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ABSTRACT Non-aureus staphylococci (NAS) are the most frequently isolated patho-
gens from intramammary infection (IMI) in dairy cattle. Virulence factors (VFs) and
mechanisms by which NAS cause IMI are not fully known. Herein, we analyzed the
distribution of 191 VFs in 441 genomes of 25 NAS species, after classifying VFs into
functional categories: adherence (n � 28), exoenzymes (n � 21), immune evasion
(n � 20), iron metabolism (n � 29), and toxins (n � 93). In addition to establishing VF
gene profiles, associations of VF genes between and among functional categories
were computed, revealing distinctive patterns of association among VFs for various
NAS species. Associations were also computed for low, medium, and high somatic
cell count (SCC) and clinical mastitis (CM) isolates, demonstrating distinctive patterns
of associations for low SCC and CM isolates, but no differences between high SCC
and CM isolates. To determine whether VF distributions had any association with
SCC or CM, various clustering approaches, including complete linkages, Ward cluster-
ing, and t-distributed stochastic neighbor embedding, were applied. However, no
clustering of isolates representing low SCC, medium SCC, or high SCC or CM was
identified. Regression analysis to test for associations with individual VF functional
categories demonstrated that each additional toxin and host immune evasion gene
increased the odds of having high SCC or CM, although an overall increase in the
number of VFs was not associated with increased SCC or occurrence of CM. In con-
clusion, we established comprehensive VF gene profiling, determined VF gene distri-
butions and associations, calculated pathogenic potentials of all NAS species, and
detected no clear link between VF genes and mastitis.

IMPORTANCE Non-aureus staphylococci (NAS) are the most frequently isolated
pathogens from milk in dairy cattle worldwide. The virulence factors (VFs) and
mechanisms by which these bacteria cause udder infection are not fully known. We
determined the distribution and associations of 191 VFs in 25 NAS species and in-
vestigated the relationship between VFs and disease. Although the overall number
of VFs was not associated with disease severity, increasing numbers of toxin and
host immune evasion genes specifically were associated with more severe disease
outcomes. These findings suggest that the development of disease and the interac-
tions of VFs with the host are complex and determined by the interplay of genes
rather than just the presence of virulence genes. Together, our results provide foun-
dational genetic knowledge to other researchers to design and conduct further ex-
periments, focusing on understanding the synergy between VFs and roles of individ-
ual NAS species in IMI and characterizing species-specific effects on udder health.
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Non-aureus staphylococci (NAS), most of which are coagulase-negative staphylo-
cocci (CNS), are the most frequently isolated bacteria from bovine milk (1–3).

Although NAS are often considered minor mastitis pathogens (3, 4), they are increas-
ingly recognized as dominant pathogens of bovine mastitis worldwide (1, 3, 5). The
genus Staphylococcus (as of October 2018) includes 53 species and 28 subspecies
(http://www.bacterio.net/staphylococcus.html), of which 25 NAS species are commonly
isolated from milk from dairy cows in Canada and other countries. Interspecies rela-
tionships and prevalence of these species were recently reported by our group (1, 6).
However, pathogenesis of these bacteria is not fully understood. Therefore, it is not
clear whether NAS should be considered commensal bacteria or opportunistic patho-
gens. Additionally, the effects of individual NAS species on udder health are not well
characterized (7–9). Mechanisms that allow these organisms to colonize and cause
mastitis are not well-known (2, 3, 10). Generally, obligate or opportunistic pathogenic
bacteria sense host signals and adapt gene expression to match environmental con-
ditions (11–13). A subset of these genes has a key role in the ability of the bacterium
to cause disease (14, 15). Products of such genes that facilitate successful colonization
and survival of the bacterium in a host environment and damage that host are
considered pathogenicity determinants or virulence factors (VFs) (13, 15, 16). The VFs
are either coded within bacterial genomes, mostly on specific genomic loci, referred to
as pathogenicity islands, or coded within transmissible genetic elements that can
spread among bacteria (13, 17–20). Numerous VFs are known for Staphylococcus aureus
(SAU), an important pathogen of various animals, including dairy cattle, where it is
recognized as a major udder pathogen, commonly associated with (sub)clinical mastitis
(21, 22). Staphylococcus aureus has an array of genes involved in adhesion, invasion, and
host defense evasion (23). The VFs and mechanisms by which SAU causes intramam-
mary infections (IMI) in dairy cattle are well characterized, compared to NAS-related IMI
(24–27). Few studies have focused on VFs of NAS isolated from bovine mastitis (28–31).
All VFs and mechanisms by which various bovine NAS species survive, multiply, and
cause disease in the host are yet to be fully identified. Thus, to determine pathogenic
potential (number of VFs and their associations) of individual or closely related NAS
species and to investigate whether the presence and absence of VFs have associations
with occurrence of mastitis, comprehensive identification of putative VFs from the 25
most common NAS species is essential. Genome-based phylogeny of 25 bovine NAS
species was recently established by our group (32), which divided NAS species into five
distinct clades (A to E). Clade A contained SVI, SFL, and SSC (for NAS species and NAS
species abbreviations, see “Classification and distribution of virulence factors” in Ma-
terials and Methods). Clade B included SAG, SHY, and SSC, clade C was represented by
SSI. Clade D was divided into D1 (SHO, SDE, and SHA), D2 (SPA and SWA), and D3 (SEP,
SCR and SCI), and clade E contained SAC, SAR, SKL, SSU, SGA, SCO, SNE, SEQ, SSA,
and SXY.

