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Introduction
The management of hepatocellular carcinoma 
(HCC) recurrence after liver transplantation is an 
unmet need in therapeutics. This is because 
under immunosuppression, cancer develops early 
during the post-transplant period and has a higher 
chance of extrahepatic spreading, particularly if 
the pretransplant HCC status exceeds Milan or 
University of California San Francisco criteria.1–3 
In this scenario, locoregional therapy, which is 

the first-line therapeutic choice for recurrent 
HCC in nontransplant patients, may be ineffec-
tive; thus, effective management strategies are 
urgently required.4 In liver recipients with dis-
seminated HCC recurrence, sorafenib confers 
survival benefits but is associated with considera-
ble drug toxicity.5 Most immunotherapies for 
organ transplantation are intended to achieve suf-
ficient immunosuppression to prevent organ 
rejection or limit autoreactivity without impairing 
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the host’s ability to protect against opportunistic 
infections and malignancies. Thus, patients with 
new or recurrent malignancies after transplanta-
tion often have a relatively low chance of under-
going another surgery; however, in these patients, 
the effects of other treatment approaches may be 
nonsignificant.6 The development of systemic 
therapy with sustained effectiveness is required 
urgently.

Cancer immunotherapy modulates the immune 
system to fight cancer. It includes adoptive cell 
transfer [chimeric antigen receptor (CAR)-T-cell 
engineering, T-cell receptor, and tumor-infiltrat-
ing lymphocytes], immune checkpoint inhibitors 
[programmed cell death protein 1 (PD-1), pro-
grammed death-ligand 1 (PD-L1) inhibitor and 
CTLA-4 inhibitor], cancer vaccine, and general 
immunotherapy [interleukins (ILs), interferons, 
and colony stimulating factors]. Selective upregu-
lation of B7-H1 and the resulting B7-H1/PD-1-
mediated T-cell dysfunction in the tumor 
microenvironment were found to have major roles 
in impairing spontaneous immune responses and 
immunotherapy efficacy; thus, a conceptual 
breakthrough has occurred in understanding the 
limitations of immune responses to cancer.7,8 
Therefore, checkpoint inhibitors have become a 
major treatment option for cancers, including 
HCC, across different anatomic sites of origin. 
Thus, among cancer immunotherapies, immune 
checkpoint inhibitors have great potential because 
they may provide substantially longer disease-free 
survival than other current target therapies, such 
as sorafenib.9–12 Checkpoint inhibitors currently 
approved as systemic treatments for HCC include 
nivolumab and pembrolizumab. In the phase I/II 
study of nivolumab, in which 30% of patients 
were sorafenib-experienced, the objective response 
rate was 20% in patients treated with 3 mg/kg 
nivolumab in the dose-expansion phase and 15% 
in the dose-escalation (0.1–10 mg/kg) phase, but 
the exact dose–response relationship was not clear 
in the latter phase.7 In the single-arm phase II trial 
of pembrolizumab, a 17% objective response rate 
was reported, including complete response in 1% 
and partial responses in 16% sorafenib-experi-
enced patients.8 However, no biomarker in both 
studies could predict potential responders before 
checkpoint inhibitor therapy was initiated.

In the transplantation setting, patients with HCC 
are already under immunotherapy, which gener-
ates an artificially immunosuppressive microenvi-
ronment for graft protection against rejection or 

other immune-mediated damage.13 Although 
rejection is a major concern of checkpoint inhibi-
tor therapeutics in transplant oncology, we aimed 
to concisely review this strategy from the trans-
plantation perspective and elucidate approaches 
to modify the immune microenvironment for 
graft protection and tumor suppression by modu-
lating cosignaling pathways to achieve patient 
survival. The schematic of the conceptual frame-
work for this review is depicted in Figure 1.

