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ABSTRACT

Transcription is the first step in gene expression,
and it is the step at which most of the regulation
of expression occurs. Although sequenced prokary-
otic genomes provide a wealth of information, tran-
scriptional regulatory networks are still poorly
understood using the available genomic informa-
tion, largely because accurate prediction of pro-
moters is difficult. To improve promoter
recognition performance, a novel variable-window
Z-curve method is developed to extract general
features of prokaryotic promoters. The features
are used for further classification by the partial
least squares technique. To verify the prediction
performance, the proposed method is applied to
predict promoter fragments of two representative
prokaryotic model organisms (Escherichia coli and
Bacillus subtilis). Depending on the feature extrac-
tion and selection power of the proposed method,
the promoter prediction accuracies are improved
markedly over most existing approaches: for
E. coli, the accuracies are 96.05% (c’° promoters,
coding negative samples), 90.44% (c’° promoters,
non-coding negative samples), 92.13% (known
sigma-factor promoters, coding negative samples),
92.50% (known sigma-factor promoters, non-coding
negative samples), respectively; for B. subtilis, the
accuracies are 95.83% (known sigma-factor pro-
moters, coding negative samples) and 99.09%
(known sigma-factor promoters, non-coding nega-
tive samples). Additionally, being a linear technique,
the computational simplicity of the proposed
method makes it easy to run in a matter of minutes
on ordinary personal computers or even laptops.
More importantly, there is no need to optimize par-
ameters, so it is very practical for predicting other

species promoters without any prior knowledge or
prior information of the statistical properties of the
samples.

INTRODUCTION

In genetics, a promoter is a region of DNA that facilitates
the transcription of particular genes. In bacteria, the
promoter is recognized by RNA polymerase (RNAP)
and associated sigma factors, which may be recruited to
the promoter by regulatory proteins binding to specific
sites in the region. Thus, control of transcription initiation
accounts for much of the overall regulation of gene ex-
pression (1). The continued development of large,
sophisticated databases and repositories has made vast
amounts of biological data accessible to researchers.
Additionally, advances in molecular biology and compu-
tational techniques are enabling the systematic investiga-
tion of the complex molecular processes underlying
biological systems. Many algorithms have been developed
for the detection of promoters in prokaryotic genomes.
For example, Askary et al. and Rangannan and Bansal
developed a promoter prediction algorithm based on the
difference in stability between neighbouring upstream and
downstream regions in the vicinity of experimentally
determined transcription start sites (TSSs) (2,3). Rani
and Bapi used n-grams (n = 3) as features for a neural
network classifier for promoter prediction in Escherichia
coli and achieved 67.75% prediction sensitivity and
86.10% specificity (4). Mann et al. used a hybrid technique
combining profile hidden Markov models (HMMs) and
artificial neural networks (ANNs) methods with Viterbi
scoring optimizations (5). Burden et al. and Bland et al.
also used ANNs to improve the promoter prediction
accuracy (6,7). Lin and Li developed a hybrid approach
(called IPMD) combining position correlation score
function and increment of diversity with modified
Mahalanobis Discriminant to predict eukaryotic and pro-
karyotic promoters (8). By applying the IPMD to E. coli
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and Bacillus subtilis promoter sequences, they achieved the
sensitivities and specificities of 84.9% and 91.4% for
E. coli, as well as 80.4% and 91.3% for B. subtilis.

Although these attempts, which employ sophisticated
machine-learning methods to identify promoters, offer
increased accuracy in certain circumstances, the improve-
ments may not justify the heavy computational require-
ments they impose for training classifiers. Moreover, the
selection and optimization of parameters (such as the type
and parameters of kernel functions, number of hidden
layer nodes, etc.) need enough prior knowledge of the
statistical properties of the samples, which makes it un-
practical for the analysis of new genome sequences.

