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Abstract

The complete mitochondrial genome of Episymploce splendens, 15,802 bp in length, was

determined and annotated in this study. The mito-genome included 13 PCGs, 20 tRNAs

and 2 rRNAs. Unlike most typical mito-genomes with conservative gene arrangement and

exceptional economic organization, E. splendens mito-genome has two tRNAs (tRNA-Gln

and tRNA-Met) absence and a long intergenic spacer sequence (93 bp) between tRNA-Val

and srRNA, showing the diversified features of insect mito-genomes. This is the first report

of the tRNAs deletion in blattarian mito-genomes and we supported the duplication/random

loss model as the origin mechanism of the long intergenic spacer. Two Numts, Numt-1 (557

bp) and Numt-2 (975 bp) transferred to the nucleus at about 14.15 Ma to 22.34 Ma, and

19.19 Ma to 24.06 Ma respectively, were found in E. splendens. They can be used as molec-

ular fossils in insect phylogenetic relationship inference. Our study provided useful data for

further studies on the evolution of insect mito-genome.

Introduction

The mitochondrial genome has the characteristics of maternal inheritance, rare genetic recom-

bination, faster evolution and conservative gene arrangement [1]. The mito-genome com-

monly displays exceptional economy of organization, with overlapping genes or small

intergenic spacers [2]. A typical insect mito-genome, with a compact circular molecule, gener-

ally encodes a fixed set of 37 genes including 13 protein-coding genes (PCGs), 22 transfer

RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a control region [3]. However,

exceptions have been reported, such as long gene intergenic spacer [4–6], gene rearrangement

and gene loss [7, 8]. So far, mitochondrial gene rearrangement has been reported in about 17

orders of insects, and these genes include protein coding gene, rRNA gene and tRNA gene [8].

In addition tRNAs, the missing protein coding genes have also been reported in Mantodea,
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Phthiraptera, and Psocoptera [9–13]. The changes of tRNAs are most various in no-typical

insect mito-genomes, including tRNA translocation, tRNA loss, tRNA tandem duplication

and tRNA conversion [4, 9–10, 14, 15]. Phthiraptera and Psocoptera insect mito-genomes may

be most multipartite and most fast in evolution, that they could fission into fragmented mito-

genomes and have numerous pseudo-genes and diverse gene rearrangements [7–10]. Thus,

insect mitochondrial genomes are good models for researching mitochondrial genome

evolution.

There are of 4,600 species of cockroaches [16] and 300 mitochondrial genomes of them

have been sequenced and uploaded to the NCBI database. The blattarian mito-genomes seem

to be conserved in evolution [16, 17]. The gene rearrangement was only reported in Cryptocer-

cidae within blattarian mito-genomes [4]. Episymploce splendens belongs to Ectobiidae. Previ-

ous studies have mainly focused on the morphological features of Episymploce rather than

molecular data [18, 19]. At present, no complete mitochondrial sequences of Episymploce have

been recorded in the NCBI database. To obtain the sequence information and organization

features of mito-genomes in Episymploce, we sequenced, annotated and described the com-

plete mito-genome of E. splendens. Two tRNAs loss and a long intergenic region was found in

E. splendens mito-genome and two pseudo-genes were also identified in the study. This study

could deepen our understanding of mitochondrial genome of insects and contribute to the

study of insect mito-genome evolution.

Materials and methods

Sample and DNA extraction

The cockroaches used in this study were collected on Mount Emei, Sichuan Province, China.

The fresh material was placed in absolute ethanol and stored at -20˚C. Total genomic DNA

was extracted from the muscle tissue (legs) using TIANamp Genomic DNA kit (TIANGEN,

Beijing, China). The concentration and purity of total DNA were detected by spectrophotome-

ter. In addition, DNA was detected by agarose gel electrophoresis, and 1% agarose gel electro-

phoresis judged whether DNA was successfully extracted or not. Finally, DNA was stored at

-20˚C.