Immunosuppressants create an artificially 
immunosuppressive microenvironment for 
graft protection in transplantation unless 
clinical tolerance develops
The major clinical immunosuppressants used for 
liver recipients are calcineurin inhibitors, which 
act dose-dependently and reversibly by partially 
blocking the IL-2 signaling pathway, which is 
critical for final T-cell activation. For graft pro-
tection in clinical transplantation, calcineurin 
inhibitors limit the activation of the immune sys-
tem and thus antigen presentation, resembling in 
vivo partial T-cell anergy.13 Chimerism can be 
observed in liver transplant recipients.14,15 The 
recipient DNA in post-transplant liver biopsy 
specimens increased after liver transplantation as 
early as 1 week, peaked at approximately 30–
40 weeks, and was detectable 63 weeks after trans-
plantation.15 Moreover, most recipient-derived 
cells showed macrophage/Kupffer cell differentia-
tion, and only up to 1.6% of recipient-derived 
cells in the liver grafts demonstrated hepatocytic 
differentiation.15 Although graft tolerance is the 
immunological holy grail in transplantation, it 
may not correlate with chimerism.16 The major 
barrier to operational tolerance is the occurrence 
of allograft rejection, mostly mediated by effector 
T-cells.17 Cosignaling pathways (detailed in 
Figure 1) coordinated by costimulatory and coin-
hibitory molecules are critical to optimal T-cell 
effector function.18

The PD-1 and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4) pathways contribute to the 
immune tolerance of a transplanted organ,19 and 
the PD-1/PD-L1 pathway is critical in maintain-
ing liver transplant tolerance in animal mod-
els.20–22 In a human study, PD-L1 was expressed 
by hepatocytes, cholangiocytes, and cells along 
the sinusoids in post-transplant liver allografts, 
and PD-1 was abundantly expressed on allograft-
infiltrating T-cells.22 Moreover, PD-L1 blockade-
enhanced the allogeneic proliferative responses of 

https://journals.sagepub.com/home/tam


C-M Ho, H-L Chen et al.

journals.sagepub.com/home/tam 3

these T-cells, and the interplay between donor- 
and recipient-PD-1-regulated rejection activity.23 
Although a cosignaling pathway is the intermedi-
ate stage in the three-signal model [signal 1 (anti-
gen recognition, HLA-TCR/CD3), signal 2 
(costimulation), and signal 3 (cytokine priming)] 
for T-cell activation,13 PD-L1 blockade-enhanced 
allogeneic proliferative responses of graft-infil-
trating T-cells may lead to breakthrough rejection 
under the low maintenance dosage of immuno-
suppressants in the transplant population under-
going anti-PD therapy for cancer. In summary, 
major clinical immunosuppressants target signal 
1, and cancer immunotherapy targets signal 2.

Liver transplantation is a curative strategy 
for HCC: patient selection is the primary key 
to preventing post-transplant recurrence
HCC can be successfully managed through liver 
transplantation provided that the appropriate 
criteria are met to predict low extrahepatic 

dissemination risk before transplantation.1,17 In 
previous studies, only 10% of patients meeting 
the Milan criteria showed HCC recurrence after 
liver transplantation, with high cure rates.2,24 
Many other criteria to further expand the inclu-
sion of transplant candidates have been devel-
oped based on regional experiences; of them, 
few are superior to the Milan criteria.17 HCC 
recurred in many liver transplantation patients 
who did not meet these criteria.24 Moreover, the 
clinical course progressed rapidly even under 
current treatment modalities for nontransplant 
HCC patients.25

The immunosuppressant load might determine 
cancer recurrence.26,27 Tumor-induced inflam-
mation and reduced anticancer immune defense, 
expressed as a disturbed T-regulatory–CD8 lym-
phocyte balance, are responsible for increased 
recurrence after liver transplantation.28 In addi-
tion, immunosuppressant drugs may stimulate 
cancer cell growth, accelerating tumorigenesis.25 

