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Abstract
OBJECTIVES:Recurrence of hepatocellular carcinoma can arise from the primary tumor (“early recurrence”) orde novo from
tumor formation in a cirrhotic environment (“late recurrence”). We aimed to develop one simple gene expression score
applicable in both the tumor and the surrounding liver that can predict the recurrence risk. METHODS: We determined
differentially expressed genes in a cell model of cancer aggressiveness. These genes were first validated in three large
published data sets of hepatocellular carcinoma from which we developed a seven-gene risk score. RESULTS: The gene
scorewasappliedon two independent largepatient cohorts. In the first cohort,with only tumordata available, it couldpredict
the recurrence risk at 3 years after resection (68 ± 10% vs 35 ± 7%, P= .03). In the second cohort, when applied on the
tumor, this gene scorepredictedearly recurrence (62±5%vs37±4%,Pb .001), andwhenappliedon the surrounding liver
tissue, thesamegenesalsocorrelatedwith late recurrence.Fourpatientclasseswitheachdifferent timepatternsand ratesof
recurrencecouldbe identifiedbasedoncombining tumor and liver scores. In amultivariateCox regression analysis, our gene
score remained significantly associatedwith recurrence, independent fromother important cofactors such as disease stage
(P = .007). CONCLUSIONS: We developed a Global Risk Score that is able to simultaneously predict the risk of early
recurrencewhenappliedon the tumor itself, aswell as the riskof late recurrencewhenappliedon thesurrounding liver tissue.
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Introduction

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer
and the third most frequent cause of cancer-related death. Treatments
with curative intent, such as resection, are feasible at an early stage.
Still, even after complete resection, patients remain at a high risk for
disease recurrence, either due to early recurrence of the initial tumor
or due to the formation of new lesions (leading to late recurrence) [1].
The latter is driven by the malignant potential of the remnant liver



Table 1. Characteristics of the Three Data Sets Used for Training of the GRS

GEO Accession GSE9843 GSE25097 GSE40873

Responsible
author

Chiang Zhang Kudo

Related
publication

[22] [23] [24]

Microarray
platform

Affymetrix Human
Genome U133
Plus 2.0 Array

Rosetta/Merck
Human RSTA
Affymetrix 1.0

Affymetrix Human
Genome U133
Plus 2.0 Array

Preprocessing RMA RMA RMA
Tumor or

liver samples
Tumor Both Liver

Outcome
parameter for
training

BCLC C vs 0 & A & B Tumor vs adjacent
nontumor

Multicentric occurrence vs
no multicentric occurrence

Number of
positive
outcomes

8 268 17

Number of
negative
outcomes

72 243 32

RMA, robust multiarray; BCLC, Barcelona Clinic Liver Cancer.
More detailed information can be found at http://www.ncbi.nlm.nih.gov/geo/.
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because the majority of patients with HCC share a history of
liver cirrhosis.

Current decision making on HCC is based on a combination of
factors regarding the status of the liver (synthesis capacity, cirrhosis) and
characteristics of the tumor (size, vascular invasion, distant metastasis)
[2–4]. In early stages, liver transplantation has the clearest benefit.
However, due to the organ shortage, resection and radiofrequency
ablation are alternatives [5]. Different prognostic indicators have been
identified including liver function [6,7], extent of cirrhosis and
α-fetoprotein levels [8], and morphological criteria (vascular invasion)
[9,10]. There has also been extensive research on gene expression
signatures in HCC that can objectively predict patient survival or
disease recurrence. However, none of these signatures [11–17] are able
to stratify patients on both rate and timing of disease recurrence. In the
current study, we present a novel translational approach of gene
expression signature training using microarray data derived from a
human sorafenib-resistant hepatoma cell line, an in vitro model for
hepatocyte dedifferentiation and tumor aggressiveness. By combining
the transcriptome of this model with five large patient data sets
submitted at the Gene Expression Omnibus (GEO), we developed a
simple combinationmodel based on gene expression that can be applied
to tumor and surrounding liver to stratify patients into low and high risk
for early and late recurrence of HCC.

Materials and Methods

Cell Culture and Development of Sorafenib Resistance
Full details on the development of a sorafenib-resistant cell line

were previously published [18]. Briefly, HepG2 human hepatoblas-
toma cells (HB-8065-ATCC, Rockville, MD) were incubated with
increasing doses of sorafenib (Bayer HealthCare, Leverkusen,
Germany) over several months, resulting in a cell line resistant to
sorafenib (HepG2S1).