The regular Z-curve (or Z-curve) method originally
proposed by Zhang is a powerful tool in visualizing and
analysing DNA sequences (9,10). It is a 3D curve or point
representation for a DNA sequence in the sense that each
can be uniquely reconstructed given the other. The result-
ing curve has a zigzag shape, hence the name Z-curve. The
3D curve or point of a given DNA sequence is calculated
from the frequencies of the four bases occurring in it to
evaluate the sequence from three main components: dis-
tribution of purine/pyrimidine, distribution of amino/keto
and distribution of strong H-bonds/weak H-bonds.
Z-curve method has been used in many different areas
of genome research, such as replication origin identifica-
tion (11,12), ab initio gene prediction (13), isochore iden-
tification (14), genomic island identification (15) and
comparative genomics (16). However, the regular
Z-curve method could not able to extract the information
of w-nucleotides sequence patterns occurring in DNA se-
quences, the promoter recognition accuracy based on it is
far from satisfactory.

Hence, a novel variable-window Z-curve (vw Z-curve)
method is proposed here as a feature-extraction tool for
prokaryotic promoter recognition for the first time. The
features extracted by it (with window size w = 1, 2,..., 6)
are used as the input variables for further classification by
a partial least squares (PLS) classifier. Promoter fragments
of two prokaryotic model organisms (E. coli and B.
subtilis) are used to verify the prediction performance of
the proposed method. The feature extraction power of the
vw Z-curve method and the iterative feature selection
power of the PLS technique make the prediction perform-
ance improved mdrkedly over most existm% approaches:
for E. coli, the accuracies are 96. 05% (¢’ promoters,
coding negative samples), 90.44% (c’° promoters, non-
coding negative samples), 92.13% (known sigma-factor
promoters, coding negative samples), 92.50% (known
sigma-factor promoters, non-coding negative samples), re-
spectively; for B. subtilis, the accuracies are 95.83%
(known sigma-factor promoters, coding negative samples)
and 99.09% (known sigma-factor promoters, non-coding
negative samples). The results are verified relying on a
10-fold cross-validation jackknife test. Moreover, the
proposed method is a linear technique, thus its computa-
tional simplicity makes it possible to be run on ordinary
personal computers or laptops with run times of several
minutes. In particular, because there is no need to
optimize parameters, this method is very practical for pre-
dicting other species promoters without any prior

knowledge or prior information of the statistical properties
of the samples.

MATERIALS AND METHODS
Databases

The complete genomic sequences of E. coli K-12 and
B. subtilis are obtained from NCBI GenBank (17). The
positions of experimentally determined TSSs of them are
retrieved from RegulonDB version 7.0 (18) and DBTBS
(19). Then promoter regions [TSS-60. .. TSS+19] (the site
of TSS is +1) are taken as the positive examples. The
positive sample database of E. coli consists of two kinds
of promoter fragments: 576 experimentally confirmed ¢’
promoters and 825 experimentally conﬁrmed promoters of
several known srgma factors (576 c’ promoters 63 ¢*°
promoters, 40 ¢’ and ¢’ promoters 64 %4 promoters 4
c** and o’ 2promoters 9 ¢ promoters 44 &% pro-
moters, 7 o°> and ¢’® promoters, 18 o>* promoters).
Consrdermg the comparatively small size of experimental-
ly confirmed B. subtilis promoters, all 660 promoters of
known sigma factors (e.g. 6**, 6°*, 6% and so on) are used
as the positive samples of B. subtilis.

As there is no enough experimentally confirmed negative
data (i.e. the positions that are confirmed not to be TSS),
the risk has to be taken to choose the negative examples
randomly from the same chromosome. Approximately,
for E. coli K-12, 81% of known TSSs are located in the
intergenic non-coding regions and 19% in the coding
regions (20). So two kinds of negative examples are
prepared:

(1) Coding negative examples: fragments extracted from
the coding regions (genes). For E. coli, the coding
negative sample set contains 836 80-bp fragments ex-
tracted from the start of the open reading frames
(ORFs) with lengths of 80-380bp. For B. subtilis,
the coding negative sample set contains 665 80-bp
fragments extracted from the start of the ORFs with
lengths of 80-335 bp.

(i) Non-coding negative examples: fragments extracted
from the non-coding regions (convergent intergenic
spacers). For E. coli, the non-coding negative
sample set contains 825 fragments with lengths of
80 bp. For B. subtilis, the non-coding negative sam-
ple set contains 331 fragments with lengths of 80 bp.

The data sets and the corresponding detailed descrip-
tions are shown in Table 1.

