, 1) = 0, t ≥ 0.
(19)

The exact solution of problem (16)-(19) is

u1 (t, x) = e−π2t cosπx,

u2 (t, x) = (1/π) e−π2t sinπx, 0 ≤ x ≤ 1, t ≥ 0.
(20)

Since one time differentiation of equation (17) deter-
mines u2t in terms of u and its space derivatives, then
PDAE (16)-(17) is index-one. Note that no initial condi-
tion is prescribed for the variable u2 as this is determined
by the PDAE.
In order to simplify the exposition of the PSM presented

in section “Application of PSM to solve PDAE systems”
to solve (16)-(17), we first integrate equation (16) with
respect to t and use the initial condition (18) to get

u1 (t, x) − cosπx −
t∫

0

⎛
⎝u1xx − u2u1x + u21 − 2

1∫
0

u21dx

⎞
⎠ dt = 0.

(21)

In view of the PSM, we assume the solution components
uk , k = 1, 2 to have the form

uk (t, x) = αk,0 (x) + αk,1 (x) t + αk,2 (x) t2 + . . . , (22)

where αk,n (x) , k = 1, 2; n = 0, 1, 2, . . . are unknown
functions to be determined later on by the PSM.

Then, we substitute (22) into equations (17) and (21) to
get

∞∑
n=0

α1,n (x) tn − cosπx −
t∫

0

∞∑
n=0

α′′
1,n (x) tndt

+
t∫

0

( ∞∑
n=0

α2,n (x) tn
)( ∞∑

n=0
α′
1,n (x) tn

)
dt

−
t∫

0

( ∞∑
n=0

α1,n (x) tn
)2

dt

+ 2
t∫

0

1∫
0

( ∞∑
n=0

α1,n (x) tn
)2

dxdt = 0, (23)

∞∑
n=0

(
α′
2,n (x) − α1,n(x)

)
tn = 0, (24)

where
(′) denotes the ordinary derivative with respect to

x.
Equating the coefficients of powers of t to zero in (24)

then solving the resulting equation for α2,n (x) and using
the boundary conditions (19), we have

α2,n (x) =
x∫

0

α1,n (x) dx, n = 0, 1, 2, . . . (25)

Now equation (23) can be written as a series

(
α1,0 (x) − cosπx

)+ ∞∑
n=1

(
α1,n (x) − (1/n) α′′

1,n−1 (x)

− (1/n)

n−1∑
k=0

βk,n (x)
)
tn = 0,

(26)
where

βk,n (x) = α1,k (x) α1,n−1−k (x) − α′
1,n−1−k (x)

x∫
0

α1,k (x) dx

− 2
1∫

0

α1,k (x) α1,n−1−k (x) dx.

Equating all coefficients of powers of t to zero in (26),
yields α1,0 (x) = cosπx and the recursive formula for
α1,n (x)

α1,n (x) = (1/n) α′′
1,n−1 (x) + (1/n)

n−1∑
k=0

βk,n (x) ,

n = 1, 2, 3, . . .

(27)

From recursion (27), we get α1,1 (x) = −π2 cosπx and
α1,2 (x) = (

π4/2
)
cosπx.
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From equation (25), we get α2,0 (x) = (1/π) sinπx,
α2,1 (x) = −π sinπx and α2,2 (x) = (

π3/2
)
sinπx. Using

(22) and the coefficients recently obtained, we have

u1 (t, x) =
(
1 − π2t + 1

2
(−π2t

)2) cosπx, (28)

and

u2 (t, x) =
(
1 − π2t + 1

2
(−π2t

)2)
(1/π) sinπx. (29)

