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Abstract
Background: Ovarian cancer (OV) is deemed the most lethal gynecological can-
cer in women. The aim of this study was to construct an effective gene prognostic 
model for predicting overall survival (OS) in patients with OV.
Methods: The expression profiles of glycolysis- related genes (GRGs) and clinical 
data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) 
database. Univariate, multivariate, and least absolute shrinkage and selection op-
erator Cox regression analyses were conducted, and a prognostic signature based 
on GRGs was constructed. The predictive ability of the signature was analyzed 
using training and test sets.
Results: A gene risk signature based on nine GRGs (ISG20, CITED2, PYGB, IRS2, 
ANGPTL4, TGFBI, LHX9, PC, and DDIT4) was identified to predict the survival 
outcome of patients with OV. The signature showed a good prognostic ability for 
OV, particularly high- grade OV, in the TCGA dataset, with areas under the curve 
(AUC) of 0.709 and 0.762 for 3-  and 5- year survival, respectively. Similar results 
were found in the test sets, and the AUCs of 3- , 5- year OS were 0.714 and 0.772 in 
the combined test set. And our signature was an independent prognostic factor. 
Moreover, a nomogram combining the prediction model and clinical factors was 
developed.
Conclusion: Our study established a nine- GRG risk model and nomogram to 
better predict OS in patients with OV. The risk model represents a promising 
and independent prognostic predictor for patients with OV. Moreover, our study 
on GRGs could offer guidance for the elucidation of underlying mechanisms in 
future studies.
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1  |  INTRODUCTION

Among gynecological cancers, ovarian cancer (OV) is con-
sidered the most fatal. It is estimated that the respective 
numbers of new cases and deaths were 22,530 and 13,980 
in the United States in 2019.1 The main challenges in the 
development of effective methods for screening and pre-
dicting prognosis are attributed to the significant hetero-
geneity at the clinical, histopathological, and molecular 
levels of this disease.2 Clinical and pathological factors 
are not sufficient to predict long- term survival.3 An in-
creasing number of opportunities for exploring tumor 
prognostic markers have emerged, which are attributed 
to the establishment and development of public biologi-
cal databases that provide available gene expression data 
and clinical data of cancers. Many biomarkers, including 
EN2 and HE4 genes, which are associated with the prog-
nosis and survival of OV, have been identified.4– 7 With the 
rapid development of high- throughput sequencing, a va-
riety of patient genome databases have been constructed 
to obtain a more systematic understanding of genomic 
changes. Thousands of prognostic biomarkers have been 
identified through mining these databases.8,9 In addition, 
studies have found that genetic models constructed using 
multiple genes have a better prediction performance for 
cancer prognosis than models based on a single gene.9,10 
Gene models constructed based on tumor biopsy have 
practical significance for the guidance of targeted therapy. 
Currently, several studies have explored the establishment 
of multigene signatures for assessing the survival risk of 
patients with OV and predicting clinical outcomes.8– 11

Glycolysis occurs in all cells of the body.12 A previous 
study reported that genes involved in glycolysis are ubiq-
uitously overexpressed in 24 cancer classes.13 To date, 
the relationships between glycolysis and the processes of 
cancer oncogenesis, development, proliferation, and inva-
sion have been the focus of many studies.14– 16 The results 
from previous studies provide compelling evidence of new 
glycolysis- related biomarkers for the prediction of cancer 
patient survival. Pancreatic cancer patients with a high 
expression of TCF7L2 have a poorer prognosis than those 
with low expression levels, and the underlying mecha-
nism is that TCF7L2 positively regulates aerobic glycolysis 
through the EGLN2/HIF- 1α axis.17 Four glycolysis- related 
genes (GRGs; AGRN, AKR1A1, DDIT4, and HMMR) were 
identified in a previous study and found to be strongly as-
sociated with the clinical outcome of patients with lung 
adenocarcinoma.18 The combination model of nine GRGs 
has been reported to effectively predict the overall survival 
(OS) of patients with endometrial cancer.19 In addition, 
a glycolytic gene expression signature score established 
based on 10 glycolytic genes (HK2, HK3, LDHA, PKM2, 
GAPDH, ENO1, LDHB, PKLR, ALDOB, and GALM) 

predicts unfavorable clinical outcomes in patients with 
glioblastoma and is closely associated with the mesen-
chymal subtype.14 However, so far, more researches are 
needed to explore the predictive value of GRG for the sur-
vival of OV patients. A better understanding of the mo-
lecular mechanisms of OV can help in the development 
of more effective targeted therapies that contribute to im-
proved prognosis.