Microarray
Whole transcriptome analysis of HepG2 and HepG2S1 cells (both

in triplicate) was performed using the Affymetrix Human Gene 1.0
ST Array. Microarray data were analyzed with the Limma package
from Bioconductor (http://www.bioconductor.org) [19]. Differen-
tially expressed genes were assessed using a moderated t test. The
resulting P values were corrected for multiple testing with
Benjamini-Hochberg [20]. For selecting differentially expressed
genes, a cutoff of 2log fold change N+1 or b−1 and a corrected P b
.05 was applied.

Gene Set Enrichment Analysis
To explore the features of the differentially expressed genes in the

in vitro model, gene set enrichment analysis (GSEA) was performed
testing their significance in all gene sets of the Molecular Signature
Database v5.0 [21]. Gene sets smaller than 15 or larger than 500
genes were excluded from the analysis. Gene sets with a family wise
error rate P value b .05 were considered significantly enriched.

Gene Score Training
To determine the clinical relevance of the in vitro model, we

compared the microarray data of the cell culture experiment with
published data sets of patients with HCC. Three data sets submitted
at the GEO containing 640 suitable samples of liver and/or tumor
tissue were considered (GSE9843, GSE25097, GSE40873)
(Table 1).
For each data set, a training outcome parameter was selected
(Table 1). Using a global test described by Goeman et al. [25], we
evaluated if a gene differentially expressed in the in vitro experiment
correlated with the outcome parameter of each data set. Only genes
with a Goeman Z-score of b3 (which implies 3 standard deviations or
99.7% confidence of coefficient) in all 3 data sets and with the same
direction of differential expression in vitro as well as in vivo were
withheld. Their expression values are added or subtracted (depending
on the direction of expression) to form a risk score (Global Risk
Score, GRS).

Gene Score Validation
Two HCC data sets with abundant phenotypical information were

found appropriate for validation purpose. Expression values of six out
of seven score genes were available. Characteristics of the validation
data sets are summarized in Table 2.

Statistics
To assess the performance of the GRS in the data sets, receiver

operating characteristic (ROC) curves were used. Survival analysis was
performed with Kaplan-Meier curves and log-rank test. Cutoff values
to define high and low GRS values were calculated using the value
with the highest Youden index and differed for tumor and liver.
Univariate association with survival was determined using Cox
regression. The significant variables with P values b .05 were included
in a multivariable Cox regression. Statistics were performed using
SPSS package 22 (IBM).

Results

Characteristics of the In Vitro Model
As previously described [18], the phenotype of the HepG2S1 cells

consisted of marked epithelial-to-mesenchymal transition with
augmented motility and invasiveness. Between the parental HepG2
cell line and its derived resistant lineage HepG2S1, 3545 probes
representing 3201 genes were differentially expressed. Microarray
data are available at the GEO (http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE62813.

http://www.bioconductor.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Table 2. Characteristics of the Independent Data Sets Used for Validation of the GRS

GEO Accession GSE1898-GSE4024 GSE14520

Abbreviation used LEC (Laboratory of Experimental
Carcinogenesis)

NCI
(National Cancer Institute)

Related publication [11] [12]
Microarray platform NCI/ATC Hs-OperonV2 Affymetrix Human Genome

U133A 2.0 Array
Number of GRS

genes available
6/7 6/7

Number of patients 67 231
Gender (male/female/NA) 46/21/0 201/27/3
Age in years

[median (min-max)]
59 (26-85) 50 (21-77)

Cirrhosis (yes/no/NA) 41/26/0 211/17/3
Tumor size (b5 cm/

N 5cm/NA)
28/21/7 145/82/4

TNM stage (I/II/III/NA) 3/9/27/28 93/75/38/25
BCLC stage (0/A/B/C/NA) NA 20/144/22/26/19
aFP levels (b300 ng/ml/

N 300 ng/ml/NA)
36/25/6 120/104/7

Median follow-up in
months (min-max)

65 (0.1-169) 51.9 (1.8-67.4)