Similarly, the coefficients α1,n (x) and α2,n (x) for n ≥ 3
can be found from (27) and (25) respectively.
The solutions series obtained from the PSM may have

limited regions of convergence, even if we take a large
number of terms. Accuracy can be increased by applying
the Laplace-Padé post-treatment. First, we apply t-Laplace
transform to (28) and (29). Then, we substitute s by 1/t
and apply t-Padé approximant to the transformed series.
Finally, we substitute t by 1/s and apply the inverse Laplace
s-transform to the resulting expressions to get the approx-
imate or exact solutions.
Applying Laplace transforms to u1 (t, x) and u2 (t, x)

yields

L [u1 (t, x)] =
(
1
s

− π2

s2
+ π4

s3

)
cosπx, (30)

and

L [u2 (t, x)] =
(
1
s

− π2

s2
+ π4

s3

)
(1/π) sinπx. (31)

For the sake of simplicity let s = 1/t, then

L [u1 (t, x)] = (
t − π2t2 + π4t3

)
cosπx, (32)

and

L [u2 (t, x)] = (
t − π2t2 + π4t3

)
(1/π) sinπx. (33)

All of the [L/M] t-Padé approximants of (32) and (33) with
L ≥ 1 andM ≥ 1 and L + M ≤ 3 yield

[L/M]u1 (t, x) =
(

t
1 + π2t

)
cosπx, (34)

and

[L/M]u2 (t, x) =
(

t
1 + π2t

)
(1/π) sinπx. (35)

Now since t = 1/s, we obtain [L/M]u1 and [L/M]u2 in
terms of s as follows

[L/M]u1 (t, x) = (
π2 + s

)−1 cosπx, (36)

[L/M]u2 (t, x) = (
π2 + s

)−1
(1/π) sinπx. (37)

Finally, applying the inverse LT to the Padé approximants
(36) and (37), we obtain the approximate solution which is
in this case the exact solution (20) in closed form.

Linear index-three system:
Consider the following index-three PDAE system

u1tt = u1xx + u3 sinπx, (38)
u2tt = u2xx + u3 cosπx, (39)

0 = u1 sinπx + u2 cosπx − e−t , (40)

where 0 < x < 1 and t > 0.
System (38)-(40) is subject to the following initial condi-

tions

u1 (0, x) = sinπx u1t (0, x) = − sinπx, (41)
u2 (0, x) = cosπx u2t (0, x) = − cosπx 0 ≤ x ≤ 1,

(42)

and the boundary conditions

u1 (t, 0) = u1 (t, 1) = 0,
u2 (t, 0) = −u2 (t, 1) = e−t t ≥ 0.

(43)

The exact solution of problem (38)-(43) is

u1 (t, x) = e−t sinπx u2 (t, x) = e−t cosπx,
u3 (t, x) = (

1 + π2) e−t , 0 ≤ x ≤ 1, t ≥ 0.
(44)

Since three time differentiations of equation (40) deter-
mine u3t in terms of the solution u and its space deriva-
tives, then PDAE (38)-(40) is index-three. Therefore, this
PDAE is difficult to solve numerically. Moreover no ini-
tial condition is prescribed for the variable u3 as this is
determined by the PDAE.
In order to simplify the exposition of the LPPSM pre-

sented in section “Application of PSM to solve PDAE sys-
tems” to solve (38)-(43), we first integrate equations (38)
and (39) twice with respect to t and use the initial condi-
tions (41)-(42) to get

u1 (t, x) − sinπx + t sinπx −
t∫

0

t∫
0

u1xx

+ u3 sinπxdtdt = 0, (45)

u2 (t, x) − cosπx + t cosπx −
t∫

0

t∫
0

u2xx

+ u3 cosπxdtdt = 0. (46)

In view of the PSM, we assume the solution components
uk (t, x) , k = 1, 2, 3 to have the form

uk (t, x) = αk,0 (x) + αk,1 (x) t + αk,2 (x) t2 + . . . , (47)

where αk,n (x) , k = 1, 2, 3; n = 0, 1, 2, . . . are unknown
functions to be determined later on by the PSM.
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Substituting (47) into equations (40), (45) and (46) we
get the system

∞∑
n=0

α1,n (x) tn − sinπx + t sinπx −
t∫

0

t∫
0

∞∑
n=0

α′′
1,n (x) tndtdt

− sinπx
t∫

0

t∫
0

∞∑
n=0

α3,n (x) tndtdt = 0,

(48)

