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There has been increasing interest in the role of T cells and their involvement in cancer, autoimmune and
infectious diseases. However, the nature of T cell receptor (TCR) epitope recognition at a repertoire level
is not yet fully understood. Due to technological advances a plethora of TCR sequences from a variety of
disease and treatment settings has become readily available. Current efforts in TCR specificity analysis
focus on identifying characteristics in immune repertoires which can explain or predict disease outcome
or progression, or can be used to monitor the efficacy of disease therapy. In this context, clustering of
TCRs by sequence to reflect biological similarity, and especially to reflect antigen specificity have become
of paramount importance. We review the main TCR sequence clustering methods and the different sim-
ilarity measures they use, and discuss their performance and possible improvement. We aim to provide
guidance for non-specialists who wish to use TCR repertoire sequencing for disease tracking, patient
stratification or therapy prediction, and to provide a starting point for those aiming to develop novel
techniques for TCR annotation through clustering.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Understanding T cell biology has long been essential to the
study of infectious and autoimmune diseases. More recently, as
immunotherapy has joined the traditional pillars of surgery,
chemotherapy and radiation, it has also become more and more
central to cancer biology.

The advent of high throughput sequencing has opened a new
window on to the T cell receptor (TCR) repertoire. While there is
much scope for improvement in TCR repertoire sequencing, these
experiments are becoming increasingly routine. Two technological
developments can be highlighted. First, the commercial availability
of repertoire sequencing as a service and in the form of kits.
Second, the availability of single cell sequencing. This allows the
linking of the a and b (or c and d) chains of the TCR, while linking
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this TCR sequence to a phenotype such as memory or regulatory
cell through single cell RNA-seq. Finally, the development of
unique molecular identifiers allows for quantitation from sequenc-
ing data unbiased by PCR amplifications steps [1]. Because these
technologies are nowwell established, T cells have been sequenced
in a plethora of therapeutic and disease settings, as well as healthy
control groups, and the data has been deposited on online data-
bases such as the Sequence Read Archive (SRA) [2], VDJdb [3],
TCR3d [4] and ImmuneACCESS database [5]. Most sequencing data
available are still bulk unpaired a and b TCR sequences, due to the
lower throughput and much higher cost of single-cell sequencing
platforms.

However, the outstanding question in TCR repertoire analysis
remains understanding the relationship between TCR sequence
and TCR binding specificity. Sequence data itself contains no direct
information on epitope specificity involved. While this may con-
tribute towards models of sequence-binding specificity it will
require more focused data sets to make substantial progress. In sil-
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Fig. 2. 3Dmodel of TCR-pMHC complex rendered via PyMOL [28],PDB reference code: 2BNR. MHC (blue) presenting peptide epitope (orange) comes into contact with the TCR
(a chain light gray, b chain dark gray). Complementarity determining regions CDR1 (yellow), CDR2 (green) and CDR3 (red) come into contact with the pMHC. CDR3 comes into
most contact with the presented peptide, while CDR1 and CDR2 on both chains mostly interact with the MHC. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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regions (CDRs) on each of the a and b chains [8]. TCR-pMHC com-
plexes adopt diverse conformations, but in the majority of cases it
is the loops formed by the CDRs which come into most direct con-
tact with the peptide-MHC complex (pMHC), as shown in Fig. 2. In
particular the CDRb3 loop, which is also the most diverse in
sequence in the TCR, usually accounts for the largest part of con-
tacts with the epitope.

The process of V(D) J recombination has the potential to gener-
ate an indefinite number of distinct TCRs. It is estimated that up to
1020 distinct TCRs can be generated with biologically significant
probability [11,12]. The human body contains on the order of
1011 T cells [13], and little overlap is generally observed between
the repertoires in different individuals. It is therefore likely that
each individual will respond with a unique set of TCRs to each epi-
tope. A second important consequence of this extraordinary
amount of sequence diversity is that many different sequences
must code for TCRs which recognise the same epitope. Otherwise,
many individuals would end up with no TCR for many antigens. In
fact experimental measurements suggest that hundreds, or thou-
sands of TCRs in each individual react with each peptide MHC com-
plex [3].