Figure 1. Schematic of the conceptual framework for immunotherapy in liver recipients with hepatocellular 
carcinoma. The three-signal model of T-cell activation: signal 1: antigen-specific (MHC/HLA-TCR/CD3) 
signaling; signal 2: cosignaling pathways; signal 3: IL-2-CD25/IL-2R signaling. Cosignaling pathways 
(including costimulatory and coinhibitory signals) are signals that accompany signal 1 to determine the final 
fate of T-cell activation. Optimal T-cell effector function requires costimulatory signals, and coinhibitory 
molecules contribute to immune suppression and exhaustion. Downstream pathways of complete T-cell 
activation include the IL-2-calcineurin pathway, the RAS-mitogen activated protein kinase pathway, and the 
IKK-NF-κB pathway.
HCC, hepatocellular carcinoma; IL, interleukin; NF-κB, nuclear factor kappa B
CD3, cluster of differentiation 3
HLA, human leukocyte antigen
IKK, I kappa B kinase
MHC, major histocompatibility complex
RAS, rat sarcoma virus
TCR, T cell receptor
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The strategy of minimizing immunosuppression, 
mainly through calcineurin inhibitors, should be 
explored in the expanding field of transplant 
oncology.29 Minimization strategies are justified 
by the intrinsic immunosuppressed status of can-
cer patients and the immunological privilege of 
the liver, which enables substantial reduction in 
the immunosuppressant load without compro-
mising patient or graft survival.30–32 By contrast, 
mammalian target of rapamycin (mTOR) inhibi-
tors interfere with carcinogenesis by inhibiting the 
PI3K/Akt/mTOR pathway, the key regulator of 
cell proliferation and angiogenesis.33,34 mTOR 
inhibiters are clinically applied for preventing 
transplant rejection (lower recommended dose, 
as they target signal 3) and for cancer treatment 
(higher recommended dose).35 The combination 
of either sirolimus or everolimus with reduced-
dose tacrolimus is well tolerated and effective in 
reducing recurrence.5,36–38 However, there is 
inadequate evidence for this combination to rec-
ommend the optimal serum level of tacrolimus.5 
Whether increased exposure to mTOR inhibitors 
in liver recipients already exhibiting recurrent 
HCC exerts net survival benefits requires further 
investigation.36–38 As the broadening of HCC 
indications for liver transplantation becomes the 
current trend in transplant oncology, minimized 
and individualized immunosuppressive strategies 
incorporating cosignaling pathway modulation 
(e.g. anti-PD therapy) are essential for managing 
HCC recurrence. In summary, accumulating evi-
dence supports the contribution of immunosup-
pressants or costimulatory pathway modulation 
to T-cell activity, creating a therapeutic niche for 
the management of post-transplant HCC.

Post-transplant HCC recurrence: add-on 
immunosuppressive microenvironment
The immunosuppressive microenvironment of 
HCC is attributable to the abundant expression of 
immune checkpoint molecules, such as CTLA-4, 
PD-1, TIM3, lymphocyte-activating gene 3 pro-
tein, and B- and T-cell attenuator39–41; alterations 
in molecules and cellular pathways involved in anti-
gen processing and presentation; and hypoxia-
induced cytokine/chemokines [e.g. IL-10, 
transforming growth factor (TGF)-β, and argin-
ase] and immunosuppressive molecules (e.g. PD-1 
and PD-L1) from HCC and stromal cells that 
attract regulatory T-cells, cause defects of effector 
T-cells, and inhibit phagocytosis.39,42–44 Cancer 
stem cells are a small subset of cancer cells with 
high capacity for self-renewal, differentiation, and 