In this study, we aimed to investigate specific GRG 
markers that are closely associated with the survival of 
patients with OV using data from The Cancer Genome 
Atlas (TCGA; https://portal.gdc.cancer.gov/) database and 
evaluate the prognostic value of these biomarkers for the 
prediction of survival in patients with OV. An effective 9- 
GRG risk predictive model was constructed to predict the 
survival outcomes in patients with OV. Notably, the GRG 
risk model enabled identification of patients with poor 
prognoses in the high- risk group. The results of multivar-
iate Cox regression analyses implied that our risk model 
effectively predicted OS in patients with OV, independent 
of clinical factors.

2  |  MATERIALS AND METHODS

2.1 | Data collection

We extracted clinical and RNA sequencing data of patients 
with OV from TCGA (https://portal.gdc.cancer.gov/). The 
exclusion criteria were as follows: (1) confirmed non- OV 
pathological diagnosis and (2) OV patients with incom-
plete information regarding clinical characteristics (age, 
tumor stage, histological grade, survival time, and status). 
Finally, the total clinical information of 583 patients from 
the TCGA cohort was collected. The patients from TCGA 
were defined as a training cohort, whereas datasets from 
the Gene Expression Omnibus database (http://www.
ncbi.nlm.nih.gov/geo/) were selected as external valida-
tion sets to validate the robustness of the DRG prognos-
tic model. The sets for validation included GSE63885, 
GSE26193, and GSE30161 datasets, and their expression 
profiles were all based on the GPL570 platform; these 
three cohorts contained 101, 107, and 58 OV samples, 
respectively.20– 22 The GRG sets were obtained from the 
Molecular Signatures Database (MSigDB, http://www.
gsea- msigdb.org/gsea/msigd b/index.jsp).23

2.2 | Construction and evaluation of the 
nine- GRG prediction model

We applied a log2 transformation to standardize the 
expression of each gene. We used a p  <  0.05 as the 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63885
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30161
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
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screening criterion and performed univariate Cox analy-
sis, the least absolute shrinkage and selection operator 
(LASSO) method,24,25 and multivariate Cox regression 
analysis to identify the best gene model using the R 
package “glmnet.”25,26 Based on the Akaike information 
criterion, the best GRG combination was selected to con-
struct a predictive model.27 We calculated the risk score 
using the following formula: risk score  = 

∑n
i=1 coef ∗ id

.28 The Kaplan- Meier survival curve constructed using 
the R package “survival”29,30 demonstrated the OS of the 
high-  and low- risk groups, which were stratified accord-
ing to median risk score. The time- dependent receiver 
operating characteristic (ROC) curve was used to assess 
the performance of the gene risk model and compare the 
prediction efficiency with clinical features or single genes 
using the R package “survivalROC.”29 Univariate and 
multivariate Cox regression analyses were performed 
to determine the prognostic value of the signature and 
some clinicopathological features. To estimate the likeli-
hood of survival, a nomogram was constructed using the 
R package of “rms”31 based on the risk score and clinical 
features that were analyzed after multivariate Cox regres-
sion analysis.

2.3 | Statistical analyses

We compared the distribution of the clinical features, 
which included age, tumor stage, and histological grade, 
between the different subgroups by using chi- square tests. 
We used the R version 3.6.2 software to conduct the sta-
tistical analyses. Statistical analyses were performed using 
the R packages “survivalROC,” “survival,” “glmnet,” and 
“rms.”25,26,29- 31 Statistical differences were deemed signifi-
cant when the p- value was less than 0.05.

3  |  RESULTS

3.1 | Patient characteristics and 
collection of GRGs

We downloaded the complete data of 583 patients with OV, 
including clinical information and the expression profiles 
of RNA sequencing, from the TCGA database. We manu-
ally searched for GRG sets from MSigDB version 6.2 and 
referenced the relevant literature. Five related gene sets 
(REACTOME_GLYCOLYSIS, HALLMARK_GLYCOLY-   
SIS, GO_GLYCOLYTIC_PROCESS, KEGG_GLYCO-  
LYSIS_GLUCONEOGENESIS, and BIOCARTA_GLYCO-  
LYSIS_ PATHWAY) were downloaded, and 443 genes 
were obtained. After excluding duplicate genes, 386 genes 
were retained for subsequent analysis. The integrated 

clinical data and list of GRGs are shown in Table 1 and 
Table S1, respectively.

