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Arterial cord blood (CB) acid—base status and gas values, such as pH, PCO,, PO,, HCO3 and base excess,
provide useful information on the fetal and neonatal condition. However, it remains unknown whether these
values affect the radiosensitivity of fetal/neonatal hematopoiesis. The present study evaluated the relation-
ship between arterial CB acid-base status, gas values, and the radiosensitivity of CB hematopoietic stem/
progenitor cells (HSPCs). A total of 25 CB units were collected. The arterial CB acid—base status and gas
values were measured within 30 min of delivery. The CD34" HSPCs obtained from CB were exposed to 2
Gy X-irradiation, and then assayed for colony-forming unit-granulocyte-macrophage, burst-forming unit-
erythroid (BFU-E), and colony-forming unit-granulocyte erythroid, macrophage and megakaryocyte cells.
Acid-base status and gas values for PCO, and HCO3 showed a statistically significant negative correlation
with the surviving fraction of BFU-E. In addition, a significant positive correlation was observed between
gestational age and PCO,. Moreover, the surviving fraction of BFU-E showed a significant negative correl-
ation with gestational age. Thus, HSPCs obtained from CB with high PCO,/HCOj3 levels were sensitive to
X-irradiation, which suggests that the status of arterial PCO,/HCO5 influences the radiosensitivity of fetal/
neonatal hematopoiesis, especially erythropoiesis.
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INTRODUCTION

Hematopoietic stem/progenitor cells (HSPCs) can self-renew
and differentiate into all hematopoietic lineages throughout
the lifetime of an organism [1-4]. Owing to their high
proliferative potential, HSPCs are extremely sensitive to
extracellular oxidative stresses such as radiation or che-
motherapeutic agents [5—11]. Damage to the hematopoietic
system caused by ionizing radiation remarkably suppresses
the production of mature blood cells in a dose-dependent
manner [3-6, 12]. HSPCs are abundantly contained in not
only bone marrow but also placental/umbilical cord blood
(CB). CB is the fetal peripheral blood that plays a key role
in the exchange of nutrients and gases with fetal capillary
blood within the connective tissue of the villous core, and
the fetus is grown and developed continuously in the mater-
nal environment. In cases of maternal exposure caused by

nuclear accidents or nuclear attacks, the survival of infants
must be considered because they are totally dependent on
the maternal environment during gestation. These events
may indirectly cause radiation-induced damage to fetal CB
[10,11,13].

It is known that radiosensitivity varies among indivi-
duals. Our previous studies have shown that the individual
radiosensitivity of HSPCs depends on the expression of the
antioxidant gene [14], and also that maternal/neonatal ob-
stetric factors, such as the season of birth and neonatal
gender, influence the radiosensitivity of fetal/neonatal
HSPCs [15]. The arterial CB acid-base status and gas
values provide useful information on the condition of the
fetus or newborn, such as gas exchange, acid—base balance,
and the metabolic state of the fetus [16, 17], and are clinic-
ally available as indicators of hypoxia stress [18]. On the
other hand, it is also reported that arterial CB acid-base
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status and gas values are involved in the hematopoietic
system of the fetus. Juutistenaho et al. concluded that
stress-related perinatal factors, particularly umbilical arterial
pH, are associated with the number of HSPCs present in a
CB sample [19]. Furthermore, we recently showed that CB
mononuclear cell counts are correlated with arterial CB pH
and PCO,, suggesting the involvement of fetal hypoxia on
the yield of mononuclear cells [20]. It is possible that
the effect of arterial CB acid—base status and gas values in-
directly influences the radiosensitivity of fetal/neonatal
hematopoiesis. However, little information is currently
available. In the present study, the relationships between ar-
terial CB acid—base status and gas values and the radiosen-
sitivity of human fetal/neonatal HSPCs were evaluated.

MATERIALS AND METHODS

Growth factors

Recombinant human interleukin-3 (IL-3) and human stem
cell factor (SCF) were purchased from BioSource (Tokyo,
Japan). Recombinant human granulocyte colony-stimulating
factor (G-CSF) and erythropoietin (EPO) were purchased
from Sankyo Co. Ltd. (Tokyo, Japan). Recombinant
human granulocyte-macrophage colony-stimulating factor
(GM-CSF) was purchased from PeproTech, Inc. (Rocky
Hill, NJ, USA).