NA, not available; aFP, alpha-fetoprotein.
More detailed information can be found at http://www.ncbi.nlm.nih.gov/geo/.
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Two hundred three gene sets were significantly enriched using GSEA
(Supplementary Table 1). Of note, the gene set most significant
enriched in resistant cells pointed to a marked loss of hepatocyte-
associated genes, indicating dedifferentiation of the resistant cell line
compared with the nonresistant parental cell line. This was further
Figure 1. Training of the GRS. Performance was tested using an
ROC curve in the Zhang (tumor versus nontumoral tissue), Kudo
(multicentric occurrence versus no multicentric occurrence), and
Chiang (BCLC C versus 0-B) data sets (Table 1).
illustrated by the loss of pathways involved in liver functions including
blood coagulation, steroid hormone synthesis, and drug metabolism
(Supplementary Figure 1, A–D). Resistant cells showed loss of
expression of genes included in the good survival signature proposed
by Lee [11] and changes concordant with poor prognostic HCC such as
the proliferation subclass [22] or the G3 subtype described by
Boyault et al. [26] (Supplementary Figure 1, E–G). These findings
encouraged the use of the HepG2/HepG2S1 model as a model of
hepatocyte dedifferentiation and tumor aggressiveness and therefore
formed the starting point for training the GRS.

Training of the GRS
About a third of the differentially expressed genes of our in vitro

model were annotated on the microarray chips of the HCC training
data sets (Figure 1 and Table 1). The Goeman test identified a variable
number of genes from each data set highly correlated with the outcome
parameter. The number of genes was further downsized by looking at
concordant direction of expression between all data sets and the in vitro
condition. Finally, seven genes met all criteria for inclusion in the gene
score. The GRS is therefore defined as the sum of expression values of
COL4A2, OXCT1, and LRRC16A and subtraction of the expression
values of F11, GCKR, ATP11C, and PCSK6 (Table 3). ROC curves
confirmed the good performance of the GRS to predict the outcome
parameter in the training data sets (Figure 1).

The GRS assessed in Tumor Tissue
After determining an optimal tumor cutoff based on ROC analysis

and Youden index, the GRS assessed in tumor tissue could adequately
stratify patients into high and low recurrence risk groups in both data
sets. Estimated recurrence rates 3 years after surgery were 68 ± 10%
veresus 35 ± 7% (P = .03) in the Laboratory of Experimental
Carcinogenesis (LEC) data set and 62 ± 5% versus 37 ± 4% (P b .001)
in the National Cancer Institute (NCI) data set (Figures 2 and 3). In
addition, patients with a low GRS had better mean overall survival rates
compared with patients with high GRS in the LEC data set {67.2 [95%
confidence interval (CI) 50-85.5] vs 33.2 [95%CI 18.3-48]months} as
well as NCI data set [54.3 (95% CI 50.6-58) vs 40.7 (95% CI 35-46)
months] (P b .001 for both comparisons) (Figures 2 and 3).

The GRS Assessed in the Surrounding Liver Tissue
The GRS was assessed on the surrounding nontumoral liver tissue

of 228 patients in the NCI data set. Using an optimal cutoff specific
for liver tissue, the recurrence curves of patients with low and high
GRS started to separate at about 19 months (P = .03) (Figure 3).
Table 3. Overview of the Seven Genes Included in the GRS and Their Main Function

Official Gene
Symbol

Direction of
Expression

Gene Name Processes Involved

COL4A2 ▲ Collagen, type IV, Alpha 2 Extracellular matrix
structural constituent

OXCT1 ▲ 3-Oxoacid CoA
transferase 1

Cell metabolism

LRRC16A ▲ Leucine rich repeat
containing 16A

Protein complex binding

F11 ▼ Coagulation factor XI Blood coagulation
GCKR ▼ Glucokinase regulator Cell metabolism
ATP11C ▼ ATPase, class VI, type 11C Phospholipid transport
PCSK6 ▼ Proprotein convertase

subtilisin/kexin type 6
Protein and
peptide processing

GRS = COL4A2 + OXCT1 + LRRC16A - F11 - GCKR - ATP11C - PCSK6.

http://www.ncbi.nlm.nih.gov/geo/


Figure 2. Recurrence rates and overall survival in the LEC cohort [11]. Low (solid line) versus high (dashed line) GRS patients were
assessed in tumor tissue.
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When we excluded all patients with recurrence before 19 months,
the GRS when assessed in tumor tissue could not distinguish patients
with high versus low recurrence risk (Figure 3). In contrast, excluding
these early recurrences enhanced the prognostic power of the GRS
when applied on the surrounding liver.