3.2 | Construction of the glycolysis- 
related risk signature

Among the 386 GRGs, only 201 genes overlapped with 
those from the OV TCGA RNA sequencing data. To 
further examine the prognostic value of these genes, 
we first performed univariate Cox regression analy-
sis, and only 11 genes were obtained by preliminary 
screening using the criterion of adjusted p  <  0.05. 
LASSO analysis was conducted to minimize overfit-
ting (Figure 1A,B). Finally, nine genes (ISG20, CITED2, 
PYGB, IRS2, LHX9, PC, ANGPTL4, TGFBI, and DDIT4) 
were screened after multivariate Cox regression analy-
sis (Figure  1C; Table  2). Then, the best predictive sig-
nature based on nine GRGs was constructed, and the 
formula to assess the survival risk of every patient was 
calculated as follows: risk score =  (−0.25414) ×  ISG20 
expression level  +  0.07897  ×  CITED2 expression 
level + 0.11769 × PYGB expression level + 0.09112 × IRS2 
expression level  +  0.06399  ×  ANGPTL4 ex-
pression level  +  0.04811  ×  TGFBI expression 
level + 0.03555 × LHX9 expression level + 0.05593 × PC 
expression level  +  0.05907  ×  DDIT4 expression level. 
The gene model was used to calculate each patient's risk 
score in the training set based on the expression level of 
the nine GRGs, and all the patients in the training set 

T A B L E  1  Clinic pathological characteristics of extracted 
patients with ovarian cancer

Characteristic Group
No. of 
cases (%)

Age (years) ≤65 403 (69.13)

>65 180 (30.87)

TNM stage Stage I 33 (5.66)

Stage II 41 (7.03)

Stage III 389 (66.7)

Stage IV 102 (17.50)

Stage X 18 (3.08)

Histologic grade G1 11 (1.89)

G2 101 (17.32)

G3 456 (78.21)

G4 1 (0.17)

GX 14 (2.40)

Vital status Alive 241 (41.34)

Dead 342 (58.66)

Abbreviations: GX, unknown histological grade; Stage X, unknown 
pathological stage.
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F I G U R E  1  GRGs selection using the LASSO model. (A) Ten- fold cross- validation for the coefficients of 11 GRGs in the LASSO model. 
(B) X- tile analysis of the nine selected GRGs. (C) Forest plot illustrating the multivariable Cox model results of each gene in nine- GRG risk 
signature. GRGs, glycolysis- related genes; LASSO, the least absolute shrinkage and selection operator cox; OV: ovarian cancer

Gene Ensemble ID Coefficient HR p value

ISG20 ENSG00000172183 −0.25414 0.78 5.22E−06

CITED2 ENSG00000164442 0.078975 1.08 0.356061

PYGB ENSG00000100994 0.117691 1.12 0.186993

IRS2 ENSG00000185950 0.091117 1.10 0.133015

ANGPTL4 ENSG00000167772 0.063993 1.07 0.218495

TGFBI ENSG00000120708 0.048112 1.05 0.393959

LHX9 ENSG00000143355 0.035546 1.04 0.326248

PC ENSG00000173599 0.055931 1.05 0.47917

DDIT4 ENSG00000168209 0.059074 1.06 0.328672

Abbreviation: HR, hazard ratio.

T A B L E  2  Coefficients and 
multivariable Cox model results of each 
gene in 9- GRG risk signature



8226 |   ZHANG et al.

were classified into either high- risk or low- risk group ac-
cording to their median risk score. The results of Kaplan- 
Meier survival analysis suggested that the prognosis of 
patients with high- risk scores was worse than that of 
patients with low- risk scores (p < 0.0001, log- rank test; 
Figure 2A). As shown in Figure 2B, we ranked the risk 
scores of patients in the training set and analyzed their 
distribution. The survival status of patients with OV in 
the training set was marked on a dot plot (Figure  2B). 
The areas under the curve (AUC) for the 3-  and 5- year 
OS were 0.709 and 0.762, respectively (Figure 2C). The 
heatmap revealed the differences in expression patterns 

of the nine GRGs between the two prognostic patient 
groups (Figure 2D).