PCR amplification and sequencing

Primers were designed based on the conserved sequences of Blattella germanica and Blattella
bisignata, and then specific primers were designed based on the amplified and sequenced

sequences at both ends [20, 21]. The software Primer Premier 5.0 was used to designed primers

and the primer details are listed in Table 1. Primers Es3, Es9 and Es10 were obtained from

Xiao et al [10]. PCR was conducted using 2×Taq PCR Mix (Innovagene, Chengdu, China) and

performed on a PTC-100 thermal cycler (BioRad, Hercules, CA) with the following cycling

conditions: an initial denaturation for 5 min at 94˚C, followed by 35 cycles of denaturation for

30s at 94˚C, annealing for 30s at 50–62˚C (depending on primer combinations), elongation

for 1–4 min (depending on putative length of the fragments) at 72˚C, and a final extension

step of 72˚C for 10 min. PCR products were estimated by 1.0% agarose gel electrophoresis and

sent to Tsingke Biotechnology Company (Chengdu, China) for sequencing. All fragments

were bidirectional sequences, and the unsuccessful sequenced fragments were redesigned with

primers and sequenced again to complete the sequence.

The sequences which were transferred to nuclear DNA from mitochondrial genome were

named Numts [22]. Primers that amplified mitochondrial genes may occasionally amplify

Numts [23]. In this study, agarose gel electrophoresis of the amplification product (the primer

Numt-1-1 and Numt-2-1, Table 1) appeared as two bands. We then redesigned primers

PLOS ONE Complete mitochondrial genome of Episymploce splendens (Blattodea: Ectobiidae)

PLOS ONE | https://doi.org/10.1371/journal.pone.0268064 June 2, 2022 2 / 15

OK094023 (https://www.ncbi.nlm.nih.gov/search/

all/?term=OK094023).

Funding: This study was funded by the Special

funds for central government to guide local

scientific and Technological Development

(2020ZYD098) and National Natural Science

Foundation of China (U21A20409).The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0268064
https://www.ncbi.nlm.nih.gov/search/all/?term=OK094023
https://www.ncbi.nlm.nih.gov/search/all/?term=OK094023


(Numt-1-2 and Numt-2-2, Table 1) to amplify these regions and obtained the same result.

These non-targeted bands were purified and sequenced, and obtained sequences belonging to

mitochondria via the analysis of NCBI blast. Due to differences in mutation rates or freedom

from selection pressure, they had some degree of base differences compared to corresponding

mito-genome sequences.

Sequence analysis and annotation

DNA SeqMan program, which is included in the Lasergene software package (DNAStar Inc.

Madison Wis), was used to assemble sequences to obtain the complete mitochondrial genome.

PCGs and rRNAs were identified by comparing E. splendens to B. germanica and B. bisignata
[20, 21]. Most of the tRNA and their secondary structure inferences were conducted using the

online server ARWEN (http://mbio-serv2.mbioekol.lu.se/ARWEN/) [24]. The tRNA-Ile,

tRNA-Phe and tRNA-Leu were not identified by ARWEN; they were manually checked by

referring to secondary structural models of other blattaria insects. The mitogenomic map was

depicted with SeqBuilder (http://www.dnastar.com). The A+T content of the nucleotide

sequence and relative synonymous codon usage (RSCU) were calculated using MEGA 5.2

[25]. The AT skewness was calculated according to the following formula: AT skew = [A-T]/

[A+T], and the GC skewness was calculated according to the following formula: GC skew =

[G-C]/[G+C] [26].