The novel variable-window Z-curve feature extraction
method

Being the first transcription step, initiation promoted by
interaction of RNAP with gene promoter is a key level of
control of gene expression. RNAP holoenzyme is recruited
at a given promoter through the recognition of a promoter
by transcriptional factors, called ‘sigma (o) factors’, which
are variable subunit of RNAP holoenzyme.

Typically, housekeeping ¢’ factors of E. coli bind to
the —35 and —10 DNA sequence elements in a promoter
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Data set Positive samples Negative samples

Data set-1 576 c'° promoters of E. coli 836 coding fragments of E. coli

Data set-2 576 c’° promoters of E. coli 825 non-coding fragments of E. coli
Data set-3 825 known sigma-factor promoters of E. coli 836 coding fragments of E. coli

Data set-4 825 known sigma-factor promoters of E. coli 825 non-coding fragments of E. coli
Data set-5 660 known sigma-factor promoters of B. subtilis 665 coding fragments of B. subtilis
Data set-6 660 known sigma-factor promoters of B. subtilis 331 non-coding fragments of B. subtilis

with the consensus sequences TTGACA at position —35
and TATAAT at position —10, respectively (positions
indicate the location of each sequence with respect to
the TSS). Two other important sites are the extended
—10 element with the consensus sequence ‘TGN’ and the
AT-rich UP element (21,22). Alternatively, o4 factors,
which control several ancillary processes including the
degradation of xylene and toluene, transport of dicarb-
oxylic acids and so on, bind to ‘GG’ at —24 location
and ‘GC’ at —12 location of promoters (23). For
B. subtilis, DegU promoter has the ‘GNCATTTA’ con-
sensus DNA-binding sequence (24), o -independent sigG
promoters have “TTT” and ‘AAA’ motifs (25) and so on.

It is well known that different sigma factors bind to dif-
ferent motifs of promoters. One genome may encode
many different o-factors. In general, bacterial housekeep-
ing sigma-factors, which regulate genes that are involved
in cellular growth, c-factors are similar to the E. coli ¢'°
factors (26,27). Several members of the ¢’® factor family
have been described: E. coli K-12 has six ¢’ family
o-factors (28), whereas B. subtilis has 17 known variants
of 7% (19). A specific subfamily of o-factors that directly
incorporates signals from the extracellular environment in
regulating transcription (ECF o-factors) also exists (29).
More details about promoter architecture and sigma
factors are available in the Supplementary Data.

Mismatches between RNAP, o-factors and the given
binding sites can be tolerated and even allow for the
modulation of promoter strength at some specific genes.
Multiple occurrences of promoters in the same regulatory
region of one gene can be found for different regulatory
functions (30). Unless mutagenesis is performed, each site
has the chance to be the place chosen by the RNAP to
bind the DNA. Unlike eukaryotic promoters, tightly
packed prokaryotic genes and promoters frequently
overlap each other (18) obscuring promoter motifs.

Experimental procedures are efficient to identify indi-
vidual promoters but not conceivable for sets of genes at
the whole genome scale. This motivated the search for
computational methods based on the knowledge gained
about the properties of known promoters or based on
an efficient representation of DNA motifs by means of
combinatorial or stochastic methods. Unfortunately, the
absence of relatively strong sequence patterns identifying
true promoters, the diversity of the motifs, the compara-
tively uncertainty of the locations of the motifs and the
incompletely understood mechanisms of the regulation of
promoters confound exact predictions of prokaryotic
promoters.

The aims of this work are not only to predict promoters
with very high accuracy, but to predict promoters of dif-
ferent sigma factors that have different recognition motifs
in one collective data set (Tables 1 and 3). So it is import-
ant to draw out these distinctions with different sigma
factors whose motifs usually comprise more than 1nt.
While the regular Z-curve parameters are only derived
from the frequencies of mononucleotides occurring in a
DNA sequence. Consequently, the features extracted by
regular Z-curve method are not enough for promoter rec-
ognition problems and the promoter prediction accuracy
based on these features is far from satisfactory. Up to
now, only Yang et al. (31) used Z-curve method in
Human Pol II promoter recognition.