CB collection and maternal/neonatal obstetric
factors

This study was approved by the Committee of Medical
Ethics of Hirosaki University Graduate School of Medicine
(Hirosaki, Japan). After obtaining informed consent from
the mothers, CB was collected at the Hirosaki National
Hospital (Hirosaki, Japan). The inclusion criteria included
low-risk pregnancies, singleton gestations or vaginal deliv-
eries, and newborns born without resuscitation or immedi-
ate rescue procedures. Immediately after delivery, a
segment of the umbilical cord was double clamped, and
blood was drawn from the umbilical artery into prehepari-
nized plastic syringes for the determination of pH, base
excess (BE), and arterial CB gas values. At the same time,
CB units were collected before placental delivery (in utero
collection) according to the guidelines of the Tokyo Cord
Blood Bank. CB was collected into a sterile collection bag
that contained citrate-phosphate-dextrose anticoagulant
(CBC-20, Nipro, Osaka, Japan) until the flow ceased.
Relevant perinatal data such as maternal age, gestational
age, duration of labor, birth weight and birth height were
obtained from the hospital medical records.

Separation and purification of CD34™" cells

Within 24 hours after CB collection, the light-density
mononuclear cells were separated by centrifugation on a
Limphosepar I (1.077 g/ml; Immuno-Biological

Laboratories, Takasaki, Japan) for 30 min at 400 g and
washed three times with calcium- and magnesium-free
phosphate-buffered saline (PBS (-); Sigma-Aldrich,
Stockholm, Sweden) containing 5 mM ethylenediamine-N,
N,N’",N’-tetraacetic acid (EDTA; Wako, Tokyo, Japan). The
cells were then processed for CD34™ cell enrichment using
an Indirect CD34 MicroBead Kit. An autoMACS™ Pro
Separator (Miltenyi Biotec GmbH, NRW, Bergisch
Gladbach, Germany) was used for the positive selection of
CD34" cells. The isolated CD34"-enriched cell population
is referred to as HSPCs in this study. At the end of the pro-
cedure, the recovery of CD34" cells was approximately
0.1-0.6%, and the purity of CD34" cells was 80-95% by
flow cytometry.

Umbilical artery blood analysis

The umbilical artery was analyzed to determine pH, PCO,,
PO,, HCO3 and BE levels as an indicator of arterial CB
acid—base status and gas values using a portable blood ana-
lyzer (i-STAT300F, Abbott Point of Care Inc., IL, USA).
This analysis was usually performed within 30 min of de-
livery, and in no case later than 60 min after delivery. PO,
and PCO, are defined as the partial pressure of oxygen and
carbon dioxide in the gas phase in equilibrium with blood,
respectively. HCOj3 is the bicarbonate ion concentration and
BE indicates the deviation from the normal level of the
amount of buffer base.

In vitro irradiation

Within 24 hours after isolation, the CD34* cells were
exposed to X-rays (2 Gy, 150 kVp, 20 mA, 0.5-mm alumi-
num and 0.3-mm copper filters) from an X-ray generator
(MBR-1520R; Hitachi Medical Co., Tokyo, Japan) at a dis-
tance of 45 cm between the focus and target at a dose rate
of approximately 100 cGy/min, which was monitored with
an ionization chamber.

Methylcellulose culture

Colony-forming cells (CFCs), including colony-forming
unit-granulocyte macrophage (CFU-GM), burst-forming
unit-erythroid (BFU-E) and colony-forming unit-granulo-
cyte erythroid, macrophage, megakaryocyte (CFU-Mix) cells,
were assayed by methylcellulose culturing in MethoCult
medium (StemCell Technologies Inc.). Irradiated cells were
plated into the wells of 24-well culture plates (Falcon,
Becton Dickinson Biosciences, Franklin Lakes, NJ) at 0.3
ml/well with a culture medium containing EPO (4 U/ml),
G-CSF (10 ng/ml), GM-CSF (10 ng/ml), IL-3 (100 ng/ml),
SCF (100 ng/ml), penicillin (100 U/ml) and streptomycin
(100 U/ml). Each plate was incubated for 14 days at 37°C
in a humidified atmosphere containing 95% air and 5%
CO,. Colonies containing more than 50 cells were counted
using an inverted microscope (Olympus, Tokyo, Japan).
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Statistical analysis

Multivariate linear regression analysis was performed to test
for associations between mutually adjusted maternal/neonatal
obstetric factors and characteristics of CB samples including
CB volume, total LD cells, total CD34" cells, and surviving
fraction of each HSPC. Univariate analyses were subsequently
performed using the Spearman rank correlation coefficient,
depending on the distribution pattern of the data. The statistic-
al analysis was performed using the software program Origin
(Origin Lab, Northampton, MA, USA) for Windows. A value
of P <0.05 was considered statistically significant.