Divergence dating analysis

There were two Numts found in E. splendens, namely Numt-1 and Numt-2. Through sequence

alignment by MEGA 5.2, Numt-1 corresponded to partial lrRNA, and Numt-2 was similar to

partial lrRNA and its neighboring tRNA-Val of the E. splendens mito-genome. We performed

divergence date analyses based on the aligned sequences of Blattodea, two mantises and two

outgroups (S1 Table). The molecular clock was calibrated using three minimum age con-

straints based on cockroach fossils, as shown in Table 2. A relaxed molecular-clock model was

used for this study with the program BEAST 1.6.1 [27]. Rate variation was modeled among

branches using uncorrelated lognormal relaxed clocks [27]. A Yule speciation process was

used for the tree prior and posterior distributions of parameters, including the tree, were

Table 1. Primers for the PCR amplifications of Episymploce splendens (Es) mito-genome and Numts.

Primer name Upstream primers sequences(5’-3’) Downstream primers sequences(5’-3’) Anneal temperature (˚C) Extension time (Second)

Es1 140-CCTCTCTTATCGCAATGTCCA 1609-CGTGGGAAAGCTATATCAGGA 58 90

Es2 1367-GGTCAACAAATCATAAAGATATTGG 2074-TAAACTTCAGGGTGACCAAAAAATCA 55 45

Es3 1559-CAACATTTATTTTGATTCTTTGG 3649-GTTTAAGAGACCACCACTTG 50 90

Es4 3401-GAAGACTTTCACCAACCATC 4391-TAGTACACTCATCTACTCTGGTAAC 52 60

Es5 4031-TGTAACAGCCCATGCTT 5797-AATCGCAATGATGGTAGG 51 110

Es6 4945-AGAAGACTTTCACCAACCAT 6997-GGATTCTCAAGATATTCGTT 51 120

Es7 6378-TCAACCGTTATCGAAAGACT 7328-CTCCTACTCCTGTATCTGCTT 52 60

Es8 7010-AACGAATATCCTGAGAATCC 8415-CACGGATTATGTTCTTCAGG 52 90

Es9 8290-GAAGGGGGTGCTGCTATATTAC 11151-ATTACTCCTCCTAATTTATTAGGAAT 62 180

Es10 10491-CAATGAGTATGAGGAGGATTTGCTGT 14755-TGTGCCAGCAGTCGCGGTTATACA 59.5 240

Es11 13822-CAGATTATATTGATTCGCACAAC 303-ATAGAACTGATGAAGCTAAGGC 55 75

Numt-1-1 GATTACGCTGTTATCCCTAAG GGTGTAACTAGAATGATACAGGT 51 65

Numt-1-2 CGGTTTGAACTCAGATCATGTAAG GAAGGTGTAACTAGAATGATACAGGT 57 78

Numt-2-1 TGCTACCTTTGCACGGTC AGGTGAGATAAGTCGTAACATAGT 53 54

Numt-2-2 TAAACTCTATAGGGTCTTCTCG CTAGAATGATACAGGTTAGGCT 53 70

https://doi.org/10.1371/journal.pone.0268064.t001
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estimated using MCMC sampling [28]. Two independent runs (each with 4 chains) of 100 mil-

lion generations were sampled every 5000 generations based on the GTR model. The tree

topology was then estimated using the combined sample from the last 50 million generations

of each run.

Results

Genome content and organization

The mitochondrial genome of E. splendens was 15,802 bp in length with typical circular mole-

cules. It contained 35 mitochondrial genes: 13 PCGs, 2 rRNAs (srRNA and lrRNA), 20 tRNAs

and the A+T rich region (Fig 1, Table 3). Putative secondary structures of the 20 tRNAs were

shown in S1 Fig. Similar to most species’ mitochondria, the coding genes of E. splendensmito-

genome are compact, with several genes overlapping. There were five overlaps totaling 21 bp

with the two longest overlaps being 7 bp between ATP8 and ATP6, and 7 bp between NAD4
and NAD4L. There were 15 gene spacers totaling 190 bp within the entire mitochondrial

genome. The longest spacer was 93 bp between tRNA-Val and srRNA, followed by 24 bp

between tRNA-Ile and NAD2 and 22 bp between NAD1 and tRNA-Leu. The longest spacer

had a similarity of 64.6% compared to its adjacent and corresponding srRNA (S2 Fig). There

were 16 areas with neither gene overlap nor intergenic spacer. Additionally, there were 20

tRNAs in the mitochondrial genome of E. splendens, lacking two tRNAs usually located

between tRNA-Ile and NAD2, tRNA-Gln and tRNA-Met (Fig 1).