According to the key motifs mentioned above, it is rea-
sonable to assume that the parameters derived from the
distributions of w-nucleotides patterns (the window size
weN) are the essential features which could able to distin-
guish between promoter regions and non-promoter
regions successfully. Hence, a novel variable-window
Z-curve (vw Z-curve) method which introduces variable
window technique into the regular Z-curve method is de-
veloped and used in prokaryotic promoter recognition for
the first time to improve the prediction accuracy of the
issue. The following paragraphs provide a detailed explan-
ation of the methodology of the vw Z-curve method.

Let Word is a set consisting the 4nt A, G, C and T, that
is: Word = {A,G,C, T}, Sft, (the window size weN,
i=1,...,4" is a string constructed by picking w
elements from the set Word with order and repetition.
For example: when w=2, S}=°‘AA’, S5=‘AT,
S3="AG,..., SI¢="TT".

Let the frequency of sequence pattern ‘S’,_, X” occurring
in an ORF or a fragment of DNA sequence be denoted by
p(Si_X), where X = A, C, G and T. Using the Z-curve
method of DNA sequences (32,33), the uniform definition
of vw Z-curve variables (the window size weN) could be
deduced as Equation (1)

x5 = [P(S5, 1 AFP(S,_ 1G] — [p(S,,_ O +p(S,_ T)]
vs, = [D(S, AV +p(S], O = [(S],,G)+p(S), , T)]
zg = [P(S, 1 A)+p(S,_ D] = [p(S,, -, O+p(S,,,G)]
weN i=1,2,..,4""!
(1
It can be easily seen that the mono-nucleotide, di-nucleo-
tides and tri-nucleotides phase-independent Z-curve par-

ameters illustrated by Gao and Zhang (32) are the special
instances of the vw Z-curve method where w =1, 2, 3.
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The detailed descriptions of them are shown in Equations
(2-4), respectively.

(1) The Z curve parameters for frequencies of phase-
independent mononucleotides (window size w =1,
variable number n =3 x4° = 3): the frequencies of
bases A, C, G and T occurring in a DNA sequence
are denoted by «, ¢, g and 1, respectively. Based on the
Z-curve method, a, ¢, g and ¢ are mapped onto a point
P in a 3D space V, which are denoted by x, y, z (33).

x = (atg) — (ct1)

y = (atc) — (g+1)
- = (at1) — (c+g) @)
X,y,Z € [_1)+1]:

(2) The Z curve parameters for frequencies of phase-
independent di-nucleotides (window size w =2,
variable number n = 3 x 4! = 12): let the frequency of
di-nucleotides XY be denoted by p(XY), where X,
Y=A, C, G and T. Using the Z-curve method of
DNA sequences, the following equation could be
deduced as:

xx = [pPXA)Tp(XG)] = [p(XC)+p(XT)]
)] Ix= [P(XA)+p(XC)] = [p(XG)+p(XT)] 3)
zx = [p(XA)+p(XT)] — [p(XCO)+p(XG)]
X=A,C,GT

where xy, yy and zy are the coordinates of a point in a 3D
space.

(3) The Z curve parameters for frequencies of phase-
independent  tri-nucleotides (window size w=3,
variable number n = 3 x 4> = 48): using similar nota-
tions, it could be deduced as:

Xyy = [P(XYA)+p(XYG)] — [p(XYC)+p(XYT)]

Yxy = [PXYA)+p(XYCO)] — [p(XYG)+p(XYT)] @)

Zyy = [P(XYA)+p(XYT)] — [p(XYO)+p(XYG)]
X=ACG,T, Y=ACG,T,

By the same way, the vw Z-curve parameters for
frequencies of w-nucleotides could be deduced easily. By
a selective combination of n variables or parameters
derived from the vw Z-curve method, a DNA sequence
can be represented by a point or a vector in an n-dimen-
sional space V.

Unlike the variables extracted by Position Weight
Matrix (PWM) based algorithms (30), vw Z-curve param-
eters are derived from the distributions of w-nucleotides
patterns occurring in the same sequence fragment not
from their frequencies occurring in different sequence
fragments. Thus, the vw Z-curve parameters are not
influenced by the uncertainty of motif positions relative
to the TSS. Due to the introduce of the window size w,

the distributions of w-nucleotides patterns according to
different sigma factors could be taken into account syn-
chronously. Consequently, this novel vw Z-curve method
is especially suitable for solving motif-finding or pattern
recognition (PR) problems of DNA sequence researching.