tumorigenesis.45 Given their central role in cancer 
initiation, metastasis, recurrence, and therapeutic 
resistance, liver cancer stem cells constitute a thera-
peutic opportunity for achieving cure and prevent-
ing the relapse of HCC.45 Studies have reported 
that 28–50% of HCC cells express progenitor cell 
markers such as CK7 and CK19, suggesting that at 
least a portion of HCC cells have characteristics 
intermediate between progenitors and differenti-
ated mature hepatocytes.45,46 Moreover, cancer 
stem cells, if ever present in the microenvironment 
and their occurrence is rare in the nontransplanta-
tion setting,45 often express a lower level of major 
histocompatibility complex class I molecules than 
do bulk tumor cells47 and exhibit enriched PD-L1 
expression through glycosylation regulation by  
the epithelial–mesenchymal transition/β-catenin/
STT3/PD-L1 signaling axis48; this facilitates the 
immune escape of these cells. Responsiveness to 
checkpoint blockade immunotherapy is favorable 
when a local CD8+ T-cell-based immune response 
occurs in the tumor microenvironment.49 
Accumulating evidence is indicating that the acti-
vation of oncogenic pathways in tumor cells can 
impair the induction of local antitumor immune 
responses.49 For instance, WNT-β-catenin signal-
ing reduces T-cell recruitment, MYC function gain 
inhibits T-cell activation and infiltration, and 
PTEN loss reduces efficient T-cell priming.49 As an 
immunosuppressive microenvironment has already 
established for HCC cells and stromal cells,39 artifi-
cial immunosuppression achieved by partial T-cell 
activation suppression for liver graft protection 
leads to a more complex HCC tumor immunologi-
cal microenvironment. Whether the selective modi-
fication of the tumor microenvironment can restore 
near-normal anticancer immunity while preventing 
graft rejection warrants further investigation. In 
summary, advocating immune capability to dis-
criminate the microenvironment between HCC 
and liver allograft would be key to successful immu-
notherapy in this transplantation population.

Remote modulation of gut microbiota in 
liver transplant oncology
Accumulating evidence is suggesting that gut 
microbiota play remote roles in the liver microenvi-
ronment in transplantation, rejection, and HCC.50–

53 During liver transplantation, fecal microbial 
communities, such as those of Actinobacillus, 
Escherichia, and Shigella, demonstrate a substantial 
decrease, whereas those of Micromonosporaceae, 
Desulfobacterales, Sarcina (Eubacteriaceae), and 
Akkermansia demonstrate a considerable increase.50 
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In patients with acute T-cell-mediated rejection, 
Bacteroides, Enterobacteriaceae, Streptococcaceae, 
and Bifidobacteriaceae increased, but Enterococ-
caceae, Lactobacillaceae, Clostridiaceae, Rumino-
coccaceae, and Peptostreptococcaceae decreased.51 
Compared with healthy controls, patients with early 
HCC demonstrated fewer butyrate-producing 
bacteria but more lipopolysaccharide-producing 
bacteria.52 Intervention with probiotics shifts the 
gut microbial community abundance toward 
certain beneficial bacteria, including Prevotella and 
Oscillibacter, producers of anti-inflammatory 
metabolites. This subsequently reduces Th17 
polarization and promotes the differentiation of 
anti-inflammatory Treg/Tr1 cells in the gut; this in 
turn alters proinflammatory cytokine levels in the 
extra-intestinal tumor HCC microenvironment.52 
Furthermore, human studies have suggested that 
intestinal microbiota not only play a role in carcino-
genesis but also determine the efficacy of chemo-
therapy and immune checkpoint inhibitors.53–56 
For instance, increased microbial diversity, irre-
spective of species identity, was associated with 
improved responses to checkpoint inhibitors in 
humans.54,57 Furthermore, patients treated with 
antibiotics during the course of therapy had 
decreased antitumor responses.54 In summary, 
during decision making for therapeutic strategies in 
transplant oncology in the future, gut microbial 
modulation may ensure favorable responses to 
immunotherapy.

Immunotherapeutics of HCC in the 
transplantation setting: is rejection the 
bottom line?
The importance of modulating cosignaling path-
ways is being recognized in transplant oncology. 
Selective enhancement of antitumor immunity 
without graft rejection is the primary contempo-
rary goal. The 4-1BB/4-1BBL blockade is an 
inducible costimulatory pathway and a major 
component of CAR-T-cell engineering, which has 
a central role in CAR-mediated T-cell activation 
and subsequent tumor clearance. This blockade 
has potentially lower impact on solid organ trans-
plant outcomes than pathway blocking.58 The 
experimental therapeutic strategy involving the 
targeted delivery of PD-1-blocking single-chain 
variable fragments by CAR-T-cells can enhance 
antitumor efficacy in vivo and may provide another 
promising approach in the transplantation setting.59 
The combination of immunosuppressants (for 
graft protection) with cosignaling modulation (for 
HCC control) can be considered a strategy in the 