Nucleotide composition and codon usage

We calculated the nucleotide composition of the mtDNA in E. splendens using MEGA5.2,

refer to S2 Table for detailed results. The content of A+T (74.6%) was higher than G+C (25.

4%). It corresponded well to the AT bias generally observed in insect mito-genomes, which

ranges from 69.5 to 84.9% [32, 33].

The high A+T content and nucleotide skewness of the mitochondrial genome were also

reflected in the codon use of protein-coding genes. According to the relative synonymous

codon usage (RSCU) value (S3 Table, Fig 2), the occurrence of synonymous codons ending in

A or T was much higher than other synonymous codons, and they accounted for 89.7%

(3,330) of the total codons. The third position was A or T for all codons with RSCU values

greater than 1. The six most frequently used codons were also composed of A and T, namely

TTT, TTA, ATT, ATA, TAT and AAT, accounting for 40.7% of the total number of codons.

Protein-coding genes

All PCGs of E. splendens used ATN as the start codon, except for COX1. The COX1 gene in the

E. splendens mito-genome used TTG as the starting codon, in agreement with other known

cockroaches [5]. The stop codon was most commonly TAA in the E. splendens mito-genome,

followed by TAG (NAD1). Four protein coding genes: NAD4, NAD6, ATP6, and NAD3, used

incomplete TA as the stop codon.

Table 2. Fossils used for estimation of divergence time of Numts in the analysis.

species Age (Ma) Calibration Group Reference

Valditermes brennae 130.8 Cryptocercus + Isoptera [29]

"Gyna" obesa 57.7 Blaberidae [30]

Cratomastotermes wolfschwenningeri 113 termites [31]

https://doi.org/10.1371/journal.pone.0268064.t002
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A+T rich region

The non-coding region of E. splendensmito-genome was located between srRNA and

tRNA-Ile, and it was 290 bp long with 64.8% A+T content. Two 120 bp long repeated units

separated by a 7 bp interval and four Poly-A structures were found in the A+T rich region of

the E. splendens mito-genome (Fig 3).

Numts and its divergence time

Numts are originated from mt-genome. Numts have different mutation rates compared to

their ancient mtDNA, but the pattern of their nucleotide substitution is similar to ancient

mtDNA. So they can be called “fossil” markers. Numts can be used to solve some problems in

Fig 1. Circular gene map of Episymploce splendens mito-genome. Genes coded in the J-strand are inside of the circle. Gene coded in the

N-strand are outside of the circle. COX1, COX2 and COX3 refer to the cytochrome C oxidase subunits; CytB refers to cytochrome B;

ATPase6 and ATPase8 refer to ATP synthase subunits 6 and 8 genes; and NAD1-NAD6 and NAD4L refer to the NADH dehydrogenase

subunit 1–6 and 4Lgenes.

https://doi.org/10.1371/journal.pone.0268064.g001
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phylogeny, such as Zischler et al used the Numt as phylogenetic outgroup to prove the origin

of man [34].

There were two Numts found in E. splendens, namely Numt-1 (557 bp) and Numt-2 (975 bp).

Comparisons with aligned mitochondrial sequence showed 87.23% homologies in Numt-1 and

76.63% in Numt-2 (S3 and S4 Figs). Some characteristics in Numts such as the deletion mutation,

base substitution and insertion mutation were also found in Numt-1 and Numt-2 [35, 36].

The timescale for evolution of 25 species and Numt-1 diversification based on aligning

sequences and calibrations based on three cockroach fossils is shown in Fig 4A while the time-

scale for Numt-2 is shown in Fig 4B. The divergence of the lineages leading to Blattella and

Table 3. Annotation of Episymploce splendens mito-genome.

