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Abstract

The purposes of the study were to determine whether there are differences in texture analy-

sis parameters between tonsil cancers and normal tonsils, and to correlate texture analysis

with 18F-FDG PET/CT to investigate the relationship between texture analysis and meta-

bolic parameters. Sixty-four patients with squamous cell carcinoma of the palatine tonsil

were included. A ROI was drawn, including all slices, to involve the entire tumor. The contra-

lateral normal tonsil was used for comparison with the tumors. Texture analysis parameters,

mean, standard deviation (SD), entropy, mean positive pixels, skewness, and kurtosis were

obtained using commercially available software. Parameters were compared between the

tumor and the normal palatine tonsils. Comparisons were also performed among early tonsil

cancer, advanced tonsil cancer, and normal tonsils. An ROC curve analysis was performed

to assess discrimination of tumor from normal tonsils. Correlation between texture analysis

and 18F-FDG PET/CT was performed. Compared to normal tonsils, the tumors showed a

significantly lower mean, higher SD, higher entropy, lower skewness, and higher kurtosis on

most filters (p<0.001). On comparisons among normal tonsils, early cancers, and advanced

tonsil cancers, SD and entropy showed significantly higher values on all filters (p<0.001)

between early cancers and normal tonsils. The AUC from the ROC analysis was 0.91,

obtained from the entropy. A mild correlation was shown between texture parameters and

metabolic parameters. The texture analysis parameters, especially entropy, showed signifi-

cant differences in contrast-enhanced CT results between tumor and normal tonsils, and

between early tonsil cancers and normal tonsils. Texture analysis can be useful as an

adjunctive tool for the diagnosis of tonsil cancers.

Introduction

Palatine tonsils are lymphoid tissues that comprise the anterior tonsillar pillar, tonsillar fossa,

and posterior tonsillar pillar [1, 2]. Squamous cell carcinoma accounts for about 90% of tonsil
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cancer [3]. Patients with advanced tonsil cancer usually present with large oropharyngeal mas-

ses and cervical nodal metastasis. However, early tonsil cancer sometimes can be difficult to

identify on contrast-enhanced CT because it can have the same appearance as normal lym-

phoid tissue [4]. Accordingly, the detection of tonsil cancer can be difficult on conventional

CT. Therefore, preoperative additional imaging can be needed for the detection of tonsil

cancer.
18F-FDG PET/CT has been widely used and reported to be valuable in the detection of ton-

sil cancer, showing higher sensitivity in detecting primary tumors than CT and MR imaging

[5]. However, it has the limitation of radiation exposure and false-negative readings. Diffusion

weighted image (DWI) has been used to differentiate normal tonsils from tumors [2, 4]. Bathia

et al. [4] reported that tonsil cancer shows higher mean apparent diffusion coefficient (ADC)

than normal tonsils. Histogram analysis of DWI also showed that the standard deviation of the

overall curve is a useful parameter for the detection of occult palatine tonsil cancer [2]. How-

ever, the clinical value of histogram analysis of ADC maps remains challenging in daily clinical

practice.

Recently, texture analysis has been introduced and applied in lung [6, 7], esophageal [8],

colorectal [9], and head and neck cancers [10–12]. It quantifies the tumor heterogeneity using

mathematical calculations of spatial patterns or arrangement of pixel intensities [13]. In head

and neck cancers, it is usually used for treatment assessment [11, 12] and correlates with

human papillomavirus (HPV) status [10, 14]. Until now, it has not been used for the discrimi-

nation of tonsil cancer from normal tonsils. Therefore, the purpose of the study was to deter-

mine whether there are differences in texture analysis parameters between tonsil cancers and

normal tonsils. Additionally, this study aimed to correlate texture analysis with 18F-FDG PET/

CT to investigate the relationship between texture analysis and metabolic parameters and to

enhance the understanding of texture analysis results.