3.3 | Evaluation of the predictive 
capability of the nine- GRG risk signature

After constructing the GRG predictive model, we se-
lected three datasets to verify the prediction perfor-
mance. The sets for validation included GSE63885, 
GSE26193, and GSE30161 datasets of 101, 107, and 58 
patients with OV, respectively. The demographic and 

F I G U R E  2  KM survival analysis, risk score assessment by the GRG risk signature and time- dependent ROC curve in the training set. 
(A) KM survival analysis of high-  and low-  risk samples in the TCGA dataset. (B) Relationship between the survival status/risk score rank 
and survival time (years)/risk score rank. (C) Time- dependent ROC curve for OS of the TCGA dataset. The AUC was assessed at 3and 5y. 
(D) Nine GRGs expression patterns for patients in high-  and low- risk groups by the nine- GRG signature. GRGs, glycolysis- related genes; OS, 
overall survival

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63885
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30161
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clinical characteristics of patients with OV in the vali-
dation datasets are presented in Table S2. The AUCs of 
3-  and 5- year OS were, respectively, 0.716 and 0.767 in 
the GSE26193 dataset (Figure 3Ac); 0.808 and 0.800 in 

the GSE30161 dataset (Figure 3Bc); and 0.636 and 0.722 
in the GSE63885 dataset (Figure  3Cc). Survival analy-
sis revealed that our risk signature performed well in 
the validation sets. The survival differences between the 

F I G U R E  3  KM survival analysis, risk score assessment by the GRG- related gene signature and time- dependent ROC curves in the GEO 
validation datasets. (A) GSE26193, (B) GSE30161, (C) GSE63885. (a) KM survival analysis of high-  and low- risk samples. (b) Relationship 
between the survival status/risk score rank and survival time (years)/risk score rank. (c) ROC curve for overall survival of the validation 
datasets. The AUC was assessed at 3 and 5 years

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30161
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63885
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30161
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63885
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high- risk and low- risk groups were statistically signifi-
cant in the GSE63885 cohort (p = 0.0039). Similarly, in 
the GSE26193 (p < 0.0001) and GSE30161 (p = 0.0023) 
cohorts, the OS for low- risk patients was higher than 
that for high- risk patients. The distribution of risk 
scores and survival statuses of the patients with OV in 
the three sets are shown in Figure 3Ab, 3Bb, and 3Cb. 
In order to get the most optimal estimate of the AUC- 
value, we have merged the three validation sets and the 
survival analysis revealed that our risk signature per-
formed well in the combined validation set (p < 0.0001, 
Figure  4A), and Figure  4B showed the survival status 
of patients with OV in the combined set. The AUCs of 
3-  and 5- year OS were 0.714 and 0.772 (Figure 4C). The 
heatmap revealed the differences in expression patterns 

of the nine GRGs between the two prognostic patient 
groups (Figure 4D).

3.4 | Risk score generated from the 
nine- GRG signature as an independent 
prognostic indicator

The exploration of independent predictive factors was 
performed through univariate analysis of clinical factors 
and risk models combined with multivariate regression 
analysis. Table 3 shows that in addition to age and tumor 
stage, our GRG risk model could independently predict 
the OS according to the results of univariate analysis 
(HR [95% confidence interval (CI)], 2.334 [1.817−2.997]; 

F I G U R E  4  KM survival analysis, risk score assessment by the GRG risk signature and time- dependent ROC curve in the combined set. 
(A) KM survival analysis of high-  and low- risk samples in the combined set. (B) Relationship between the survival status/risk score rank and 
survival time (years)/risk score rank. (C) Time- dependent ROC curve for OS of the combined set. The AUC was assessed at 3 and 5 years. 
(D) Nine GRGs expression patterns for patients in high-  and low- risk groups by the nine- GRG signature

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63885
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30161


   | 8229ZHANG et al.

p < 0.001) and multivariate analysis (HR [95% CI], 2.361 
[1.830−3.047]; p  <  0.001), referring to the statistical 
standard of adjusted p < 0.05. Furthermore, the AUC of 
the nine- gene signature was higher than that of any sin-
gle clinicopathological variable (Figure 5A). In addition, 
the AUCs of the time- dependent ROC curve for the single 
genes were 0.600 for ISG20, 0.606 for CITED2, 0.580 for 
PYGB,0.604 for IRS2, 0.597 for LHX9, 0.568 for PC, 0.584 
for ANGPTL4, 0.621 for TGFBI, and 0.611 for DDIT4) 
(Figure  5B), and the sensitivity and specificity of the 9- 
gene signature were greater than those of the other sin-
gle genes. The findings of the present study suggest that 
the gene model has an independent and effective pre-
dictive ability in the survival prediction of patients with 
OV. A nomogram was constructed to develop a quantita-
tive method that can predict the OS of patients with OV. 
The predictors included risk score and age. As shown in 
Figure 5C, points were assigned for each patient charac-
teristic by drawing a line from the scale for each predictor 
to the point bar at the top of the figure. Then, the points 
for all predictors were added to determine the total num-
ber of points. A patient's predicted probability of having 
an outcome of interest was determined by drawing a line 
from the total points bar to the predicted probability bar.