Considering both the length of those widely known
motifs and the computational requirement, the window
sizes of the proposed vw Z-curve method used for
promoter recognition problems are set w=1,2,...,6.
The detailed descriptions of them are shown in
Supplementary Table S1.

For researchers’ convenience, the MATLAB codes of
the vw Z-curve method are given in the Supplementary
Data.

Partial least squares classifier

Supervised pattern analysis could be taken as the regres-
sion problems in which the dependent variables are
defined as /e{—1,+1} in two-class problems or as /e{l,
2,..., N} in multi-class problems, here N is the number
of classes. Hence regression algorithms could be used as
classifiers in supervised PR.

PLS algorithm is a key technique for modelling linear
relationships between a set of output variables (known
class-labels) and a set of input variables (predictors).
PLS algorithm creates orthogonal latent variables (LVs),
which are linear combinations of the original variables.
The basic point of the procedure is that the weights used
to determine these linear combinations of the original vari-
ables are proportional to the maximum covariance among
input and output variables (34). Hence, by the projection
of the PLS algorithm, the n-dimensional X-space is com-
pressed into the v-dimensional LV-space (v<<n in
common cases) to remove the noise and the multi-
colinearity of the original data. This leads to a biased but
lower variance estimate of the regression coefficients com-
pared to the least squares method (34). PLS has been
proven to be very useful in situations where the number
of observed variables (n) is significantly greater than the
number of observations (m) and high multi-colinearity
among the variables exists (35,36). This is especially true
in the case of the current study. Thus, PLS is expected to
be a useful supervised PR method with potential applica-
tions in the discovery of key vw Z-curve features.

For more detailed mathematical descriptions of the PLS
classifier, please refer to the Supplementary Data.

The performance of promoter prediction

To evaluate the performance of promoter prediction, the
following measurements are used here.

. TP
Sensitivity S, = TPIFN (5
- TN
Specificity: S, = TNIEP (6)
S,+S
Accuracy:a = T‘” (7
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where TP, TN, FP and FN are fractions of positive correct,
negative correct, false positive and false negative predic-
tions, respectively.

The sensitivity Sn is the proportion of promoter se-
quences that have been correctly predicted as promoters.
The specificity Sp is the proportion of negative samples
that have been correctly predicted as negative samples.
The accuracy « is defined as the average of Sn and Sp.
Thus the goal in this study is to maximize the prediction
accuracy a of testing set as well as make good trade-off
between Sn and Sp.

To overcome the randomicity of samples and to evaluate
the prediction performance forcefully, 10-fold leave-one-
out method is performed as the cross-validation jack-knife
test, in which the data set is divided into 10 parts and
tested on the 10 different one-tenths while trained on the
remaining nine-tenths.

RESULTS AND DISCUSSION

Optimum combination of the vw Z-curve features for
promoter prediction using the PLS based iterative
feature selection method

Apart from feature extraction, feature selection (also
known as variable selection) is one of the most useful tech-
niques for improving the performance of PR. By removing
the most irrelevant and redundant features, feature selec-
tion helps to do the following:

Alleviate the effect of the curse of dimensionality.
Enhance generalizability.

Speed up the learning process.

Improve model interpretability.

To select an optimal set of features, it is necessary to
quantitatively evaluate the contribution of each feature of
the vw Z-curve method. As mentioned above, two-class
supervised pattern analysis can be handled as a univariate
regression problem in which the dependent variables are
defined as /e{—1,+1}. For univariate regression problems,
the absolute value of the regression coefficient of each
variable is a reasonable measurement of its contribution.

The total number of all vw Z-curve variables of the issue
is n=Y"0_3x4""1=4095 (w=1,...,6). The absolute
values of the coefficients of all 4095 variables in the PLS
promoter recognition model of data set-1 and data set-5
are shown in Supplementary Figure S3. The figure shows
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that only a few variables stand out above the others with
high absolute coefficient values. Obviously, important in-
formation gets buried in a sea of trivialities, a phenom-
enon known as ‘information saturation’. Moreover, the
methodology of the vw Z-curve method indicates there
are strong multi-collinear relationships among all these
features. Hence, the feature selection method relying on
the PLS algorithm is used to improve the recognition
performance.