Combining Tumor and Liver Gene Expression Data
By combining the GRS of both tumor and liver tissue, we

identified four classes of patients associated with different early and
Figure 3. Recurrence rates and overall survival in the LCI cohort [1
assessed in tumor (first row) and liver (second row) tissue. Recurren
fourth column, respectively.
late recurrence risks (GRS class I-IV, overall P value for recurrence
b .001) (Figure 4). Patients in GRS I, with low GRS both in liver and
tumor tissue, had a 3-year recurrence rate of 32% ± 6% compared with
65% ± 6% in patients in GRS IV (high GRS in both tissues). Patients
with low GRS in tumor and high GRS in liver (GRS II) had similar
recurrence risk as high–tumor GRS/low–liver GRS patients (GRS III).
However, GRS II and III differed with regard to median time to
recurrence: 46 months (95% CI 32-59) versus 26 months (95% CI
8-45), respectively (P = .03 by Breslow test).
2]. Low (solid line) versus high (dashed line) GRS patients were
ce and death before 19 months were censored in the second and
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In a multivariate analysis, GRS class remained significantly
associated with disease-free survival and overall survival independent
from Barcelona Clinic Liver Cancer (BCLC) class and other
established prognostic factors (Table 4 and Supplementary Table 2).
Figure 4. Combining tumor and liver gene expression data. (A) Recu
classes (GRS I = low GRS in tumor and liver; GRS II = low GRS in tum
high GRS in tumor and liver). (B) Mean overall survival time for differen
classes.
Discussion
The fact that the recurrence rate after surgery comes in two waves each
with different etiologies—early recurrence caused by recurrence of the
resected primary tumor versus late recurrence caused by de novo tumor
rrence rates and overall survival in the LCI cohort in the four GRS
or, high in liver; GRS III = high GRS in tumor, low in liver; GRS IV =
t GRS classes. (C) Mean disease-free survival time for different GRS
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formation in the cirrhotic environment—is a unique feature of HCC
[1]. We developed a GRS based on gene expression data of a limited
number of genes that, when assessed in both tumor and the surrounding
liver tissue, could predict the risk of early and late recurrence in patients
with HCC treated with resection. Identifying this risk at the time of
surgery is crucial in considering all further treatment options and their
optimal timing, including liver transplantation [3–5].

It is now generally accepted that, to make an adequate estimate of
the recurrence risk after resection of HCC, information on the
resected tumor as well as the surrounding liver tissue needs to be
combined [15]. Our approach, in which we developed one gene
expression risk score (GRS) that predicts both early and late
recurrence by combining this information on the tumor and liver
tissue, has never been performed before. Previous gene expression
signatures have focused on either tumor or liver tissue [11–17,26].
With a well-validated five-gene score applied on tumor tissue, disease
recurrence and survival after resection could be predicted indepen-
dently of the established clinical and pathologic markers [16]. In
another study, the authors could not predict prognosis-based gene
expression of the tumor [13]. This is due to the limited number of
early recurrence events (n = 6) in the training data set of 80 early-stage
tumor samples. Interestingly, gene expression of the noncancerous
surrounding liver tissue did predict survival. The authors developed a
186-gene signature, which was validated to predict recurrence after
HCC resection as well as in hepatitis C cirrhosis without HCC
[13,17]. Similarly, a model of hepatic injury was used to develop
another (233) gene signature that predicted late recurrence [14].
Although the latter two studies both predicted late recurrence of
HCC and both used noncancerous liver tissue, their gene scores show
remarkable little overlap (only four genes) despite containing a high
number of genes. Our seven-gene GRS has one gene in common with
both signatures (Supplementary Figure 2). To be noted, the majority
of expression studies all point to a subgroup within the molecular
classification of HCC that has a bad prognosis. And although the
individual studies came up with different sets of genes to predict this
subgroup, when applied to the same 287 HCC patients, there is a
great concordance of the poor-outcome signatures [15]. This
Table 4. Multivariate Cox Regression Analysis on Selected Clinical Variables in the NCI Data Set
Based on Significance in Univariate Analysis (see Supplementary Table 2)

Disease-Free Survival Overall Survival

P
Value

Hazard
Ratio

95% CI P
Value

Hazard
Ratio

95% CI

Lower Upper Lower Upper

Gender (female vs male) .083 .544 .273 1.082
Size largest nodule

(N5 cm vs b5 cm)
.715 .900 .513 1.580

Multinodular (no vs yes) .145 1.785 .819 3.888
Cirrhosis (yes vs no) .060 3.941 .945 16.434
BCLC .000 .000
BCLC (A vs 0) .045 2.381 1.021 5.552 .035 4.648 1.113 19.403
BCLC (B vs 0) .002 4.564 1.749 11.915 .002 14.850 2.597 84.908
BCLC (C vs 0) .000 6.744 2.640 17.224 .000 23.956 4.850 118.331

aFP (N300 ng/ml vs
b300 ng/ml)