On the other hand, there are several orders of magnitude more
possible epitopes than T cells in an adult human [14]. Conse-
quently, to provide protection against a broad spectrum of patho-
gens, the limited number of T cells within an individual must react
with broad specificity towards foreign antigens, ignoring self, but
simultaneously exhibiting cross-reactivity. In other words, many
different TCRs must recognise the same peptide, but each TCRmust
recognise many peptides. This biological balancing act has made it
difficult to understand which TCRs are responsible for an antigen
response.

The most direct and detailed method for studying TCR-pMHC
binding is X-ray crystallography. The progress in the field has pro-
vided very precise knowledge of some TCR-pMHC binding sites.
The number of TCR-pMHC structures which have been solved is
still limited (less than 100 unique currently available) [15,16].
One approach to extend this data set is to use structural predic-
tions, based on sequence. Despite the difficulties of modelling flex-
ible loops, such as the CDR regions of the TCR, several tools have
been explored, and the field is an active area of research. Models
predicting TCR-pMHC binding based on their structure have
already been investigated [15,17–20].

A number of other techniques probe the nature and quality of
the T cell receptor interaction with pMHC. The ELISPOT assay
[21] is one of the simplest methods for such an analysis, and has
been widely used in assessing the quality of T cell responses. The
surface of wells in a well-plate is coated with antibodies designed
to capture cytokines secreted upon T cell activation. T cells are
added to each of the wells, and upon addition of the antigen the
number of activated T cells in each well and the magnitude of their
response can be measured by the amount of bound cytokines sur-
rounding each cell [22]. This analysis provides information on both
the clonal size and the effector function of activated T cells. Despite
the simplicity of the method, its major drawback is that no infor-
mation is obtained on the TCR sequences of the T cells involved.
Furthermore, the number of antigens tested in a single experiment
is limited.

The key invention for sequencing of antigen-specific TCR sub-
sets is labelled multimer technologies [23–25]. These allow for
in vitro specificity testing and sorting of antigen specific T cells
by binding to synthetic conjugates of peptide MHC (pMHC) mole-
cules. The same restriction applies as with ELISPOT, in that there is
a limited number of peptides that can be tested in this manner.
However, unlike ELISPOT these T cells can be separated subse-
quently and sequenced to reveal information on nature of TCRs
involved in a response to a single epitope. As the method is fully
compatible with sequencing, it provides an unprecedented view
into TCR-antigen specificity, by allowing simultaneous collection
of information about both the epitope and TCR.

These experimental techniques provide abundant complemen-
tary data on TCR-epitope binding. Ideally, to make sense of this
plenitude of sequence data one would like to be able to read out
which epitope specificities are present in a sample, or in a more
restricted way to test for reaction against specific epitopes, using
sequence data alone. However, inferring this from primary
sequence information is a challenging task as it involves prediction
of protein-protein binding without knowledge of exact structures
of proteins involved. Still, both TCRs and pMHCs have some defined
structure with known variable regions and restricted number of
binding conformations. As tertiary and quaternary structure of
functional proteins is dependent on their primary sequence, it is
reasonable to believe that protein-protein interactions could be
inferred from the sequence information alone. Structure prediction
of pMHC is relatively straight-forward, unlike the prediction of TCR
structure which becomes quite the ordeal due to the high variabil-
ity of the CDRs. Current TCR structure prediction tools such as
LYRA [26] and TCRmodel [4] are able to predict TCR structure with
a striking reported accuracy for a protein with such a high degree



Fig. 3. Graphical representation of attempts to encompass structural and sequence similarity in a suitable clustering distance metric that aims to capture epitope specificity.
Binding of six fictional TCRs to three fictional epitopes is depicted on the upper left side. The TCRs are shown in shades of green, purple and red, while epitopes are coloured in
green, orange and light purple. If primary sequences of the TCRs are known, sequence comparison can be used to create a distance matrix TCR distance matrix. The matrix
could then be used to cluster individual TCRs together based on their sequence similarity, with the goal of clustering by biological similarity i.e. epitope response. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of variability, with benchmarked average RMSD accuracy of 1.48 Å
reported for LYRA. Even though these predictions have not yet
reached the accuracy of the related protein family of antibodies,
the models are quite useful as they convey information about the
true protein structure.