Considering the large number of variables compared to
the number of samples, iterative feature selection is used
as a way to improve the recognition performance. The
detailed procedure is as follows (take the iterative
feature selection of data set-1 for an example):

(1) Selecting m positive and m negative samples (here,
m = 576, the number of positive samples).

(2) Using n vw Z-curve variables for training the pro-
moter recognition model (for first feature selection
iteration n = 4095).

(3) Sorting variables in descending order according to
their absolute coefficient values.

(4) Selecting the top p variables (e.g. p = 600) with the
highest absolute coefficient values and use of a cross-
validation procedure to assess the prediction per-
formance of these selected variables.

(5) Optimizing p to maximize the prediction average ac-
curacy and to ensure a good trade-off between sen-
sitivity (Sn) and specificity (Sp) of the recognition
model.

(6) Repeating steps 2—6 (setting n = p) until the predic-
tion average accuracy converges.

It is notable that, for different sample sets, the iteration
number of the feature selection procedure and the optimal
combination of vw Z-curve variables may be different.

The prediction results shown in Tables 2-4 demonstrate
that the promoter recognition performance strongly
lowered by information saturation and multi-collinearity
is remarkably improved by the iterative feature selection
method.

From the results shown in Table 2, it can be seen that
after the first iteration of feature selection, the number of
useful vw Z-curve variables is markedly reduced from
4095 variables to 600 variables. By eliminating the inter-
ference of irrelevant variables, the prediction accuracy of
data set-1 is improved by 15.27%, and the accuracy of

Table 2. Prediction results of the 6’° promoters of E. coli using different combination of vw Z-curve features**

Number* Data set-1 Data set-2
4095 600 350 330 4095 600 500 245 220
Results (%)
Sy 80.00 92.63 95.79 96.32 81.40 88.42 87.02 91.40 92.11
S, 75.96 93.86 95.61 95.79 75.44 84.74 85.09 86.14 88.77
a 77.98 93.25 95.70 96.05 78.42 86.58 86.05 88.77 90.44

*Number: number of selected vw Z-curve variables.

**The average accuracies of the vw Z-curve methods with 330 parameters for Data set-land 220 parameters for Dataset-2, which were
the best ones among the algorithms evaluated here, were shown in boldface.
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data set-2 is improved by 8.16%. These 600 variables are
used to build recognition models to again re-evaluate their
importance clearly and fairly. To further improve the pre-
diction accuracy, features are selected according to their
re-evaluated importance. The prediction accuracy is
improved until no more useless variables could be
eliminated. After three iterations of feature selection, the
final prediction accuracy of data set-1 reaches as high as
96.05%, much better than the accuracy obtained with any
previously developed method. The final accuracy of data
set-2 is only 90.44%, but it is much better than the
accuracy achieved by most other methods. Furthermore,
the trade-off between the Sn and Sp is also improved by
the feature selection procedure: the difference between Sn
and Sp for data set-1 is reduced from 4.04% of 4095 vari-
ables to 0.53% of 330 variables; for data set-2, it is
reduced from 5.96% to 3.34%.

The prediction results of all experimentally con-
firmed promoters of known sigma-factors of E. coli are
shown in Table 3. It is obvious that the prediction
accuracies are both improved markedly using the iterative
feature selection method. The highest average accuracies
of data set-3 and data set-4 are 92.13% and 92.50%,
respectively.

To verify the prediction performance of the proposed
method further, it is used to predict promoter sequences of
B. subtilis, a typical gram-positive model organism. The
samples are contained in data set-5 and data set-6 and the
details of them are also shown in Table 1. The prediction
results of them are shown in Table 4. Surprisingly, the
average accuracies of data set-5 and data set-6 are as
high as 95.83% and 99.09% respectively, which are

Table 3. Prediction results of all known sigma-factor promoters

much higher than the accuracies obtained by any other
existing method.