∞∑
n=0

α2,n (x) tn − cosπx + t cosπx −
t∫

0

t∫
0

∞∑
n=0

α
′′
2,n (x) tndtdt

− cosπx
t∫

0

t∫
0

∞∑
n=0

α3,n (x) tndtdt = 0,

(49)

and
∞∑
n=0

(
α1,n (x) sinπx + α2,n (x) cosπx

)
tn − e−t = 0,

(50)

where
(′) denotes the ordinary derivative with respect to

x.
System (48)-(50) can be rewritten as series

(
α1,0 (x) − sinπx

) + (
α1,1 (x) + sinπx

)
t

−
∞∑
n=2

(
α′′
1,n−2 (x) + α3,n−2 (x) sinπx

(n − 1) n
− α1,n (x)

)
tn = 0,

(
α2,0 (x) − cosπx

) + (
α2,1 (x) + cosπx

)
t

−
∞∑
n=2

(
α′′
2,n−2 (x) + α3,n−2 (x) cosπx

(n − 1) n
− α2,n (x)

)
tn = 0,

(51)

∞∑
n=0

(
α1,n (x) sinπx + α2,n (x) cosπx − (−1)n

n!

)
tn = 0.

Equating the coefficient of powers of t to zero in (51)
then solving the resulting system we find the coefficients
αk,n (x), for k = 1, 2, 3 and n = 0, 1, 2, . . .

α1,0 (x) = sinπx, α1,1 (x) = − sinπx,

α2,0 (x) = cosπx, α2,1 (x) = − cosπx,

and the nonsingular algebraic linear system for the
unknown functions α1,n, α2,n and α3,n−2

α1,n (x) − α3,n−2 (x) sinπx
(n − 1) n

= α′′
1,n−2 (x)

(n − 1) n
,

α2,n (x) − α3,n−2 (x) cosπx
(n − 1) n

= α′′
2,n−2 (x)

(n − 1) n
,

α1,n (x) sinπx + α2,n (x) cosπx = (−1)n

n!
for n = 2, 3, . . .

(52)

Solving system (52) exactly, we obtain the recursions

α1,n (x) = (−1)n

n!
sinπx + δn (x) cosπx

(n − 1) n
,

α2,n (x) = (−1)n

n!
cosπx − δn (x) sinπx

(n − 1) n
,

α3,n−2 (x) = (−1)n

(n − 2) !
− α′′

1,n−2 (x) sinπx

− α′′
2,n−2 (x) cosπx,

(53)

where δn (x) = α′′
1,n−2 (x) cosπx − α′′

2,n−2 (x) sinπx.
For n = 2, 3, 4, we have δn (x) = 0 and hence

α1,2 (x) = 1
2
sinπx, α2,2 (x) = 1

2
cosπx,

α3,0 (x) = 1 + π2,

α1,3 (x) = −1
6
sinπx, α2,3 (x) = −1

6
cosπx,

α3,1 (x) = − (
1 + π2) ,

and

α1,4 (x) = 1
24

sinπx, α2,4 (x) = 1
24

cosπx,

α3,2 (x) = 1
2

(
1 + π2) .

Using (47) and the coefficients recently obtained, we get

u1 (t, x) =
(
1 − t + 1

2
t2 − 1

3!
t3 + 1

4!
t4

)
sinπx, (54)

u2 (t, x) =
(
1 − t + 1

2
t2 − 1

3!
t3 + 1

4!
t4

)
cosπx, (55)

and

u3 (t, x) = (
1 + π2) (

1 − t + 1
2
t2

)
. (56)