The main challenge is constructing a TCR comparison strategy
that will somehow reflect the epitope specificites of TCRs involved,
as illustrated in Fig. 3. Understanding the complex mechanisms of
TCR antigen reactivity and expansion, could lead to correct patient
stratification, track response to disease, help guide immunother-
apy and further the development of precision medicine. Further,
understanding the binding determinants might allow design of
TCRs (or vaccines). Currently there are a number of approaches
that aim to cluster TCRs by extrapolating information from their
primary sequences to study their specificites.

In the remaining part of this review, we discuss the latest dis-
coveries in the field of TCR specificity and repertoire analysis. We
aim to provide a complete overview of all TCR clustering methods
and repertoire analysis, their advantages and pitfalls,in hopes of
facilitating the choice of data analysis choice for experimentalists
and bioinformaticians alike. We aim to showcase all current TCR
grouping strategies and their ability to translate into biological
similarity or classification of repertoires. It is also our hope that
outlining current state-of-the art will facilitate further develop-
ment of improved TCR clustering techniques.
2. Sequencing based approaches

The largest experiments aimed at linking antigen to TCR
sequence using multimer technology are now reaching trillions
of TCRs [29]. The collaborative approach between Microsoft
Healthcare NExT initiative and Adaptive Biotechnologies aims to
provide a comprehensive mapping of T cell receptors and their
antigen targets covering a multitude of diseases. They aim to
unearth biologically and clinically relevant antigens across dis-
eases that can be used for diagnostic purposes from a single blood
test. The proof-of-concept study by Emerson et al. [30], outlined
initial steps in an diagnostic classification of Cytomegalovirus
(CMV) positive and negative individuals by TCR repertoire analysis.
A Bayes probabilistic model, based on presence/absence of specific
TCRs in 352 CMV negative and 289 CMV negative individuals was
used to predict a binary classifier, CMV serostatus. The feature
selection and model parameter selection was initially done using
cross-validation to provide training and testing sets. The model
was also tested on an external validation set of 120 subjects. The
authors report excellent classification performance with an AUC
of at least 0.93, based on a small (less than 200) set of TCRs
over-represented in the CMV+ cohort. This study suggests the
potential of TCR sequencing data in disease diagnostics, tracking
and treatment in the future. However, it also suggests that very
large sequence data sets will be required to provide sufficient
power if presence/absence of specific sequences is used, without
any attempt to cluster TCR sequences with similar epitope
recognition.
2.1. Sequence alignment and clustering approaches

Algorithms which cluster TCRs (or often only CDR3 sequences)
exploit similarity measures between TCRs with the aim to identify
antigen specificity. In other words, members of a TCR sequence
cluster should all recognise the same pMHC. Broadly, the
approaches can be divided into those that use global similarities
across the whole TCR or CDR3, and local similarities which focus
on small amino acid motifs. A common approach of assessing glo-
bal protein similarity is by sequence alignment and scoring using
pre-calculated position specific scoring matrices, such as the
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BLOSUM [31] and PAM [32] family of matrices. There exist several
alignment algorithms [33–35] which use a gap introducing penalty
and a substitution matrix to align two sequences by their most
similar or identical stretches. An important difficulty in alignment
of TCRs with known specificities is that TCRs are cross-reactive and
may bind multiple very different epitopes. Conversely, a single epi-
tope may be bound by very different TCRs. Moreover, substitution
matrices such as BLOSUM and PAM have been derived from studies
of evolutionary related proteins. In this case, rather than serving as
a measure for evolutionary relatedness of TCRs responding to the
same epitope, such matrices provide a useful starting point as a
proxy for physico-chemical similarity.