Gene Grand Location Anticodon Start codon Stop codon

tRNA-Ile J 1..77 TAT

NAD2 J 102..1148 ATG TAA

tRNA-Trp J 1149..1212 TCA

tRNA-Cys N 1208..1271 GCA

tRNA-Tyr N 1278..1347 GTA

COX1 J 1350..2885 TTG TAA

tRNA-Leu(UUR) J 2887..2954 TAA

COX2 J 2956..3642 ATG TAA

tRNA-Lys J 3645..3715 CTT

tRNA-Asp J 3717..3781 GTC

ATPase8 J 3782..3940 ATT TAA

ATPase6 J 3934..4613 ATG TA-

COX3 J 4614..5402 ATG TAA

tRNA-Gly J 5405..5468 TCC

NAD3 J 5469..5821 ATG TA-

tRNA-Ala J 5822..5886 TGC

tRNA-Arg J 5885..5950 TCG

tRNA-Asn J 5951..6020 GTT

tRNA-Ser(AGN) J 6021..6085 GCT

tRNA-Glu J 6088..6152 TTC

tRNA-Phe N 6162..6228 GAA

NAD5 N 6229..7947 ATT TAA

tRNA-His N 7963..8027 GTG

NAD4 N 8028..9367 ATG TA-

NAD4L N 9361..9642 ATG TAA

tRNA-Thr N 9643..9709 TGT

tRNA-Pro N 9709..9774 TGG

NAD6 J 9776..10275 ATT TA-

CytB J 10276..11409 ATG TAA

tRNA-Ser(UCN) J 11409..11477 TGA

NAD1 N 11500..12441 ATA TAG

tRNA-Leu(CUN) N 12451..12511 TAG

lrRNA N 12512..13822

tRNA-Val N 13823..13893 TAC

srRNA N 13987..14792

A+T-rich region 14793..15082

‘TA-’ refer to incomplete stop codons.

https://doi.org/10.1371/journal.pone.0268064.t003
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Episymploce was 22.60 Ma to 36.50 Ma (95% confidence interval [CI]) in Fig 4A while the esti-

mated age of the split between them was 15.54 Ma to 34.27 Ma (95% confidence interval [CI])

in Fig 4B. Results were similar although different aligning sequences were used to calculate the

divergence time in this study (Fig 4). Numt-1 transferred from the mitochondrion to the

nucleus between 14.15 Ma to 22.35 Ma (95% confidence interval [CI]), and Numt-2 were esti-

mated to have diverged between 19.19 Ma to 24.06 Ma (95% confidence interval [CI]).

Discussion

Intergenic spacer

Mito-genomes typically exhibited compact arrangements, such as small gene spacing, gene

overlap, or incomplete stop codons. However, the E. splendens mito-genome had a long

Fig 2. Relative Synonymous Codon Usage (RSCU) in Episymploce splendens mito-genome. A total of 3,711 codons

for E. splendensmito-genome were analyzed, excluding stop codons. Leu, Leu�, Ser, and Ser� indicate trnL1 (CUN),

trnL2 (UUR), trnS1 (AGN), and trnS2 (UCN), respectively.

https://doi.org/10.1371/journal.pone.0268064.g002

Fig 3. The A +T rich region sequence of Episymploce splendens mito-genome. The blue and gray areas represented

two 120bp-long repeated segments, respectively. The red fonts represented the poly-A structures.

https://doi.org/10.1371/journal.pone.0268064.g003
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intergenic spacer region (93 bp) located between tRNA-Val and srRNA, which is the longest

intergenic spacer region in cockroach mito-genomes reported. The long intergenic spacers in

mito-genomes have been reported in some Hymenopteran [37, 38], Hemipteran [39, 40], Dic-

tyopteran [41] and Coleopteran insects [6, 42, 43]. There are two commonly posited evolution-

ary mechanisms for the origin of mitochondrial intergenic spacers, the duplication/random

loss model and slipped-strand mispairing [6, 41]. We could not find a homologous sequence

with both ends in this intergenic spacer, thus its formation is difficult to explain by slipped-

strand mispairing [6, 44]. A similar long intergenic spacer was reported in a blattarian insect

mito-genome, Blaptica dubia (71-bp between tRNA-Gln and tRNA-Met) [41], and the dupli-

cation/random loss model was used to explain the formation of this intergenic spacer [6, 41,