Materials and methods

The Hanyang University Hospital institutional review board and Hanyang University Guri

Hospital institutional review board approved the study, and informed consent was waived in

accordance with the requirements of a retrospective study. This study included 64 consecutive

patients with histopathologically confirmed unilateral tonsillar cancer (38 men, 26 women; age

range, 48–88 years; mean age, 59.13 years). Diagnosis was made with tonsillectomy in 44 cases

and with biopsy in 20 cases. Patients underwent pretreatment contrast-enhanced neck CT

(CECT) between March 2005 and July 2019 in a tertiary care hospital (Hanyang University

Hospital) and a secondary care hospital (Hanyang University Guri Hospital). Tumor, node,

and metastasis were staged according to the 8th edition of the AJCC staging system. All

patients underwent both a CECT and a 18F-FDG PET/CT. And a gap between CECT and a
18F-FDG PET/CT was less than 2 weeks.

CT imaging and texture analysis

CT imaging of 41 patients in Hanyang University Hospital was performed using a 100-s delay,

120 kVp, 200 mAs, 2-mm slice thickness reconstruction (Brilliance 64, Philips Healthcare,

Best, The Netherlands; SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Ger-

many). CT imaging of 23 patients at Hanyang University Guri Hospital was performed using

the same protocols with 64- or 128-channel scanner systems (SOMATOM Definition DS and

SOMATOM Definition Edge, Siemens Healthcare, Erlangen, Germany).
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Two neuroradiologists with 7-year and 3-year experiences in the head and neck area per-

formed texture analysis using commercially available software (TexRAD, Cambridge, UK).

The freehand region of interest (ROI) was drawn along the outer border of the primary tumor

and normal contralateral palatine tonsil on multiple consecutive axial slices to perform volu-

metric CT texture measurements. Slices with dental artifacts were excluded from the measure-

ments. TexRAD software uses filtration-histogram methods [15], in which image filtering

highlights image and object features of a particular size according to the type of filter used. In

the spatial scaling factor (SSF, 0, 2, 3, 4, 5, 6), SSF 0 and 2 are defined as fine, SSF 3 and 4 as

medium, and SSF 5 and 6 as coarse. Fine filters show enhancement of tissue parenchymal fea-

tures, whereas medium and coarse filters show enhanced vascular features [16]. The texture

analysis-derived parameters were obtained: mean, standard deviation (SD), entropy (texture

irregularities and tumor heterogeneity), mean of positive pixels (MPP), kurtosis (peakedness

of pixels), and skewness (asymmetry of pixel distribution).

18F-FDG PET/CT image acquisition

All images were obtained with a PET/CT system (GE Discovery, GE healthcare, Waukesha,

USA and Siemens, Germany). Patients fasted for at least 6 h before 18F-FDG PET/CT. Blood

glucose level was measured prior to FDG injection and was confirmed to be<180 mg/dL in all

patients. Approximately 5.18 MBq/kg 18F-FDG was intravenously injected 50 min before

imaging. First, low-dose CT (120 kVp, tube current modulation) was performed, and a PET

scan was obtained from the skull base to the proximal thighs, with an acquisition time of 2.5

min per bed position in three-dimensional mode. PET images were reconstructed with

ordered-subset expectation maximization with attenuation correction using vendor-provided

software (VUE Point High Definition, GE Healthcare, Milwaukee, WI, USA).

18F-FDG PET/CT image analysis

All PET/CT images were transferred to in-house software (MIM software). The VOI was

drawn in the tumor and normal tonsils. Automatically, the metabolic parameters were

obtained: standardized uptake values (SUVmax and SUVmean) and total lesion glycolysis

(TLG) on the tumor side and normal side. The SUVmaxT/N was additionally obtained after

normalization by dividing by the normal side values.

Statistical analysis

The Kolmogorov–Smirnov test was used to assess the normality of data. Differences in general

categorical patient characteristics were analyzed using the χ2 test or Fisher’s exact test, as

appropriate. The Mann–Whitney U test was performed to assess the difference between nor-

mal and palatine tonsils. The differences among the three groups were evaluated using one-

way analysis of variance with post hoc analysis or the nonparametric Kruskal-Wallis test with

the Mann–Whitney U test. The inter-reader agreement was assessed using the intraclass corre-

lation coefficient (ICC). Receiver operating characteristic (ROC) curve analysis was performed

for discrimination of tumors from normal tonsils. Spearman’s correlation was obtained to

evaluate the linear correlation between texture analysis and metabolic parameters from
18F-FDG PET/CT. The block diagram of the work is shown in Fig 1.