Similarly, the coefficients α1,n (x), α2,n (x) and α3,n−2 (x)
for n ≥ 5 can be found from (53). The solutions series
obtained from the PSM may have limited regions of
convergence, even if we take a large number of terms.
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Therefore, we apply the t-Padé approximation technique
to these series to increase the convergence region. First
t -Laplace transform is applied to (54), (55) and (56).
Then, s is substituted by 1/t and the t-Padé approximant is
applied to the transformed series. Finally, t is substituted
by 1/s and the inverse Laplace s -transform is applied to
the resulting expressions to get the approximate or exact
solutions.
Applying Laplace transforms to u1 (t, x), u2 (t, x) and

u3 (t, x) yields

L [u1 (t, x)] =
(
1
s

− π2

s2
+ π4

s3

)
sinπx, (57)

L [u2 (t, x)] =
(
1
s

− π2

s2
+ π4

s3

)
cosπx, (58)

and

L [u3 (t, x)] = (
1 + π2) (

1
s

− π2

s2
+ π4

s3

)
. (59)

For the sake of simplicity let s = 1/t, then

L [u1 (t, x)] = (
t − π2t2 + π4t3

)
sinπx, (60)

L [u2 (t, x)] = (
t − π2t2 + π4t3

)
cosπx, (61)

and

L [u3 (t, x)] = (
1 + π2) (

t − π2t2 + π4t3
)
. (62)

All of the [L/M] t-Padé approximants of (60), (61) and (62)
with L ≥ 1 andM ≥ 1 and L + M ≤ 3 yield

[L/M]u1 (t, x) =
(

t
1 + t

)
sinπx, (63)

[L/M]u2 (t, x) =
(

t
1 + t

)
cosπx, (64)

and

[L/M]u3 (t, x) = (
1 + π2) (

t
1 + t

)
. (65)

Now since t = 1/s, we obtain [L/M]u1 , [L/M]u2 and
[L/M]u3 in terms of s as follows

[L/M]u1 (t, x) = (
π2 + s

)−1 sinπx, (66)

[L/M]u2 (t, x) = (
π2 + s

)−1 cosπx, (67)

and

[L/M]u3 (t, x) = (
1 + π2) (

π2 + s
)−1 . (68)

Finally, applying the inverse Laplace transform to the
Padé approximants (66), (67) and (68), we obtain the

approximate solution which is in this case the exact solu-
tion (44) in closed form.

Discussion
In this paper we presented the power seriesmethod (PSM)
as a useful analytical tool to solve partial differential-
algebraic equations (PDAEs). Two PDAE problems of
index-one and index-three were solved by this method
leading to the exact solutions. The method has success-
fully handled the index-three PDAEwithout the need for a
preprocessing step of index-reduction. For each of the two
problems solved here, the PSM transformed the PDAE
into an easily solvable linear algebraic system for the coef-
ficient functions of the power series solution. To improve
the PSM solution, a Laplace-Padé (LP) post-treatement
is applied to the PSM’s truncated series leading to the
exact solution. Additionally, the solution procedure does
not involve unnecessary computation like that related to
noise terms (Soltanian et al. 2010). This greatly reduces
the volume of computation and improves the efficiency of
the method. It should be noticed that the high complex-
ity of these problems was effectively handled by LPPSM
method due to the malleability of PSM and resumma-
tion capability of Laplace-Padé. What is more, there is
not any standard analytical or numerical methods to solve
higher-index PDAEs, converting the LPPSM method into
an attractive tool to solve such problems.
On one hand, semi-analytic methods like HPM, HAM,

VIM among others, require an initial approximation for
the sought solutions and the computation of one or sev-
eral adjustment parameters. If the initial approximation
is properly chosen the results can be highly accurate,
nonetheless, no general methods are available to choose
such initial approximation. This issue motivates the use
of adjustment parameters obtained by minimizing the
least-squares error with respect to the numerical solution.
On the other hand, PSM or LPPSM methods do not

require any trial equation as requisite for the starting the
method. What is more, PSM obtains its coefficients using
an easy computable straightforward procedure that can
be implemented into programs like Maple or Mathemat-
ica. Finally, if the solution of the PDAE is not expressible
in terms of known functions then the LP post-treatement
will provide a larger domain of convergence.