RESULTS

Summary of the characteristics of CB and
maternal/neonatal obstetric factors

A total of 25 CB units were collected at the end of the full-
term deliveries. The median maternal age and gestational
age were 28 years (range, 21-41) and 39 weeks, respective-
ly. Gestational age ranged from 37 to 41, which is equiva-
lent to full-term delivery (Table 1). The median placental
and neonatal birth weights were 540 g (range, 385-690) and
3166 g (range, 2366-3620), respectively. The median net

Table 1. Placental/umbilical cord blood acid—base and gas assessments

Sample Gestational Arterial CB acid-base status and gas values

number age (weeks) pH PCO, (mmHg) PO, (mmHg) BE (mmol/) HCO3 (mmol/l)
1 39 7.3 41.0 15.0 —4.0 21.7
2 39 7.3 50.4 24.0 -5.0 22.4
3 37 7.4 34.8 19.0 -4.0 23.0
4 38 7.4 389 10.0 2.0 22.8
5 38 7.3 51.1 15.0 1.0 27.2
6 39 7.2 49.8 21.0 -1.0 20.7
7 39 7.2 49.8 21.0 -1.0 20.7
8 40 7.3 50.6 9.0 -2.0 24.4
9 37 7.4 355 8.0 -2.0 22.6
10 41 7.2 61.9 11.0 -1.0 26.4
11 40 7.5 24.2 43.0 -6.0 17.5
12 40 7.3 483 18.0 -3.0 233
13 39 7.2 55.3 19.0 -5.0 22.8
14 39 7.3 54.1 11.0 -3.0 23.8
15 37 7.4 30.5 17.0 -6.0 18.6
16 39 7.3 54.6 15.0 -2.0 25.1
17 39 7.2 50.9 21.0 -5.0 222
18 40 7.2 46.3 17.0 -9.0 18.7
19 41 7.3 414 24.0 —4.0 22.1
20 40 7.3 56.6 13.0 -1.0 26.2
21 39 7.3 48.9 14.0 -1.0 253
22 38 7.4 425 13.0 -1.0 24.5
23 41 7.3 54.5 14.0 -3.0 242
24 41 7.3 57.4 12.0 2.0 25.4
25 40 7.2 62.1 16.0 —4.0 24.4
Median 39 7.3 49.8 15.0 -3.0 23.0
Range 37-41 7.20-7.47 24.2-62.1 8.0-43 -9.0-1.0 17.5-27.2
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weight of CB and total duration of labor were 65 g (range,
27-91) and 458 min (range, 174-1613), respectively.

Assessment of CB acid-base status and gas values

Assessments of arterial CB acid-base status and gas values
were performed because they provide useful information on
fetal and neonatal condition. In the present study, arterial
CB pH, PCO,, PO,, HCO3 and BE were evaluated
(Table 1). The median pH, PCO,, and PO, were 7.27
mmHg, 49.8 mmHg and 15.0 mmHg, respectively. The
median BE and HCO3 were —3.0 mmol/ 1 and 23 mmol/l, re-
spectively. There was wide variation between individual
values, in particular, in PCO,, PO,, HCO3 and BE. Since
these values in the umbilical artery are usually pH 7.27,
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PCO, 50 mmHg, PO, 17 mmHg, BE -2.7 mmol/l, and
HCO3 24 mmol/l [21], these measurements were considered
to be near normal values.

Characteristics and radiosensitivity of HSPCs

To assess the radiosensitivity of HSPCs prepared from each
individual, the number of each progenitor cells was evalu-
ated in both non-irradiated and 2-Gy irradiated CD34" cells
by a methylcellulose culture supplemented with appropriate
cytokines. The number of CFU-GM, BFU-E, CFU-Mix and
CFCs detected among non-irradiated 1 x 10° CD34* HSPCs
was 98 +34, 46 £37, 25+20, and 168 +61, respectively
(Table 2), showing wide variation between individual
samples. As a result of the irradiation to CD34* HSPCs, the

Table 2. Number of hematopoietic progenitor cells and their surviving fraction in each sample

Progenitor cells/1 x 10° CD34* HSPCs

Surviving fraction (2 Gy)