All statistical calculations were performed using SPSS version 23 (IBM Corporation,

Armonk, NY, USA) and MedCalc version 18 (MedCalc, Ostend, Belgium); p< 0.05 was con-

sidered to be statistically significant.
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Results

General tumor characteristics

There were 14 cancers in the T1 stage, 34 in the T2 stage, 5 in the T3 stage, and 11 in the T4

stage. Forty-eight cancers were early, and 16 were advanced. There were 34 HPV (+) and 18

HPV (-) patients, and 12 with undetermined HPV status. Patient demographic information

and staging of the tumors are summarized in Table 1.

CT texture analysis

The tumor side exhibited a significantly lower mean value with SSF 2–6 than the normal side

(p<0.001). The tumor side showed significantly higher SD and higher entropy than the normal

side at all filter values (p<0.001). The tumor side exhibited significantly lower skewness with

SSF 0–4 than the normal side (p<0.001, <0.001, <0.001, and = 0.003, respectively). The tumor

side showed significantly higher kurtosis than the normal side at all filter values (p = 0.001,

<0.001, <0.001, <0.001, <0.001, and = 0.012, respectively).

Fig 2 shows the texture analysis-derived features of tonsil cancer, in both early and

advanced tumors, compared with contralateral normal tonsils. For the 3 group comparisons,

SD, entropy, and kurtosis showed significant differences at all filters (all p<0.001 for SD and

entropy; p = 0.005, <0.001, <0.001, <0.001, = 0.001, and = 0.043, respectively, for kurtosis).

The mean with SSF 2–6 (p<0.001), and the skewness with SSF 0–4 and 6 (p<0.001, <0.001,

<0.001, = 0.012, and = 0.044, respectively), exhibited significant differences. For the compari-

son between early stage tumors and normal tonsils, early stage tumors showed significantly

higher SD, entropy, and kurtosis than normal tonsils at all filter values (all p<0.001 for SD and

entropy; p = 0.002, <0.001, <0.001, <0.001, <0.001, and = 0.021 for kurtosis, respectively).

Early stage tumors showed significantly lower mean than normal tonsils for SSF 2–6 (p<0.001,

Fig 1. The block diagram of the work.

https://doi.org/10.1371/journal.pone.0255835.g001
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<0.001, <0.001, <0.001, and = 0.001, respectively). Early stage tumors showed significantly

lower skewness than normal tonsils with SSF 0–4 (p<0.001, <0.001, <0.001, and = 0.021,

respectively). In the comparison between the early and advanced tumor groups, only the

mean for SSF 3–5 was significantly different (p = 0.032, = 0.022, and = 0.014, respectively). In

Table 1. Baseline patient and tumor characteristics.

Total (n = 64) Early stage (n = 48) Advanced stage (n = 16)

Age 62.32 ± 10.93 61.09 ± 11.45 65.94 ± 8.44

Sex

male 54 39 15

female 10 9 1

HPV

positive 34 25 9

negative 18 16 2

untested 12 7 5

T stage

T1 14 14 NA

T2 34 34 NA

T3 5 NA 5

T4 11 NA 11

N stage

N0 13 11 2

N1 16 15 1

N2 29 21 8

N3 6 1 5

HPV: Human papilloma virus, NA: not applicable.

https://doi.org/10.1371/journal.pone.0255835.t001

Fig 2. Imaging appearance and texture analysis features of early stage (a) and advanced stage (b) tonsil cancer.