.410 1.228 .754 2.001

GRS group .007 .024
GRS II vs I .002 2.458 1.380 4.377 .025 2.315 1.112 4.820
GRS III vs I .033 1.810 1.048 3.127 .086 1.848 .916 3.730
GRS IV vs I .002 2.372 1.378 4.083 .003 2.870 1.446 5.696

GRS groups: GRS I = low GRS in tumor and liver; GRS II = low GRS in tumor, high in liver; GRS
III = high GRS in tumor, low in liver; GRS IV = high GRS in tumor and liver.
concordance is also indicated by GSEA with the HepG2S1 signature
used to develop the GSR (Supplementary Figure 1, E–G).

The occurrence of de novo tumors is named late recurrence,
although, theoretically, it can take place at any time after resection of
HCC. Most authors have adopted a threshold of 2 years to
distinguish early from late recurrence based on differences in risk
factors and recurrence rates [27]. In this study, the GRS, when
applied on the noncancerous surrounding liver tissue, predicted
recurrence starting at about 19 months after resection. Similarly,
when we excluded patients with recurrence before 19 months, the
GRS in tumor tissue could not distinguish patients with high versus
low risk. These results demonstrate that, from this time point on, the
formation of new lesions starts to outnumber the incidence of
recurrence of the primary lesion. The primary tumor is thus
noninformative for the risk of de novo lesions. Gene expression data
of both the primary tumor as well as the surrounding liver are needed
to accurately predict the risk of recurrence. Therefore, our seven-gene
GRS for both tumor and liver can guide treatment options and
timing. But how could such a gene signature be implemented? The
limited number of genes in the GSR allows the use of simple
cost-effective platforms, such as RT-qPCR, for future validation and
application. It will be possible to determine the expression in the
tumor and in the surrounding tissue as well as in a set of
noncancerous livers and subsequently calculate the GSR score and
compare it with the reference value.

This study has several potential limitations. We aimed to
improve treatment stratification by developing a gene score based
on gene expression differences between HepG2 cells made resistant
to sorafenib and their parental lineage. We are aware of the fact that
none of the patients included in this study have been exposed to
sorafenib. However, as HepG2S1 cells lose their hepatocyte
differentiation, undergo epithelial-to-mesenchymal transition,
and obtain invasive capacities, this model reflects an aggressive
disease behavior and malignant potential rather than merely a drug
resistance profile [18]. This is supported by the GSEA analysis
where the resistant cells show strong overlap with the poor
prognosis subclasses of Lee [11], Chiang [22], and Boyault [26] (see
Supplementary Figures 1, E–G). The final, independent validation
in two additional data sets justifies our approach. Second, by using
one in vitro model, we might have lost important prognostic genes
early in the development process. However, true downsizing of the
number of genes was done using patient samples leading to a
prognostic score. This approach was similar to what was done
successfully in the past in the context of hypoxia in HCC [28] and
colon cancer [29]. Using a cell line also has advantages; the results
are more pure, which is reflected in the small set of genes necessary
for the GRS as compared with other published studies that used
patients’ tissue and that resulted sometimes in gene scores of 180 to
250 genes to classify. Third, one might argue that the differences
between the four GRS classes are only modest, questioning its
relevance in clinical decision making. As more than 70% of patients
will show tumor recurrence within 5 years after surgery [27], it
becomes difficult to acquire larger between-group differences with
a prognostic factor. Indeed, in such setting, timing of recurrence
becomes more of interest as the disease will almost certainly recur.
Timing is addressed by the GRS as GRS III patients have only half
median disease-free survival time compared with GRS II patients
(Figure 4C). Finally, before the GRS can find its way to the clinic,
further validation needs to determine a platform-specific cutoff and
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reveal its role in the context of other established clinical and
pathological prognostic markers.

Conclusion
We developed and validated a gene score based on an in vitro model
of aggressive tumor biology and hepatocyte dedifferentiation. The
obtained score shows unique features, as it can be assessed in tumor as
well as in liver tissue to predict early and late recurrence, respectively.
Together, a global estimate of tumor recurrence by the GRS can help
to stratify treatment options in an individual patient, and the
particular small set of genes could facilitate its clinical use.
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