3.5 | Validation of the nine- GRG 
signature in predicting survival using 
Kaplan- Meier curves

The clinical features of age, histological grade, and tumor 
stage represent predictive prognostic factors of OV after 
the performance of univariate Cox regression analysis 
of OS. Kaplan- Meier curves revealed that clinical fea-
tures that showed consistent results, namely patient age 
>65 years and disease stages III and IV, were associated 
with poor prognosis (Figure 5D,E).

To test whether our nine- GRG signature can play a role 
in different TNM stages, histological grades, and ages, a 
subgroup analysis was performed for each clinical feature. 
Kaplan- Meier survival analysis demonstrated that the risk 

signature had a stable prognostic power and was applicable 
to patients with OV when they were stratified into differ-
ent age and TNM stage groups (Figure 6A,6B). However, 
when the patients were stratified into high- grade (grades 
3 and 4) and low- grade (grades 1 and 2) subgroups, the 
risk score of the nine- gene signature remained an inde-
pendent prognostic indicator in the high- grade subgroup 
(p < 0.001) but not in the low- grade subgroup (p = 0.067; 
Figure 6C). The risk model showed a more effective pre-
diction in patients with high- grade OV.

3.6 | Comparison with other 
prognostic signatures

We compared our gene signature with other known prog-
nostic signatures to assess the robustness of our model. 
To exclude the effect of heterogeneity, only signatures 
that were developed based on the TCGA database were 
included. The studies on markers for predicting specific 
types of prognosis for patients with OV were excluded 
from our comprehensive evaluation.32– 34 Finally, 22 OS- 
related prognostic signatures were included for compari-
son with our gene signature. The results demonstrated 
that our signature yielded remarkably good performance 
in predicting OS in patients with OV (Table  4). In our 
study, the AUCs of the signatures at 3, and 5 years were 
0.709, 0.762, respectively, which were significantly higher 
than those of most hallmark predictive models. Table  4 
shows that the AUCs of the other three prognostic signa-
tures, namely, the 21 immune- related gene signature,35 17 
immune- related gene signature (0.754 at 3 years, 0.824 at 
5 years)36 and 17 transcription factor - related gene signa-
ture (0.803 at 5 years),37 were comparable to the predictive 
capabilities of our predictive model and distinctly higher 
than those of other signatures, such as the epithelial- 
mesenchymal transition related gene signature,38 TME- 
related gene signature,39,40 RNA- binding protein- related 
gene signature,41 energy metabolism- related gene signa-
ture,42 autophagy- related gene signature,43,44 ferroptosis- 
related gene signature,45 protein- coding gene signature,46 

T A B L E  3  The risk score generated from the nine- GRG signature as an independent indicator according to Cox proportional hazards 
regression model

Variable

Univariate analysis Multivariate analysis

HR (95% CI) p- value HR (95% CI) p- value

Age (≤65/>65) 1.023 (1.010−1.036) <0.001 1.024 (1.011−1.037) <0.001

TNM stage (I/II/III/IV) 1.643 (1.028−1.752) 0.039 1.198 (0.885−1.622) 0.177

Histologic grade (G1/2/G3/4) 1.213 (0.816−1.801) 0.340 1.308 (0.871−1.963) 0.196

Risk score (H/L) 2.334 (1.817−2.997) <0.001 2.361 (1.830−3.047) <0.001

Abbreviations: GRGs, glycolysis- related genes; H, high; L, low.
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F I G U R E  5  ROC curve with respect to clinical features and risk model, nomogram and Kaplan– Meier survival analysis for OV patients 
with clinical features: (A) time- dependent ROC curve with respect to single clinical features and risk model. (B) ROC curves with respect to 
nine key DRGs in the TCGA cohort. (C) The nomogram for predicting probabilities of OV patients overall survival. Kaplan– Meier survival 
analysis for OV patients with different clinical features that can predict patient survival (D, Age, E, Stage, F, Grade). OV, ovarian cancer
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and DNA methylated gene signatures.47 The larger the 
AUC value of a biomarker, the better was the predictive 
ability of the signature, indicating that our gene signature 
outperformed most of the other signatures in predicting 
OV prognosis.