45, 46]. We suggested that this intergenic region may be derived from the replication of the 3’

end of the srRNA when the DNA double helix unraveled, followed by random loss of partial

duplicated gene, and then the residues formed the 93-bp remaining intergenic spacer in E.

splendens (Fig 5).

Animal mito-genomes were generally considered to be economic and optimized for rapid

replication and transcription [47]. Therefore, mitochondrial evolution had traditionally been

regarded as favoring genome size reduction [3, 48, 49], possibly by eliminating intergenic spac-

ers [50]. Eliminating nonfunctional intergenic spacers in mitochondrial evolution was impor-

tant in the highly reduced and efficient mito-genomes [43]. But with the discovery of more

large intergenic spacers in mito-genomes, as several containing additional origin of replication

Fig 4. a. Phylogenetic chronogram of Numt-1 and blattodean species based on the sequence aligned with Numt-1, reconstructed using BEAST. The best-fit

evolution model was determined by PartitionFinder. Scale bar estimates age in millions of years and blue bars represent 95% highest posterior density intervals

for the node ages. Papilio protenor and Biston panterinaria were employed to root the tree as outgroups. b. Phylogenetic chronogram of Numt-2 and blattodean

species based on the sequence aligned with Numt-2, reconstructed using BEAST. The best-fit evolution model was determined by PartitionFinder. Scale bar

estimates age in millions of years and blue bars represent 95% highest posterior density intervals for the node ages. Papilio protenor and Biston panterinaria
were employed to root the tree as outgroups.

https://doi.org/10.1371/journal.pone.0268064.g004
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(Apis mellifera, Triatoma dimidiata, Bombus ignitus) [33, 39, 51], tandem repeat units (Tria-
toma dimidiata, Pyrocoelia rufa) [39, 42], or even open reading frames retained (Triatoma
dimidiata) [39], whether these long spacer regions were functional was controversial [39, 52].

We analyzed the large intergenic spacers in the mito-genomes of several insects, comparing

the length and similarity of these large intergenic spacer sequences with their root sequences

(S4 Table) [6, 40, 41]. We found these spacer sequences were usually shorter than their root

sequences and the greater the length difference between these spacer and their root sequences,

the lower the similarity between them. It implied that these mito-genomes lost partial dupli-

cated nucleotides in mitochondrial evolution. In addition, large intergenic spacers found in

several related species were not homologous, implying their origin occurred independently

after species differentiation [6]. This suggests that these long intergenic spacers did not confer

an evolutionary advantage, and they were gradually deleted during mitochondrial evolution.

Consequently, we consider that the mito-genome may continue evolving towards compact

arrangement and the long intergenic region may gradually decrease or even disappear during

mito-genome evolution. However, these discoveries of large intergenic spacers in insect mito-

genomes contribute to species identification, and also provide valuable information for the

study of the evolution of insect mitochondrial genomes.

Fig 5. Putative formation mechanism of the intergenic spacer in Episymploce splendens mito-genome. The

Randomly copied fragment was marked with �.

https://doi.org/10.1371/journal.pone.0268064.g005
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tRNAs deletion

Mitochondrial gene content, arrangement and composition were highly conserved, and mito-

genomes typically contained 37 coding genes [3, 53]. However, some exceptions, such as gene

duplications, deletions or rearrangements, were found in some species [54–56]. Although

tRNA deletion is unusual, increasing cases have been reported, such as three amphibians spe-

cies [54, 57], three reptile species [58, 59], one crustacean species [60], one Hemiptera insect

and one Coleoptera insect [61], four Psocoptera insects [10, 62] and three Mantodea insects

[9]. In this study, two tRNAs, tRNA-Gln and tRNA-Met, were absent in E. splendensmito-

genome. The tRNA deletions was only found in the E. splendensmito-genome (this study) in

all Blattaria mito-genomes reported and the tRNA deletion events reported in previous

research also scattered in different clade branches, therefore, we consider tRNA deletions

appear to be separate events occasionally occurring in some species or evolutionary branches.