transplantation settings. Targeting mTOR path-
ways in combination with PD-1 blockade may 
increase antitumor efficacy in cancer.60 The 
mechanism involves the binding of PD-1 to the 
downstream mTOR effectors eukaryotic initiation 
factor 4E and ribosomal protein S6, resulting in 
the promotion of their phosphorylation.60 
Combining IL-2 treatment with PD-1 blockade 
has considerable synergistic effects in enhancing 
virus-specific CD8+ T-cell responses and reduc-
ing the viral load.61 Therefore, combined IL-2 
therapy and PD-L1 blockade may be considered a 
regimen for treating chronic infections and can-
cer.61 However, the target of calcineurin inhibition 
is the IL-2 signaling pathway. Thus, the afore-
mentioned strategy should be applied very cau-
tiously in transplant oncology. Moreover, 
inhibiting calcineurin using cyclosporine A 
increases PD-1 ligand expression in B-cells. 
PD-1high B-cells are an immunosuppressive cell 
type specifically induced in the HCC microenvi-
ronment.62 Anti-CD20 antibody (clinically used 
for preventing and treating antibody-mediated 
rejection) can be used to transiently reduce these 
cells and attenuate the immunosuppressive micro-
environment contributed to by PD-1high B-cells.63 
Experimental models of transplantation in both 
mouse and nonhuman primates have revealed that 
CD28-mediated signal blockade impairs the gen-
eration of donor-specific antibody, the presence of 
which is a prerequisite for antibody-mediated 
rejection.64–66 Furthermore, transcriptome analy-
ses before and during nivolumab therapy revealed 
increases in distinct immune cell subsets, activa-
tion of specific transcriptional networks, and more 
pronounced upregulation of immune checkpoint 
genes in melanoma patients exhibiting responses 
to nivolumab therapy.67 When managing multiple 
medications targeting different immune druggable 
nodes, maintaining a balance is the key to thera-
peutic success in transplant oncology. In sum-
mary, meticulous titration of immune composition 
would achieve optimal patient outcomes in this 
field.

Dose optimization (low dose but within the 
therapeutic window) of anti-PD therapy as a 
strategy in transplant oncology
Anti-PD therapy doses lower than the recom-
mended dose may be a practical solution for par-
tially meeting the transplant oncology needs. 
Pharmacodynamic data of 39 patients with vari-
ous cancers who received anti-PD-1 therapy 
indicated a sustained mean occupancy of PD-1 
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molecules of more than 70% on circulating 
T-cells at least 2 months after infusion, regardless 
of the dose.68 Most studies on anti-PD therapeu-
tic dose selection have investigated non-small 
cell lung cancer.69,70 Peripheral receptor occu-
pancy was saturated at the nivolumab dose of 
⩾0.3 mg/kg, with no apparent relationship 
between tumor shrinkage rate and exposure.69 
Dosing of nivolumab and PD-L1 expression do 
not seem to lead to inferior overall survival.70 
The KEYNOTE-010 study reported no differ-
ence in the efficacy of 2 and 10 mg/kg pembroli-
zumab; thus, the United States Food and Drug 
Administration approved a lower dose of 2 mg/
kg, enough to achieve antitumor activity, such 
that further dose increases were not necessary.71 
Thus, in summary, low-dose (but still within the 
therapeutic window) anti-PD therapy might be a 
feasible strategy, similar to the minimization 
strategy of immunosuppressants, in clinical situ-
ations where rejection is a major concern.