An example of sequence alignment approaches employed in
TCR repertoire analysis is the ImmunoMap algorithm [36] (code
available at: github.com/sidhomj/ImmunoMap). Sidhom et al.
evaluate the CD8+ T cell response, from naïve and tumour bearing
B6 mice, in vitro which bind either self tumor-associated antigen
(Kb-TRP2) or a foreign tumor-associeted (Kb-SIY) antigen tetramer
nanoparticle artificial antigen presenting cells (nanoAPCs). After b
chain sequencing, they create a distance matrix between CDR3
regions using a PAM10 scoring matrix and a large gap penalty
and further perform hierarchical clustering on the basis of this dis-
tance matrix. The novelty of their clustering approach comes from
the visualisation of the dendogram, where the authors add intu-
itive endings to the branches corresponding to clone sizes. This
approach revealed that in the naïve mice response to the self anti-
gen, the expanded T cells in the repertoire were more unrelated
and higher frequency than the T cells against the foreign antigen.
In tumour bearing mice, the situation altered slightly in the self
response with an observed elevated number of high frequency
clones as well as usage of distantly related sequences. Following
murine sequence analysis, the method was tested in 34 metastatic
melanoma patients undergoing a-PD1 immunotherapy (Nivolu-
mab), from whom Tumour Infiltrating Lymphocytes (TILs) were
extracted and sequenced. Repertoires were compared prior- and
post-therapy, and the authors report observing distinct features
on the ImmunoMap dendogram between responders and non-
responders, such as the number of high frequency clones and
CDR3 relatedness. This was further corroborated by the dominant
motif analysis from the expanded ImmunoMap detected clones,
which showed some classification power. Although this analysis
doesn’t seek to assign TCRs to particular epitopes, it conveys a
notion of the importance of CDR3 similarity clustering. It also high-
lights the complexity of response towards even just a single epi-
tope, as assessed by binding to multimer nanoAPC. This graphical
approach proves very useful in displaying properties of repertoires
with a single specificity; however, it fails to scale up and give an
easily readable representation of repertoires at large.

A more focused effort in TCR clustering reflecting epitope speci-
ficity comes in the form of TCRdist by Dash et al. [37] (code avail-
able at: github.com/phbradley/tcr-dist). The authors used tetramer
staining and single cell sequencing to obtain 4635 paired a and b
TCR sequences from 10 different epitope specific repertoires. They
analysed data from 78 mice and humans specific for murine and
human cytomegalovirus (CMV), influenza and Epstein-Barr virus
antigen epitopes. In order to analyse the data they constructed
TCRdist, a distance metric based on both the a and b chain of the
receptor. It is a similarity weighted mismatch distance using align-
ment with BLOSUM62 [31] substitution matrix to calculate simi-
larity between CDR regions. Gap penalties are low for the CDR1
and 2 regions, but increase for the CDR3, stemming from the need
to conserve short length motifs in the CDR3 regions which might
be responsible for binding. Finally a distance between two TCRs
is calculated by summing over scores for each CDR region on both
chains, as well as an additional variable loop they term CDR2.5. The
CDR3 loop scores on both chains is upweighted in the sum, since it
is believed to contain most of the information about epitope bind-
ing. Using this TCR distance they proceed to cluster TCRs within
each epitope-specific repertoire as well as assign TCR sequences
from influenza-infected lungs without prior knowledge of their tet-
ramer specificity using nearest-neighbour-distance classifiers.
They managed to correctly assign 81% human and 78% murine
sequences to their epitope specific repertoire. To the best of our
knowledge this is the first specialised single cell TCR similarity
measure which use combined a and b chains. However, one limita-
tion of the clustering evaluation is that the metric has not been
evaluated on complex repertoires originating from responses from
multiple epitopes.