The deletion of functional genes was obviously disadvantageous for species, and the mecha-

nism of deletion is still unclear.

The organism may have a functional replacement to cope with the loss of tRNAs. Two

mechanisms were proposed for this functional compensation. The first mechanism where

tRNAs from the cytosol are imported into mitochondria has been confirmed, as aminoacyl-

tRNA synthetases being imported from the cytosol into mitochondria [63], and functional

tRNA-Lys encoded in the nuclear genome being imported into marsupial mitochondria [64].

The second compensation mechanism for the missing tRNAs is ‘superwobble’, where a tRNA

with an unmodified U in the wobble position reads all four nucleotides in the third codon

position [65]. In our study, the loss of tRNA-Gln and tRNA-Met can be compensated with

their first and second codons matching His and Ile, respectively, and the anticodon swing site

U for His and Ile. We calculated the Relative Synonymous Codon Usage (RSCU) values of

CAU (H) and AUU (I) in reported cockroach mito-genomes, and discovered that E. splendens
mito-genome had the highest RSCU values (Table 4), indicating that E. splendensmight be

compensated through tRNA superwobble. Regardless, we cannot exclude tRNA import from

Table 4. The RSCU values of CAU (H) and AUU (I) in known cockroaches.

Cockroaches CAU (H) AUU (I) GenBank Accession number

Episymploce splendens 1.69 1.86 OK094023

Blattella germanica 1.54 1.83 NC_012901.1

Blattella bisignata 1.57 1.63 NC_018549.1

Panchlora nivea 1.57 1.77 NC_030002.1

Shelfordella lateralis 1.63 1.63 NC_030003.1

Nauphoeta cinerea 1.49 1.64 NC_035052.1

Cryptocercus meridianus 1.51 1.49 NC_037496.1

Periplaneta australasiae 1.44 1.7 NC_034841.1

Neostylopyga rhombifolia 1.45 1.66 NC_034842.1

Periplaneta brunnea 1.42 1.71 MG010455

Blaptica dubia 1.55 1.54 NC_029224.1

Periplaneta americana 1.36 1.71 NC_016956.1

Gromphadorhina portentosa 1.45 1.42 NC_030001.1

Periplaneta fuliginosa 1.43 1.73 NC_006076.1

Opisthoplatia orientalis 1.35 1.6 NC_029225.1

Cryptocercus relictus 1.21 1.57 NC_018132.1

Cryptocercus kyebangensis 1.33 1.6 NC_030191.1

Eupolyphaga sinensis 0.93 1.64 NC_014274.1

https://doi.org/10.1371/journal.pone.0268064.t004
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the cytosol in E. splendens mitochondrion. Therefore, more studies are needed to confirm the

compensation mechanism for the absence of tRNAs in the mito-genome of E. splendens.

Conclusion

In this study, we sequenced and annotated the E. splendens mito-genome. Two tRNAs

(tRNA-Gln, tRNA-Met) were lost and a long intergenic region between tRNA-Val and srRNA

(93 bp, with a 64.6% similarity with its corresponding srRNA) was also found in E. splendens
mito-genome. The duplication/random loss model may account for the origin of this long

intergenic spacer. We also found two Numts, Numt-1 and Numt-2 transfered from mitochon-

drion to nucleus at about 14.15 Ma to 22.35 Ma, and 19.19 Ma to 24.06 Ma respectively.
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