ROI for tonsil cancer and contralateral normal tonsils are demonstrated. Representative texture images with SSF 0, 3, 5

and coarse filters are shown. The red color in texture images indicates positive pixel values, and the blue color indicates

negative pixel values, which are made after filtration according to filters of different sizes. The tumor side is more

heterogeneous than the normal side and tends to have more negative pixel values. This feature is more noticeable with

the SSF 0, fine filter.

https://doi.org/10.1371/journal.pone.0255835.g002
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comparison between the advanced tumor group and the normal tonsil, the mean with SSF 2–6

showed significant differences (p<0.001). SD and entropy exhibited significant differences at

all filters (p<0.001, 0.002, <0.001, <0.001, <0.001, <0.001, respectively for SD, and all

p<0.001 for entropy). Skewness of SSF 0–3 and 6 showed significant differences (p = 0.006, =

0.002, <0.001, and = 0.043, respectively). Kurtosis of SSF 2–5 showed significant differences

(p<0.001, <0.001, <0.001, and = 0.010). All texture analysis parameter values and p values

are summarized in Tables 2 and 3. Inter-reader measurement reliability for texture analysis

parameters was almost perfect (ICC, 0.81–0.99).

The AUC for entropy with SSF 0 and 4 was the highest with 0.91, differentiating tonsil can-

cer from normal tonsils (Fig 3). For the entropy with SSF 0, the sensitivity was 79.7% and the

specificity was 92.2% at the cutoff value of 4.45. For the entropy with SSF 4, the sensitivity was

90.6% and the specificity was 88.2% at the cutoff value of 5.3. For differentiation of early tonsil

cancer from normal tonsils, entropy was the most accurate with an AUC of 0.90, with SSF 0, 3,

and 4. For differentiation of advanced tonsil cancer from normal tonsils, entropy was the most

accurate with an AUC of 0.94 with SSF 0, 4, and 5.

The correlations between texture analysis and 18F-FDG PET/CT are shown in S1 Table.

There was mild significant correlation between mean and SUVmax (r = 0.28, p = 0.04) and

between MPP and SUVmax (r = 0.27, p = 0.048) at SSF 0. There were also significant correla-

tions between mean and SUVmean (r = 0.3, p = 0.03) and between MPP and SUVmean (r = 0.29,

p = 0.03) at SSF 0. Mean showed a negative correlation with TLG at SSF 2, 3, 4, and 5 (r =

-0.34, -0.35, -0.34, and -0.31, respectively; p = 0.01). After normalization with the contralateral

normal tonsil, entropy showed a linear correlation with SUVmaxT/N at SSF 2 (r = 0.27,

p = 0.04). In addition, entropy showed a mild correlation with SUVmeanT/N at SSF 0, 2, 3, and

4 (r = 0.30, 0.36, 0.33, and 0.30; p = 0.03, 0.01, 0.02, 0.03, respectively).

Discussion

In this study, we found that texture analysis can be useful for differentiating tumors from nor-

mal tonsils. Among the texture analysis-derived parameters, entropy was the most helpful in

Table 2. Comparisons of texture analysis-derived parameters between normal tonsil and tonsil cancer.

Mean SD Entropy

SSF Tumor (n = 64) Normal (n = 64) p value Tumor (n = 64) Normal (n = 64) p value Tumor (n = 64) Normal (n = 64) p value

0 84.3 83.43 0.672 25.38 17.83 <0.001� 4.59 4.17 <0.001�

2 8.62 19.97 <0.001� 61.39 50.28 <0.001� 5.5 5.17 <0.001�

3 14.35 31.26 <0.001� 60.46 49.61 <0.001� 5.48 5.17 <0.001�

4 18.15 35.95 <0.001� 58.86 46.59 <0.001� 5.45 5.1 <0.001�

5 21.45 36.22 <0.001� 58.42 42.94 <0.001� 5.44 5.02 <0.001�

6 23.05 39.02 <0.001� 57.29 40.92 <0.001� 5.44 4.99 <0.001�

MPP Skewness Kurtosis

SSF Tumor (n = 64) Normal (n = 64) p value Tumor (n = 64) Normal (n = 64) p value Tumor (n = 64) Normal (n = 64) p value

0 85.79 83.72 0.306 -0.88 -0.31 <0.001� 2.62 1.08 0.001�

2 48.57 47.53 �0.365 -0.29 0.2 <0.001� 1.27 0.38 <0.001�

3 51.06 53.22 �0.750 -0.33 0.3 <0.001� 0.98 -0.2 <0.001�

4 53 55.29 �0.804 -0.31 -0.14 0.003� 0.79 0.1 <0.001�

5 53.32 56.07 �0.990 -0.31 -0.29 0.801 0.4 -0.11 <0.001�

6 53.46 57.92 �0.712 -0.31 -0.41 0.141 0.16 -0.14 0.012�

� Statistically significant.