Another metric, CDRdist, developed by Thakkar et al. [38],
takes solely CDR3 sequences into account (code available at:
https://github.com/neerjathakkar/Distinguishing-TCR-Groups). The
authors evaluate performance and separately apply their metric
on CDRa3 and CDRb3 sequences. To evaluate sequence similarity
CDRdist uses local alignment and a substantial gap penalty with
BLOSUM45 [31] substitution matrix, usually used for more dis-
tantly related alignments than with the higher order BLOSUM
matrices. Using this combination of parameters they allow for lar-
ger physico-chemical diversity, therefore generating longer match-
ing substrings in the alignments. The authors proceeded to analyse
data from monozygotic twins previously published by Zvyagin
et al. [39]. The original analysis showed that the number of identi-
cal CDR3s shared between twins was significantly increased com-
pared to non-twin individuals. Thakkar et al. broadened the
hypothesis from considering identical sequences, to considering
similar sequences, and in fact exclude identical CDR3 sequences
from consideration. Applying CDRdist to each CDR3 in the reper-
toires, they evaluated whether the nearest CDR3 neighbour came
from a twin, or another individual. As the number or nearest neigh-
bours coming from twins outweighed those coming from other
individuals, they reach the conclusion that twins have more shared
similar sequences than non-twins. This finding is perhaps not
unexpected, but it strengthened the belief that the CDRdist con-
veys biological meaning, before proceeding to the more difficult
task of epitope classification. Following the approach of Dash
et al. [37], they try to assign CDR3 sequences to their respective
antigen specificity groups from the same epitope-specific reper-
toires used in Dash et al. by using the nearest neighbour distance
classifier. The authors report comparable performance to TCRdist
using only CDRb3 sequences, although they are not able to achieve
the same result on CDRa3s. They achieve similar performance on
the epitope-specific repertoires used for creating and evaluating
the GLIPH algorithm [40] which is discussed at length further on.
The authors also proceed to classify TCRs by which pathology they
come from using data from McPAS-TCR catalogues [41]. They per-
form reasonably well on classification of infectious diseases (in-
fluenza, HIV, yellow fever and hepatitis C), but are not able to
classify on cancers, autoimmune diseases and diabetes. Following
closely the evaluation techniques of Dash et al. the authors do
not evaluate their metrics classification power on a mixed epitope
repertoire.