Conclusion
This work presented LPPSM method as a combination
of the classic PSM and a resummation method based
on the Laplace transforms and Padé approximant. Firstly,
the solutions of PDAEs are obtained in convergent series
forms using PSM. Next, in order to enlarge the domain
of convergence of the truncated power series, a post-
treatment combining Laplace transform and Padé approx-
imant is applied. This technique that we call LPPSM
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greatly improves PSM’s truncated series solutions in con-
vergence rate, and often leads to the exact solution. Addi-
tionally, PSM is an attractive tool, because it does not
require of a perturbation parameter to work and it does
not generate secular terms (noise terms) as other semi-
analytical methods like HPM, HAM or VIM.
By solving two problems, we presented the LPPSM as

a handy tool with high potential to solve linear/nonlinear
higher-index PDAEs. Additionally, the LPPSM does not
require an index-reduction to solve higher-index PDAEs.
Furthermore, we obtained successfully the exact solu-
tions of such two problems highlighting the efficiency of
LPPSM. What is more, the proposed method is based
on a straightforward procedure, suitable for engineers.
Finally, further research should be performed to solve
other higher-index nonlinear PDAE systems.
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Merdan M, Gőkdoğan A, Yildirim A (2011) On the numerical solution of the
model for HIV infection of CD4+T cells. Comput & Math Appl 62(1):118–123

Momani S, Ertűrk VS (2008) Solutions of non-linear oscillators by the modified
differential transform method. Comput & Math Appl 55(4):833–842

Momani S, Erjaee GH, Alnasr MH (2009) The modified homotopy perturbation
method for solving strongly nonlinear oscillators. Comput & Math Appl
58(11–12):2209–2220

Salehi F, Asadi MA, Hosseini MM (2012) Solving system of DAEs by modified
homotopy perturbation method. J Comput Sci & Comp Math 2(6):1–5

Simeon B (1996) Modelling a flexible slider crank mechanism by a mixed
system of DAEs and PDEs. Math Model Syst 2(1): 1–18

Soltanian F, Dehghan M, Karbassi SM (2010) Solution of the
differential-algebraic equations via homotopy method and their
engineering applications. Int J Comp Math 87(9):1950–1974

Strehmel K, Debrabant K (2005) Convergence of Runge-Kutta methods
applied to linear partial differential-algebraic equations. Appl Numer Math
53(2–4):213–229

http://www-num.math.uni-wuppertal.de/fileadmin/mathe/www-num/preprints/amna_06_07.pdf
http://www-num.math.uni-wuppertal.de/fileadmin/mathe/www-num/preprints/amna_06_07.pdf


Benhammouda and Vazquez-Leal SpringerPlus 2014, 3:137 Page 9 of 9
http://www.springerplus.com/content/3/1/137

Sweilam NH, Khader MM (2009) Exact solutions of some coupled nonlinear
partial differential equations using the homotopy perturbation method.
Comput & Math Appl 58(11–12):2134–2141

Tsai PY, Chen CK (2010) An approximate analytic solution of the nonlinear
Riccati differential equation. J Franklin Inst 347(10):1850–1862

Vazquez-Leal H (2013) Generalized Homotopy method for solving nonlinear
differential equations. Comput Appl Math. doi:10.1007/s40314-013-0060-4

Vazquez-Leal H, Khan Y, Fernandez-Anaya G, Herrera-May A, Sarmiento-Reyes
A, Filobello-Nino U (2012) A general solution for Troesch’s problem. Math
Probl Eng. doi:10.1155/2012/208375

Yamamoto Y, Dang C, Hao Y, Jiao YC (2002) An aftertreatment technique for
improving the accuracy of Adomian’s decomposition method. Comput &
Math Appl 43(6–7):783–798

doi:10.1186/2193-1801-3-137
Cite this article as: Benhammouda and Vazquez-Leal: Analytical solutions
for systems of partial differential–algebraic equations. SpringerPlus
2014 3:137.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Basic concept of power series method
	Padé approximant
	Laplace-Padé resummation method
	Application of PSM to solve PDAE systems
	Test problems
	Nonlinear index-one system:
	Linear index-three system:

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