Sample

number CFU-GM BFU-E CFU-Mix CFC CFU-GM BFU-E CFU-Mix CFC
1 116 42 30 188 0.13 0.22 0.24 0.17
2 126 56 34 216 0.17 0.21 0.34 0.20
3 66 36 12 114 0.27 0.75 0.50 0.45
4 64 10 24 98 0.33 0.25 0.19 0.29
5 70 10 8 88 0.26 0.15 0.19 0.24
6 90 12 19 121 0.10 0.25 0.06 0.11
7 76 10 16 102 0.27 0.50 0.13 0.27
8 81 36 17 133 0.32 0.16 0.59 0.27
9 98 14 16 128 0.23 0.54 0.16 0.26
10 56 28 86 0.37 0.16 1.25 0.32
11 86 24 114 0.23 0.35 0.50 0.26
12 102 62 16 180 0.29 0.23 0.16 0.26
13 150 8 8 166 0.28 0.31 0.06 0.27
14 66 12 8 86 0.32 0.25 0.25 0.30
15 147 22 51 220 0.18 0.70 0.19 0.23
16 102 36 51 189 0.17 0.35 0.27 0.23
17 162 47 49 258 0.20 0.44 0.16 0.24
18 94 106 28 228 0.30 0.26 0.29 0.28
19 82 58 42 182 0.26 0.36 0.15 0.27
20 70 104 4 178 0.21 0.29 0.25 0.26
21 88 144 50 282 0.20 0.16 0.29 0.20
22 186 24 84 294 0.31 0.73 0.32 0.35
23 58 104 10 172 0.05 0.19 0.00 0.13
24 84 64 4 152 0.24 0.20 0.50 0.23
25 120 76 28 224 0.23 0.30 0.14 0.24
Average 98 46 25 168 0.24 0.33 0.29 0.25
SD 34 37 20 61 0.08 0.18 0.25 0.07




Cord blood gas value and radiosensitivity of stem cells 281

average surviving fraction of CFU-GM, BFU-E, CFU-Mix
and CFCs were 0.24, 0.33, 0.29 and 0.25, respectively.

Correlations between arterial CB acid-base status/
gas values, maternal/neonatal obstetric factors and
radiosensitivity of HSPCs

To clarify the effect of arterial CB acid—base status and gas
values on the radiosensitivity of CD34* HSPCs, these rela-
tionships were assessed. A statistically significant negative
correlation was observed between arterial PCO, and the
surviving fraction of BFU-E (r=-0.42, P <0.05; Fig. 1A).
A similar correlation was found between arterial HCO5
and the surviving fraction of BFU-E (r=-0.46, P<0.05;
Fig. 1B). Neither arterial PCO, nor HCO3 showed a statis-
tically significant correlation with the surviving fraction of
CFU-GM (Fig. 2), CFU-Mix or CFCs (data not shown). In
addition, the surviving fraction of each progenitor showed

Fig. 1.

no significant correlation with arterial pH, PO, or BE (data
not shown).

The relationship between the surviving fraction of
BFU-E, the maternal/neonatal obstetric factors, arterial
PCO, and HCO3 were estimated. A statistically significant
positive correlation between gestational age and arterial
PCO, was observed (r=049, P<0.05; Fig. 3A).
Furthermore, gestational age showed a statistically signifi-
cant negative correlation with the surviving fraction of
BFU-E (r=-0.42, P <0.05; Fig. 3B). In contrast, a signifi-
cant positive correlation was observed between neonatal
weight and arterial HCO3 (r=0.41, P<0.05; Fig. 30C),
whereas a significant negative correlation was observed
between neonatal weight and the surviving fraction of
BFU-E (r=-0.41, P<0.05; Fig. 3D). These results
suggest that the arterial acid—base status and gas values for
PCO, and HCOs5 influence the radiosensitivity of fetal/neo-
natal hematopoiesis, especially erythropoiesis.

Correlations between the arterial CB acid—base status and gas values and the surviving fraction of BFU-E. (A)

Arterial CB PCO, showed a significant negative correlation with the surviving fraction of BFU-E (n=25). (B) Arterial
CB HCO3 showed a significant negative correlation with that of BFU-E. Spearman rank correlation coefficient: *P < 0.05.

Fig. 2. Correlations between the arterial CB acid—base status and gas values and the surviving fraction of CFU-GM.
(A) Arterial CB PCO, showed no correlation (not statistically significant) with the surviving fraction of CFU-GM
(n=25). (B) Arterial CB HCOj3 showed no correlation (not statistically significant) with that of CFU-GM. Spearman

rank correlation coefficient: *P < 0.05.
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Fig. 3. Correlations between gestational age, arterial CB PCO,, and the surviving fraction of BFU-E. (A) Gestational age showed a
significant positive correlation with arterial CB PCO,. (B) The surviving fraction of BFU-E showed a significant negative correlation with
gestational age. Spearman rank correlation coefficient: *P <0.05. (C) There is a significant positive correlation between neonatal
weight and arterial CB HCO3. (D) There is a significant negative correlation between the surviving fraction of BFU-E and neonatal weight.