4  |  DISCUSSION

Increasing attention has been paid to the global burden of 
OV. Despite current advances in surgery and chemother-
apy, poor prognosis remains a major challenge.3 Because 
of heterogeneity and the lack of convenient and accurate 
biomarkers, the current prognostic tools for patients with 
OV have limited clinical predictive abilities.2,48 Subtype 

identification, risk stratification, and characterization of 
the underlying mechanism are critical for the improve-
ment of existing treatment methods, development of 
more precise and personalized therapies, and prolon-
gation of survival time. Thus, a predictive model with a 
broad scope of application is needed to accurately predict 
OS in patients with OV and guide clinicians in providing 
targeted treatment and better prognosis. With the popular 
application of large databases, an increasing number of 
prognostic markers have been recognized.8,9,26 In recent 
decades, the metabolic processes in tumor microenviron-
ment have gradually become research hotspots in tumor 
research and treatment.49 The Warburg effect is a hall-
mark of cancer research and plays an important role in 
promoting the occurrence and development of tumors. It 

F I G U R E  6  KM survival subgroup 
analysis of all patients with OV according 
to the GRG- related gene signature 
stratified by clinical characteristics. (A) 
Age ≤ 65 years, age > 65 years. (B) Early 
stage (stage I– II), late stage (stage III– IV). 
(C) Low grade 1– 2, High grade 3– 4. GRGs, 
glycolysis- related genes; OV, ovarian 
cancer
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has been observed that most tumor cells continue to rely 
on aerobic glycolysis for energy, even with adequate oxy-
gen and nutrition.50 Thus, aerobic glycolysis promotes the 
rapid proliferation of cancer cells, progression of cancer, 
and resistance to apoptotic cell death.51 Previous studies 
have investigated the role of GRGs and glycolysis in the 
development of several cancers, and GRG models have 
been built successfully14– 16; however, no related research 

on OV has been reported to date. Considering the poor 
survival and high mortality of patients with OV and the 
lack of comprehensive investigations on OV, we estab-
lished a GRG- based risk signature to predict the OS of pa-
tients with OV.

In this study, our predictive model consisted of a train-
ing set and three validation cohorts, which included 813 
patients with OV. Nine genes with prognostic value for 

Author Year Gene signature AUC for OS

Our study 2021 9 GRG signature 0.709 (3- year), 
0.762 (5- year)

Cao T, et al. 2021 21 immune- related gene signature 0.746 (1- year), 
0.735 (3- year), 
0.749 (5- year)

He C, et al. 2021 6 RBP- related gene signature 0.657 (3- year), 
0.718 (5- year)

Li H, et al. 2021 17 TF- related gene signature 0.803 (5- year)

Yang L, et al. 2021 9 ferroptosis- related gene signature 0.654 (1- year), 
0.664 (3- year), 
0.690 (5- year)

An Y, et al. 2020 15 immune- related gene signature 0.683 (5- year)

Ding Q, et al. 2020 9 TMB- related gene signature 0.684 (3- year), 
0.707 (5- year)

Fan L, et al. 2020 18 m6A– related signature 0.58 (5- year)

Guo Y, et al. 2020 3 TMB- related gene signature 0.701 (3- year), 
0.727 (5- year)

Lin H, et al. 2020 2 immune- related gene signature 0.678 (3- year), 
0.620 (5- year)

Meng C, et al. 2020 17 autophagy- related lncRNA 
signature

0.731 (5- year)

Pan X, et al. 2020 6 EMT gene signature 0.711 (5- year)

Yan S, et al. 2020 5 immune infiltration- related gene 
signature

0.704 (5- year)

Zhang B, et al. 2020 17 immune- related gene signature 0.755 (1- year), 
0.754 (3- year), 
0.824 (5- year)

Zhang Q, et al. 2020 8 MRG signature 0.653 (1- year), 0.68 
(3- year), 0.616 
(5- year)

Zheng M, et al. 2020 11 lipid metabolism gene signature 0.706 (2- year), 
0.694 (3- year), 
0.724 (5- year)

Sun H, et al. 2019 14 DNA repair gene signature 0.759 (5- year)

An Y, et al. 2018 8 autophagy- related gene signature 0.703 (5- year)

Guo Q, et al. 2018 5 TF- related lncRNA signature 0.700 (5- year)

Guo W, et al. 2018 5 DNA methylated gene signature 0.715 (5- year)

Zhang J, et al. 2018 2 protein-coding gene signature 0.642 (5- year)

Liu L, et al. 2016 5 gene signature 0.670 (5- year)

Zhou M, et al. 2016 8 lncRNA signature 0.705 (5- year)

Abbreviations: EMT, epithelial– mesenchymal transition; MRG, metabolism- related gene; OS, overall 
survival; RBP, RNA- binding protein; TF, transcription factor; TME, tumor microenvironment.