SD standard deviation, MPP mean positive pixel, SSF spatial scaling factor.

https://doi.org/10.1371/journal.pone.0255835.t002
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distinguishing early tonsil cancer from normal tonsils. In cases of early tonsil cancer, which

could be difficult to detect with visual analysis on contrast-enhanced CT, the entropy derived

from the texture analysis could be useful for the diagnosis of tonsil cancer. There was a mild

correlation between texture analysis parameters and FDG uptake on 18F-FDG PET/CT, which

suggests that the texture analysis parameters relate to the physiologic state of the tumor.

Tumor heterogeneity is a well-recognized histopathologic feature of malignancy, reflecting

high cell density, necrosis, hemorrhage, and myxoid change [6, 17]. High tumoral heterogene-

ity is associated with adverse biology, aggressive clinical course, and increased resistance to

treatment [18]. A recent study on oropharyngeal cancer showed a correlation between texture

and HPV status, showing a lower value of entropy and SD in the HPV-positive group [10]. For

the correlation between texture and treatment response, texture analysis parameters are

known to be associated with local failure in patients with head and neck cancer with chemora-

diotherapy. CT texture features correlated with TNM stages in gastric cancer and esophageal

cancer, indicating that tumors with higher T or N stages have higher levels of heterogeneity-

related features [19, 20]. Furthermore, several texture features can discriminate between high-

and low-grade lung cancers [21, 22]. Meyer et al. reported that CT entropy was correlated with

hypoxic related pathological parameter, hypoxia-inducible factor-1-alpha expression [23].

This study was concordant with previous studies that showed high entropy in malignant

tumors [10].

Table 3. Comparisons of texture analysis-derived parameters among normal tonsil, early tonsil cancer, and advanced tonsil cancer.

SSF Mean SD Entropy MPP Skewness Kurtosis

p value 0 0.635 <0.001� <0.001� 0.444 <0.001� 0.005�

2 <0.001� <0.001� <0.001� 0.569 <0.001� <0.001�

3 <0.001� <0.001� <0.001� 0.763 <0.001� <0.001�

4 <0.001� <0.001� <0.001� 0.771 0.012� <0.001�

5 <0.001� <0.001� <0.001� 0.809 0.861 0.001�

6 <0.001� <0.001� <0.001� 0.833 0.044� 0.043�

Early vs normal 0 0.997 <0.001� <0.001� 0.786 <0.001� 0.002�

2 <0.001� <0.001� <0.001� 0.312 <0.001� <0.001�

3 <0.001� <0.001� <0.001� 0.930 <0.001� <0.001�

4 <0.001� <0.001� <0.001� 0.953 0.021� <0.001�

5 <0.001� <0.001� <0.001� 0.899 0.909 <0.001�

6 0.001� <0.001� <0.001� 0.661 0.749 0.021�

Early vs advanced 0 0.669 0.556 0.927 0.727 0.871 0.745

2 0.072 0.988 1.000 0.515 0.420 0.471

3 0.032� 0.871 0.935 0.438 0.281 0.871

4 0.022� 0.614 0.442 0.369 0.973 0.858

5 0.014� 0.525 0.372 0.321 0.974 0.914

6 0.20 0.520 0.567 0.485 0.214 0.975

Advanced vs normal 0 0.622 <0.001� <0.001� 0.432 0.006� 0.43

2 <0.001� 0.002� <0.001� 0.829 0.002� <0.001�

3 <0.001� <0.001� <0.001� 0.532 <0.001� <0.001�

4 <0.001� <0.001� <0.001� 0.613 0.099 <0.001�

5 <0.001� <0.001� <0.001� 0.819 0.878 0.010�

6 <0.001� <0.001� <0.001� 0.971 0.043� 0.111

� Statistically significant.