Spearman rank correlation coefficient: *P < 0.05.

DISCUSSION

The results of the present study reveal statistically signifi-
cant negative correlations between arterial PCO, and the
surviving fraction of BFU-E, and between arterial HCO3
and the surviving fraction of BFU-E.

Acid-base homeostasis is part of human homeostasis con-
cerning the proper balance between acids and bases. The
body is very sensitive to variations in pH level; therefore,
the balance is tightly regulated [22]. The bicarbonate buffer-
ing system is especially important because CO, can be con-
verted to HCOj3 via a compensatory mechanism to maintain
the balance if the concentration of CO, in the blood is
increased. The change in PCO, level is proportional to the
amount of CO, ventilation in the placenta, leading to a
close relationship between PCO, and HCO3 [17, 23-27].
The primary alteration in acid—base balance consists of an
increase in PCO, and HCOj3 levels, and these changes affect
the amount of circulating hematopoietic factor EPO [28],
which promotes the maturation and differentiation of HSPCs
into erythrocytes [29]. In the fetus, EPO is produced by the
liver, which is equipped with oxygen sensors [30, 31].

Generally, PO, reduction in the blood is the predominant
stimulus for up-regulation of EPO gene expression [29, 32].
However, the increase in PCO,, which is caused by an in-
crease in the CO, load due to the growing fetus [33],
diminishes the oxygen affinity of hemoglobin by the Bohr
effect, and this results in increasing peripheral oxygenation,
thereby reducing the signal for EPO formation [28, 34-37].
Since EPO is required for the survival and radioprotection
of committed erythrocyte progenitor cells [38, 39], it is
speculated that the radiosensitivity of BFU-E is dependent
on the increase in fetal PCO, and HCO53 levels, which
involve fetal EPO levels.

A significant positive correlation was observed between
arterial PCO, and gestational age (Fig. 3), and a significant
negative correlation was found between gestational age and
the surviving fraction of BFU-E. These results suggest that
obstetric factors contribute to the rise in arterial PCO,.
Ostlund et al. have shown that EPO is correlated with birth
weight at delivery, and that children with low birth weight
have the highest EPO levels [40]. Conversely, Jazayeri
et al. have reported a significant positive correlation
between gestational age and umbilical arterial EPO [41].
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Although the precise reason for this inconsistency is
unclear, some possible explanations are the size of the
study population, gestational age, type of delivery, and
infant size. The two above-mentioned reports used 28 CB
samples of between 29 and 40 weeks of gestation, and 28
CB samples between 27 and 43 weeks of gestation, respect-
ively. In this study, we analyzed 25 CB samples with full-
term delivery from 37 to 41 weeks of gestation. Although
further studies will be required to assess EPO levels in ar-
terial CB, these findings suggest that either gestational age
or neonatal weight affect the radiosensitivity of erythrocyte
progenitor cells.

The results of the present study suggest that acid—base
balance-related factors can be an indicator of fetal/neonatal
radiosensitivity. Further studies will be necessary to evalu-
ate whether the influences of arterial CB PCO, and HCO3
levels on fetal/neonatal radiosensitivity are temporary or
permanent events, and whether this event leads to other
oxidative stress or diseases in the fetus and neonate. We
have previously described the relationship between the
initial expression of target genes of NEF2-related factor 2
(Nrf2), a key protein in the coordinated transcriptional
induction of expression of various antioxidant genes, in
non-irradiated hematopoietic stem cells and the surviving
fraction of progenitor cells [14]. Kinalski et al. described
the lipid peroxidation products and scavenging enzyme
activity in placenta and CB, and also estimated the acid—
base status and blood gases in pregestational diabetes melli-
tus, revealing that malondialdehyde levels and glutathione
content increased significantly, and that newborns had
higher PCO, than healthy controls [42]. Although we did
not measure the initial expression of Nrf2 target genes in
CD34" cells in the present study, it is possible that arterial
CB PCO,/HCOg3 levels affect the radiosensitivity of pro-
genitor cells through the Nrf2-dependent antioxidant system
in CB HSPCs. To clarify the mechanism in more detail,
additional research is being carried out in our laboratory
using a larger number of CB samples.
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