Comparison with other existing methods

Evaluation of the performance of the proposed method re-
quires comparisons with other available methods. Because
different algorithms use different negative sample sets and
different fragment sizes for promoter samples, it is only

Table 5. The best prediction results of E. coli promoters obtained by
different methods (fragments length is 80 bp)**

Methods Results (%)
Sensitivity Specificity Precision
TP/(TP+FN) TN/(TN+FP) TP/(TP+FP)
Negative samples: Coding segments
IPMD (8) 84.9 914 -
Sequence Alignment 82 - 84
Kernel+SVM (20)
The proposed method 96.32 95.79 95.81
Negative samples: Intergenic segments
3-gram* (4) 67.75 86.10 -
IPMD (8) 81 92.7 -
Sequence Alignment 81 - 81
Kernel+SVM (20)
The proposed method 92.11 88.77 89.13

*The negative sample set contained 709 sequence fragments from the
coding region and 709 sequence segments from intergenic portions.
Training data set size for E. coli was 1669. The paper did not give
more details about the training and testing set.

**The best average accuracies among the algorithms evaluated here
were shown in boldface.

of E. coli using different combination of vw Z-curve features**

Number* Data set-3 Data set-4
4095 650 350 280 230 4095 1100 610 360
Results (%)
S 79.63 87.07 91.59 91.95 92.44 82.56 89.63 91.34 92.20
S, 75.98 88.17 90.49 91.46 91.83 84.51 90.12 91.10 92.80
a 77.80 87.62 91.04 91.71 92.13 83.54 89.88 91.22 92.50

*Number: number of selected vw Z-curve variables

**The average accuracies of the vw Z-curve methods with 230 parameters for Data set-3 and 360 parameters for Dataset-4, which were
the best ones among the algorithms evaluated here, were shown in boldface.

Table 4. Prediction results of all known sigma-factor promoters of B. subtilis using different combination of vw Z-curve features**

Number* Data set-5 Data set-6
4095 872 405 340 4095 740 490
Results (%)
Sy 80.91 92.73 95.30 95.76 66.97 94.55 98.79
S, 81.82 91.97 94.24 95.91 73.03 95.76 99.39
a 81.36 92.35 94.77 95.83 70.00 95.15 99.09

*Number: number of selected vw Z-curve variables.

**The average accuracies of the vw Z-curve methods with 340 parameters for Data set-5 and 490 parameters for Dataset-6, which were
the best ones among the algorithms evaluated here, were shown in boldface.



possible to give a rough comparison between the proposed
method and other methods.

Comparing the prediction performance of E. coli
promoter. Most existing methods tested their prediction
performance using o'’ promoter fragments of E. coli
K-12 with 80bp (TSS-60...TSS+19). They used two
kinds of negative samples: coding segments and intergenic
segments. The best prediction results of different methods
are shown in Table 5 in detail. The most commonly
used measurements of these methods are introduced to
evaluate the performance of them. For both coding and
non-coding negative samples, the performance of the pro-
posed method is much better than that of other methods.

When taking intergenic segments as negative samples,
the specificity obtained by IPMD is 92.7%, which is higher
than the specificity obtained by the proposed method. But
the average accuracy (the mean of sensitivity and specifi-
city) obtained by IPMD is 86.85%, while the accuracy
obtained by the proposed method is 90.44%. It is obvi-
ously, compared with IPMD, the average accuracy is im-
proved by 3.59% by the proposed method. Additionally,
the difference between specificity and sensitivity of IPMD
and the proposed method is 11.7% and 3.34%, respect-
ively. Consequently, the trade-off between Sn and Sp
obtained by the proposed method is much better than
that obtained by IPMD.

As mentioned above, approximately, for E. coli K-12,
81% of known TSSs are located in the intergenic
non-coding regions and 19% in the coding regions (20).
Partly due to these facts, the difference of patterns distri-
bution between coding sequences and promoter sequences
is much more statistically significant than that between in-
tergenic sequences and promoter sequences. Consequently,
from the results shown in Table 5, it could be seen that, for
all listed methods, the recognition performance between
promoter and coding sequences is better than that of
promoter and non-coding sequences.