3. Analysis of characteristic short TCR motifs

The identification of short motifs within TCR sequences pro-
vides an alternative to the heavily parametrized sequence align-
ment and scoring approaches presented above. This approach is
rooted in the hot spot interaction hypothesis, which states that
only short stretches of complementary amino acid residues are
responsible for epitope binding affinity [42–44]. Using short
stretches of amino acids of length k (k-mers) in order to evaluate
TCR receptor similarity could reduce informational noise, as
opposed to comparing entire sequences. By focusing on short
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motifs, the problem of gaped alignment in TCRs of different lengths
is also circumvented. By using k-mers in various forms, researches
are able to pinpoint dominant motifs driving TCR-epitope speci-
ficity rather than individual expanded clones. One such approach
is employed in the work of Thomas et al. [45] (code available as
part of the Supplementary information of the same publication).
In the study murine CD4+ T cells were bulk sequenced at different
time points following immunisation with killed Mycobacterium
tuberculosis. Every CDRb3 sequence was encoded as the list of all
present triplets (k-mers of length 3). Instead of assessing triplet
similarity using substitution matrices, the authors encode each tri-
plet as a set of Atchley factors [46], corresponding to a set of
physico-chemical properties. The authors then generate a triplet
codebook, i.e. a reduced set of representative triplets to describe
the complete pooled dataset. This is done by pooling and subsam-
pling triplets from all samples, and grouping them by kmeans clus-
tering. From each of the resulting clusters of similar triplets, a
single representative triplet is selected in order to create the final
triplet codebook. Each murine repertoire is then represented as a
distribution of triplets in the codebook, by assigning each reper-
toire triplet vector to the most similar triplet in the codebook.
Finally the repertoire representation is converted into a feature
vector, used for classification using hierarchical clustering and
Support Vector Machine (SVM) analysis [47]. Both techniques
could classify immunised and non-immunised mice, but reper-
toires taken at different time points from immunised mice were
not distinguishable. Although this study does not concern TCR-
epitope classification, it highlights the importance of conserved
characteristic motifs in assessing epitope responses. The authors
note that their results reinforce imporance of diversity of the TCR
repertoire, seeing as many private TCRs contribute to the T cell
response to the same antigen in genetically identical mice. A sub-
sequent study combined both global similarity metrics, and local
amino acid motifs by Glanville et al. [40] This study evaluated pub-
licly available CDR3s with known specificities, as well as their own
pMHC tetramer sorted human CD4+ and CD8+ data (code available
at: https://github.com/immunoengineer/gliph). They trained the
GLIPH (Grouping of Lymphocyte Interactions by Paratope Hot-
spots) algorithm to search for enriched conserved TCR motifs of
length 2, 3 and 4 within TCR multimer repertoires in the CDRb3
region. The distance metric then combines global and local TCR
sequence similarity (CDR3s differing up to 1 amino acid and shared
enrichment of motifs, respectively), V gene usage, CDR3 length
bias, structural peptide antigen contact propensity and other fea-
tures, with variable weightings for the different methods. GLIPH
was evaluated on a mixture of 8 specificities, where it grouped
94% of the clustered TCRs together with others of same specificity.
Another evaluation was performed on CD4+ Mycobacterium Tuber-
culosis specific T cells from 22 patients with latent M. tuberculosis
infection. Clusters with TCRs shared between 3 individuals or more
were examined, and found that 16 specificity groups that were
shared between at least 3 individuals included at least 4 uniquely
derived bTCR clones. This showed that enrichment of motifs can
organise TCRs within or across individuals. Most importantly, the
authors state that GLIPH can be used independently of knowing
epitope specificity to elucidate novel clusters within repertoires
it has not been exposed to previously. Even though GLIPH was val-
idated across patients, it is yet unclear whether or not it will be
able to cluster TCRs based on their epitope preference in a mixed
epitope repertoire with unknown specificities.

4. Summary and outlook

In order to evaluate the performance of the sequence based
methods we performed a preliminary comparison using data
obtained from VDJdb database taking all human bTCRs paired with
their epitope specificities with a VDJdb confidence score above 1.
This dataset was split into training and testing datasets based on
epitope similarity, so that there are no shared epitopes between
the two. The testing set finally consisted of 830 TCRs with known
specificity towards one of 28 epitopes. We assessed each method
as binary classifiers, based on their ability to cluster together TCRs
with identical specificity, and measured their accuracy in terms of
Area Under the Roc curve (AUC) [48]. The AUC is 1 for a perfect pre-
diction, and 0.5 for a random prediction. TCRdist was not evaluated
as it is calculated considering paired a and b TCR chains simultane-
ously. Immunomap and CDRdist performed comparably, with an
AUC of 0.6449 and 0.6502, respectively. However, when we per-
formed an agglomerative (‘‘bottom-up”) hierarchical clustering
[49] approach the methods did not reveal any epitope specific clus-
ters. These results are not surprising since both of these methods
are based on sequence alignment and scoring techniques on the
CDRb3 region, which is both variable in length and sequence. As
mentioned in the introduction, TCRs with very different sequences
can bind to the same epitope, and both methods fail at identifying
such cases and at forming epitope-specific clusters.

TCRdist contains also information on the CDR1 and CDR2, which
come into close contact with the MHC complex. As MHCs also exhi-
bit preference in epitope presentation [50,51], this provides addi-
tional information with respect to methods focused solely on the
CDR3 region. Furthermore, TCRdist combines both the alpha and
beta chain regions in its analysis, possibly increasing the sensitivity
of the method, as both chains are involved in pMHC recognition.
On the other hand, this comes at an additional cost, since paired
sequencing is still less abundant than bulk sequencing data. Never-
theless, all sequence alignment techniques carry an inherent fault
since they can introduce gaps in the sequences at different posi-
tions, rather than focusing on structurally conserved regions in
the CDRs that mediate epitope recognition.