Real-world experiences
Checkpoint inhibitors for cancers, such as mela-
noma, cutaneous squamous cell cancer, non–
small-cell lung cancer, HCC, and duodenal 
cancer,18,72–77 have been used in heart, liver, and 
kidney recipients. Rejection can occur through 
acute T-cell-mediated, antibody-mediated, or 
chronic allograft rejection mechanisms.72–74 
CTLA-4 inhibitors, generally deemed less toler-
able than PD-1 inhibitors, are associated with a 
significantly lower risk of allograft rejection than 
regimens containing a PD-1 inhibitor.75 From 
limited reported HCC cases, one patient showed 
responses to nivolumab and demonstrated 
10-month survival without graft rejection.76 
However, in Munker and colleagues’ review of 
14 liver transplant recipients treated with 
immune checkpoint inhibitors, graft rejection 
was reported in four cases, and in three cases, 
rejection occurred within 3 weeks since the ini-
tiation of therapy, with lethal outcomes.76 
Factors potentially affecting allograft rejection 
risk and treatment responses include the more 
integral role of the PD-1 pathway (compared 
with the CTLA-4 pathway) in organ acceptance, 
sequential implementation of different immune 
checkpoint inhibitor classes, time from trans-
plantation to therapy, strength of immunosup-
pressive agents to prevent organ transplant 
rejection, and immunogenicity of the particular 
organ grafted.19,77 However, additional relevant 
studies are needed before a concrete conclusion 

can be drawn. Notably, in addition to other 
rejection, immune-mediated hepatitis can occur 
in the liver graft after checkpoint inhibitor  
therapy.78 In summary, a precision medicine 
approach involving cautious assessment of indi-
vidualized rejection risk must be implemented 
before initiating immunotherapy against HCC 
in liver recipients.

Conclusions and future perspectives: toward 
overall immune assessment
Before formulating management strategies for 
liver recipients with HCC, the overall assess-
ment of the immune microenvironment is essen-
tial. Donor immune cells (such as natural killer 
cells, natural killer T-cells, and lymphocytes) 
within liver graft are transplanted along with the 
graft into recipients,79 and numerous cellular 
interactions and alternate binding partners 
characterize and complicate T-cell costimula-
tory pathways at the graft site. Further detailed 
understanding of the kinetics, cellular distribu-
tion, binding partners, and intracellular signal-
ing networks of cosignaling molecules in 
alloimmunity may aid in the rational develop-
ment of immunomodulatory strategies to pro-
long graft survival.77 A therapeutic window for 
manipulation of cosignaling pathways in trans-
plant recipients with cancer would enable the 
suppression of alloreactivity toward graft rejec-
tion while maintaining tumor-specific protective 
immune responses. Optimization of costimula-
tion blockade-based regimens, including immu-
nosuppressants, during and after transplantation 
could widely benefit liver recipients with HCC.77 
Table 1 summarizes potential application of 
major immunotherapeutic approaches for HCC 
in liver transplant recipients considering speci-
ficity, advantages, and limitations.80

Clinical and translational studies on the com-
parative effectiveness of immune perturbations, 
particularly cosignaling networks, are necessary 
for the rational formulation of therapeutics in 
transplant oncology. For instance, triple main-
tenance immunosuppression (calcineurin inhib-
itor + mycophenolate mofetil  + corticosteroids) 
can efficiently block activation-induced upregu-
lation of CD25 in CD8+ T-cells, but not CD4+ 
T-cells.81 Another proof-of-concept example is 
that the ICOS/B7-H2 pathway is secondary to 
the CD28/B7 pathway in costimulating T-cell-
mediated delayed-type hypersensitivity in mice, 
suggesting a functional hierarchy of CD28/B7 
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and ICOS/B7-H2 pathways and enabling the 
delineation of their relative contributions to 
costimulate T-cell immune responses.82 
Clinically, advancing age protects against acute 
cellular rejection.83–85 Clinically guided minimi-
zation of immunosuppression is possible and 
safe.86 Compared with grafts from deceased 
donors, lower acute T-cell-mediated rejection 
rates are noted after liver transplantation 
between biologically related living-donor–recip-
ient pairs.87 Therefore, in long-term surviving, 
elderly liver recipients with HCC, the risk of 
rejection under anti-PD therapy may be not 
substantial. In principle, translational studies 
should establish relevant therapeutic agents and 
combination strategies most likely to achieve 
patient benefits based on solid mechanistic and 
clinical justifications,24 generating effective 
immunotherapeutic interventions with real-
world benefits in clinical care.
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