T A B L E  4  The area under the ROC 
curve (AUC) show the sensitivity and 
specificity of the known gene signatures 
in predicting the prognosis of OV patients
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patients with OV were identified using univariate, mul-
tivariate, and LASSO Cox regression analyses. The results 
indicate that the nine- GRG signature developed in this 
study significantly correlated with poor prognosis in OV. 
In addition, this risk signature remained an independent 
prognostic factor in multivariate Cox analyses. The results 
of survival analysis suggested that patients with high- risk 
scores tended to have worse clinical outcomes. The nine- 
gene model showed a better predictive ability than any 
single gene or clinicopathological factor. The model estab-
lished in the present study is well suited for OS predic-
tion. Nomograms have been constructed to predict various 
clinical endpoints in patients with different types of can-
cers.52,53 Theoretically, a nomogram should be specific to 
each patient and thus be able to accurately predict specific 
clinical endpoints. In our study, a novel nomogram was 
constructed by combining a prediction model with clin-
ical characteristics. The nomogram used complementary 
values of clinical characteristics and prediction model and 
provided better estimates of individual outcomes.

Gene signature could further assess the survival risk in 
patients with different clinical features (age, TNM stage, 
and histological grade). The risk model had effective pre-
diction power for patients with diverse clinical charac-
teristics, but its predictive power was limited in patients 
with a low histological grade, which should be explored 
in depth in the future. This result implies that the clini-
cal application of genetic models is far- reaching and the 
methods for predicting prognosis of patients in clinical 
settings will become more diverse, thus guiding clinicians 
to provide accurate and effective treatment.

To further explore the predictive ability of our signa-
ture, a comparison was performed among several sig-
nificant molecular signatures that were employed for 
predicting OS in patients with OV. The included studies 
11,35– 47,54– 61 used models built based on the TCGA co-
hort and involved all types of breast cancer. The final 
results showed that our signature and three other prog-
nostic signatures, namely, a 21 immune- related gene 
signature,35 17 immune- related gene signature36 and 17 
TF- related gene signature37 performed better than the 
other hallmark signatures in the prediction of OS in pa-
tients with OV.11,35,38– 47,54– 61 Additionally, Yu et al. has 
constructed a five GRG signature (ANGPTL4, PYGB, 
ISG20, SEH1L and IRS2) for patients with OV.62 The 
AUCs of the signature in Yu's study at 5- years were 
0.680. By contrast, besides the difference of database 
sources and grouping methods, in the process of screen-
ing our nine hub genes, we especially applied LASSO 
analysis, which was proved to be a scientific and effec-
tive screening method and it was widely used in many 
studies.26,31,63 Moreover, the AUC value shows that our 
signature (0.762 at 5 years) is better than Yu's model in 

predicting the 5- year prognosis of OV patients. In ad-
dition to a larger sample size, our subgroup analysis 
showed that the nine- GRG signature can perform better 
in high- grade OV groups. Furthermore, we innovatively 
compared with other hallmark gene prediction models 
for OV. In addition to the four genes (ANGPTL4, PYGB, 
ISG20, and IRS2) we discovered together, we also dis-
covered that another five genes (CITED2, LHX9, PC, 
TGFBI, and DDIT) are related to the prognosis of OV, 
which undoubtedly provides a favorable basis for future 
research. Therefore, our signature may help in enrich-
ing clinical prediction methods and developing more 
effective targeted therapies that contribute to improved 
prognosis.