The promoter region is less stable and hence more prone
to melting as compared to other genomic regions. Thus,
there are some methods based on the differences in the
stability of DNA sequences in the promoter and non-
promoter region. Askary et al. presented a modified
ANN (named N4) fed by nearest neighbours and based
on DNA duplex stability (2). The promoter prediction
sensitivity [TP/(TP+FN)] and precision [TP/(TP+FP)] of
N4 for predicting promoters in E. coli are both 94%. To

Table 6. The best recognition results of E. coli promoters obtained
by different methods (fragments length is 414 bp)*

Methods Sensitivity (%) Precision (%)
TP/(TP+FN) TP/(TP+FP)
The proposed 97.10 97.31
method
N4 Neural 94 94

Networks (2)

Nucleic Acids Research, 2012, Vol. 40, No.3 969

this author’s knowledge, this represents the best result
achieved in the existing literature.

Comparisons of the method presented here with that of
Askary et al. (2) are made by using the same measure-
ments and similar database construction methods. The
positive sample set consists of 576 experimentally con-
firmed ¢’ promoters fragments with 414bp ([—207...
TSS...], the site of TSS is +1). The negative sample set
consists of the first 414-bp fragment of the 530 ORFs with
length of 414-585bp. The best recognition results
obtained by these two different methods are shown in
Table 6. It is also obvious that the prediction accuracy
of the proposed method is much better than the
accuracy obtained by N4 method.

Comparing the prediction performance of B. subtilis
promoter. Bacillus  subtilis, a representative Gram
positive bacterium, is often used to demonstrate the per-
formance of the prokaryotic promoter prediction methods.
Lin and Li applied the IPMD method to predict B. subtilis
promoters (8). To this author’s knowledge, this represents
the best result achieved in the existing literature.

Comparisons of the proposed method with that of Lin
and Li (8) are made by using the same measurements and
similar database construction methods. The best recogni-
tion results obtained by these two different methods are
shown in Table 7. In the case of coding negative samples,
the prediction average accuracy is improved from 85.85%
to 95.83% by the proposed method, as well as the differ-
ence between Sn and Sp is decreased from 10.9% to
0.15%. In the case of non-coding negative samples, the
prediction average accuracy is improved by 15.54% by
the proposed method, as well as the difference between
Sn and Sp is decreased by 21.3%. The results strongly in-
dicate that both the prediction accuracy and the trade-off
between Sn and Sp are improved remarkably.

CONCLUSIONS

With the explosive development of the research on syn-
thetic biology and genetic regulatory networks, under-
standing the gene regulation process has been one of the

Table 7. The best recognition results of B. subtilis promoters
obtained by different methods (fragments length is 80 bp)*

Methods Results (%)

Sensitivity (Sn) Specificity (Sp) Average Difference

TP/(TP+FN)  TN/(TN+FP) accuracy between
Sn and Sp
Negative samples: coding segments
IPMD (8) 80.4 91.3 85.85 10.9
The proposed 95.76 95.91 95.83 0.15
method
Negative samples: intergenic segments
IPMD (8) 72.6 94.5 83.55 21.9
The proposed 98.79 99.39 99.09 0.6
method

*The best average accuracies among the algorithms evaluated here were
shown in boldface.

*The best average accuracies among the algorithms evaluated here were
shown in boldface.
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main challenges for biologists. In this context, important
regulatory mechanisms involve the high precise prediction
of promoter regions, which promote the initialization of
gene expression processes. In this paper, a novel vw
Z-curve method is developed as a feature extraction tool
for prokaryotic promoter recognition for the first time.
The proposed method is used in promoter prediction in
E. coli and B. subtilis. Together with the iterative feature
selection and classification power of the PLS algorithm,
recognition accuracy and the trade-off between sensitivity
and specificity are improved markedly. The simplicity of
this method allows it to be particularly practical for per-
forming research without any prior knowledge or prior
information and to be run on ordinary personal com-
puters or laptops with run times of several minutes.

Although this method is developed for prokaryotic pro-
moter recognition, and it has only been tested on samples
of E. coli and B. subtilis promoter fragments, it can easily
be used for the development of eukaryotic promoter pre-
diction methods or for the development of new
motif-finding methods.
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