SD standard deviation, MPP mean positive pixel, SSF spatial scaling factor.

https://doi.org/10.1371/journal.pone.0255835.t003
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Texture analysis is a computer-based, image processing technique that allows for the math-

ematical detection of changes in pixel density, which may be visually imperceptible [6]. It can

assess the tumoral heterogeneity by analyzing the distribution and relationship of the pixel

gray level in the images. It can maximize the information obtained from routinely acquired

diagnostic images in current clinical practice without additional acquisition of images or an

invasive procedure. However, the filtration histogram-technique is required owing to the CT

photon-noise, which can influence the radiologist’s impression of image quality and mask the

biologic heterogeneity. By using filters, CT texture analysis reduces the effect of photon noise

and enhances the biological heterogeneity [7]. Fine filters usually enhance tissue parenchymal

features, and medium to coarse filters enhance vascular features [24].

Tonsil cancer usually demonstrates asymmetric enlargement on contrast-enhanced CT. In

cases of early tonsil cancer, the cancer density usually appears similar to that of normal tonsils.

Therefore, the visual analysis sometimes fails to depict the mass in the tonsil because there is

no difference in enhancement between tonsil cancer and normal palatine tonsils. In these

cases, the patients are classified as having a malignancy of unknown origin presenting with

cervical nodal metastasis. These patients undergo biopsies of the tonsil, and tongue base to

determine the origin of the primary tumor [25]. Accordingly, the hypothesis was that com-

puter-based assessment of texture analysis could be useful in detecting tonsil cancer, especially

in the early stage. The study results showed that entropy was the most significant parameter

for detecting tonsil cancer, compared with normal palatine tonsils. Entropy refers to the

Fig 3. The ROC curve analysis was performed to differentiate tonsil cancer from normal tonsils. The AUC for

entropy with SSF 0 and 4 was the highest at 0.91.

https://doi.org/10.1371/journal.pone.0255835.g003
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randomness of pixel intensity. Therefore, in cases of early tonsil cancer, which could be diffi-

cult to detect with visual analysis on contrast-enhanced CT, the entropy derived from the tex-

ture analysis could be useful for the diagnosis of tonsil cancer.

It can also be difficult to differentiate tonsil cancer from normal lymphoid tissue using mag-

netic resonance imaging. DWI is an MR technique that has the potential to improve the detec-

tion of head and neck cancer [26]. It is well known that malignant tumors have lower ADC

values than benign lesions. Multiple studies have provided ADC threshold values, but they

have showed a broad spectrum [27–29]. A recent meta-analysis reported that DWI/ADC alone

cannot be used as an imaging biomarker of malignancy in head and neck cancer [30].

The correlation analysis to evaluate the relationship between texture analysis parameter and

metabolic parameter on 18F-FDG PET/CT was performed. Generally, FDG uptake by tumors

on 18F-FDG PET/CT shows a correlation with malignancy and reflects the physiologic condi-

tion of the tumor [31]. Texture analysis parameters are already known to be related to tumor

biology. Texture analysis showed a mild linear correlation with the tumor uptake on 18F-FDG

PEC/CT in this study. This result was concordant with the study by Ganeshan et al [32], which

showed a strong correlation between SUVmax or SUVmean and entropy in esophageal cancer.

This study has several limitations. First, the texture analysis was performed in only patients

with tonsil cancers. To verify the texture analysis based on tumor detection, further studies

with patients with head and neck cancer could be needed with prospective and multicenter

studies. Second, a correlation between texture parameters and histopathologic markers, such

as angiogenesis or hypoxia, was not performed. To better understand the tumor biology, a

future correlation study with histopathologic markers is needed. Finally, despite the scan pro-

tocols were same, there might be a potential influence of different CT scanner on the texture

analysis.

Conclusion

In conclusion, entropy was the most useful parameter to distinguish tonsil cancer from normal

tonsils. Texture analysis showed a mild linear correlation with tumor uptake on 18F-FDG

PET/CT. Therefore, as a measurement method of tumor heterogeneity, texture analysis relates

to the physiologic condition of the tumor. In cases of early tonsil cancer, which could be diffi-

cult to detect with visual analysis on contrast-enhanced CT, the entropy derived from the tex-

ture analysis could be useful for the diagnosis of tonsil cancer.
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