The short motif search method has shown remarkable power
considering that it does not include entire TCR sequences in the
comparison. The short motifs considered are expected to convey
a notion of conserved stretches of amino acid sequence coming
into contact with the epitope. Which is precisely what the align-
ment methods are struggling to capture. A difficulty arising in this
analysis is that choice of motif length is quite arbitrary. Further-
more, both reviewed analysis focus solely on the CDRb3 region.
Even though GLIPH uses scoring matrices to evaluate similarity
of the motifs found in CDR3s, when evaluated on a mixture of eight
CDR3 specificities it is not able to cluster all TCRs. Out of the TCRs
that were clustered GLIPH is able to group them according to their
epitope cluster with 94% accuracy. This remarkable results possibly
stems from the fact that epitopes can be evolutionary related, and
therefore the short motifs specific to them can in theory reflect this
evolutionary similarity. Furthermore, the GLIPH algorithm takes in
simultaneously both local motif and global similarity of TCRs cap-
turing more complex characteristics of TCRs. GLIPH is yet to be
evaluated on it’s predicting power on clustering all the TCRs in
the mixture of TCRs with known specificites.

Currently no single tool exists for unequivocal classification of
TCR receptor specificity. This is due to two major biological fea-
tures of the data. Firstly, TCRs are cross-reactive and able to bind
multiple antigens with varying affinities. Furthermore, TCR binding
is not sufficient to elicit T cell activation. A complex interplay
between binding affinity and stability, co-stimulatory signals,
and TCR abundancy regulates T cell activation [52]. This underlines
the complexity of a T cell antigen response, meaning that cluster-
ing to predict epitope specificity might not necessarily show the
true state of epitope reactivity. This potentially hampers the
intended use of these methods in disease outcome predictions.

Secondly, TCR data, especially CDR3 regions, carry innate
redundancy as the termini of CDR3s across individuals share high

https://github.com/immunoengineer/gliph
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sequence similarity, that leaves a short stretch of CDR3 sequence
responsible for such a high variability in epitope binding. This sim-
ilarity comes from V and J genes shared across TCRs and the nature
of V(D) J recombination which introduces most sequence variabil-
ity in the junctions between the individual genes. Upon training a
classification method or constructing a similarity metric with the
aim of elucidating epitope specificity, much of the dataset will
share high similarity with the testing set. Therefore the perfor-
mance of these methods might plummet dramatically in real-life
applications. One possible way to overcome this is by obtaining
larger quantities of data than available at present. Higher through-
put of technologies which pair TCRs with epitopes, such as multi-
mer technologies, might provide the data necessary to train the
more complex machine learning algorithms such as neural net-
works, to achieve better performance.

Additionally, TCR epitope recognition in reality occurs in three-
dimensional space, therefore understanding the complex TCR-
pMHC interaction from primary sequence alone is challenging.
The importance of including 3D structural information in models
for TCR target prediction has already been recognised [53]. There-
fore including TCR structural information into clustering
approaches might greatly improve prediction of epitope
specificities.

Overall, the rise of availability of bulk and paired ab TCR
sequencing data offers the opportunity to improve the methods
to cluster TCRs and predict their epitope specificities. As TCR data
becomes more abundant, the need for higher computing power
will rise too. Currently, methods are usually limited to assessing
samples of up to 100,000 unique TCR sequences at a time, with
subsampling techniques readily employed to increase the analysis
speed. When we reach the aspired goal for the amount of TCR epi-
tope annotated data, the machines currently available to most
researchers will not carry sufficient computational power to per-
form such tasks. However, technological advances will ensue,
which will allow even more computing power to be readily avail-
able to a wide population of scientists and empower researchers
for even larger scale data analysis.
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