Among the nine biomarker genes identified in the 
present study, DNA damage- inducible transcript 4 
(DDIT4), with high expression levels, actively responded 
to hypoxia- inducible factor 1 and acted synergistically to 
regulate the generation of cell reactive oxygen species.64 
As an oncogene,64,65 the overexpression of DDIT4 cor-
relates with tumor progression and worse outcomes in 
several human cancers, including OV.18,66– 68 Brain- type 
glycogen phosphorylase (PYGB) could regulate multiple 
biological characteristics of cancer cells, such as prolifer-
ation, invasion, and apoptosis, and metastatic phenotypes 
of several cancers.69– 74 PYGB regulates the Wnt/β- catenin 
signaling pathway to achieve cancer- promoting effects in 
OV,75 non- small cell lung cancer,76 and gastric cancer.77 
Insulin receptor substrate 2 (IRS2) mediates mitogenic 
and antiapoptotic signaling of insulin- like growth factor 
1 receptor, insulin receptor, and other oncoproteins78,79 
and is essential for cancer cell motility and metasta-
sis.80– 82 IRS2 acts as an oncogene in OV and is involved 
in cell proliferation and ascites migration during OV pro-
gression.83,84 Angiopoietin- like 4 (ANGPTL4) has been 
reported to be involved in ferroptotic cell death and che-
moresistance of epithelial OV.85 Moreover, large amounts 
have been detected in the malignant ascites of patients 
with serous OV.86 High ANGPTL4 levels predict short 
relapse- free survival in serous OV.86,87 Studies have found 
that high promoter hypermethylation of transforming 
growth factor- beta- inducible gene (TGFBI) is involved in 
chemotherapy resistance of paclitaxel in OV.88,89 A study 
showed that TGFBI and periostin predict poor progno-
sis in serous epithelial OV.90 Pyruvate carboxylase (PC) 
is a biotin- containing enzyme that converts pyruvate to 
oxaloacetate and has been implicated in cancer progres-
sion. PC is strongly involved in tumorigenesis in sev-
eral cancers, such as breast cancer, non- small cell lung 
cancer, glioblastoma, renal carcinoma, and gallbladder 
cancer.91– 94 Moreover, PC may mediate the regulation of 
tankyrase (TNKS) in aerobic glycolysis and may be in-
volved in the TNKS- regulated development of OV, as its 
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oncogenic activity is induced by TNKS activating Wnt/β- 
catenin/snail signaling.95 Not much evidence has been 
accumulated on the following genes from basic research 
on OV. Interferon- stimulated gene 20 (ISG20) is an RNA 
exonuclease96 that stimulates tumor progression in he-
patocellular carcinoma, clear cell renal cell carcinoma, 
and glioma.97– 99 The high expression level of ISG20 is 
associated with poor clinical outcomes in patients with 
OV.99 Cbp/p300- interacting transactivator 2 (CITED2), 
a pleiotropic protein, has been reported to participate in 
several biological functions of cells, including transcrip-
tion and differentiation. High CITED2 expression levels 
are correlated with poor patient survival in breast100 and 
prostate101 cancers. CITED2 participates in the regulation 
of the cell cycle, promotes cell proliferation, and plays an 
active role in the progression of lung cancer102,103 and 
supports gastric cancer cell colony formation and pro-
liferation.104 In addition, it is involved in resistance to 
platinum- based chemotherapy in OV.105 LIM homeobox 
9 (LHX9) is a developmentally expressed transcription 
factor106 that is strongly expressed in the ovarian surface 
epithelium.107 Previous research has shown that child-
hood malignant gliomas involve abnormal methylation 
and silencing of LHX9,108 and the relationship between 
ISG20, CITED2, and LHX9 with OV and its molecular 
mechanism must be examined in depth in future studies. 
We integrated the nine GRGs into a panel and established 
a novel multigene signature to predict the prognosis of 
OV. This signature showed a strong predictive ability and 
acted as an independent prognostic molecular factor in 
patients with OV.

Our study identify a GRG risk predictive signature 
using data from public database. The nine- GRG risk 
model showed promising survival prediction ability for 
the prognosis of OV. Despite these promising results, there 
are certain limitations to our study. First, this was not a 
prospective study, and all patients with OV were identi-
fied from public databases. Second, the missing rate for 
the clinical characteristics was high, which decreased the 
statistical power in multivariable Cox regression analysis 
and the integrated prognostic model. Third, large- scale 
multicenter cohorts are necessary to verify our findings 
and further basic experiments in our hospital are needed 
to explore the functional roles of the GRGs involved in the 
initiation and development of OV. In addition, the gene 
signature performed more effectively in patients with 
high- grade OV than in patients with low- grade OV, and 
the reason for this should be investigated in detail in the 
future. Finally, our model cannot predict recurrence and 
distant metastasis in patients with OV owing to the lack 
of relevant data in the TCGA database. To further validate 
the utility of this risk model, we have undertaken the col-
lection of clinical data and specimens.

5  |  CONCLUSION

We constructed a valid, innovative, and reliable nine- 
GRG prognostic model (ISG20, CITED2, PYGB, IRS2, 
ANGPTL4, TGFBI, LHX9, PC, and DDIT4) to predict 
patient outcomes in OV. Moreover, our signature is an 
independent and important risk factor for OV. The pre-
dictive capability of this model in OV requires further 
testing to improve prognostic stratification and treatment 
management.
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