In this study, genomic data for 441 isolates from 25 NAS species from 87 herds were
used. Our objectives follow: (i) to identify and determine the distribution of putative VFs
(pVFs) among 25 NAS species; (ii) to investigate relationships among pVFs; (iii) to
identify distinct pVF associations for low, medium, and high somatic cell count (SCC)
and clinical mastitis (CM) isolates; and finally (iv) to investigate the association between
the presence of pVFs and CM.

RESULTS
Distribution and associations of VF genes involved in adherence. The 28 VFs of

the adherence category tested in this study included accumulation-associated protein
(aap), biofilm-associated surface protein Bap (bap), autolysin (atl), clumping factors (clfA
and clfB), collagen adhesion (cna), elastin binding protein (ebp), fibronectin binding
proteins (ebh, efb, uafA, fnbA, and fnbB), extracellular adherence/MHC analogous pro-
tein (eap/map), cell wall surface anchor family proteins (sasC, sasG, and sasP), intercel-
lular adhesins (icaA, icaB, icaC, icaD, and icaR), and Ser-Asp-rich fibrinogen binding
proteins (sdrC, sdrD, sdrE, sdrF, sdrG, sdrH, and sdrI) (Fig. 1A). Among these genes, atl was
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FIG 1 Distributions and pairwise associations of 28 adherence-related virulence factors. (A) Distribution of adherence-related
virulence factors of 25 NAS species, arranged into five clades (A, B, C, D, and E) according to their placement in phylogenetic trees

(Continued on next page)
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the most frequently detected gene in 20 out of 25 NAS species in at least one isolate.
The atl gene was present in SCH, SVI, SSU, SCO, SGA, SHA, SHY, SHO, SDE, SPA, SWA,
SEP, SCR, SCI, SNE, SEQ, SSA, and SXY but was not detected in isolates of SFL, SSC, SSI,
SAC, SKL, and SAR. The icaC gene of the ica operon, believed to be involved in biofilm
formation (33) was the second most frequent gene and was present in 17 of 25 NAS
species (Fig. 1A). Other genes of the ica operon, namely, icaA, icaB, icaD, and icaR were
detected in eight, seven, eight, and seven NAS species, respectively. Another biofilm-
related gene, bap (encodes biofilm-associated surface protein Bap) was present in only
six NAS species (Fig. 1A).

Among the clade A species, SVI contained only 2 (alt and icaC) of 28 adhesion genes,
whereas SFL and SSC contained 4 and 5 genes from the ica operon (Fig. 1A). Among
species of clade B (SAG, SHY, and SCH), atl, clfB, cna, efb, uafA, fnbA, and fnbB were the
most widespread genes. SSI, the sole representative species of clade C (in our data),
contained only icaA and icaR. Many genes from the adherence category, including aap,
clfA, eap/map, sasG, sraP, sdrD, sdrE, and sdrI, were not detected in any of the 441 NAS
isolates. One or more genes from the intracellular adhesin family (ica operon) were
present in many NAS species, except species from clades B and D1. Two genes, fnbA
and fnbB, responsible for encoding fibronectin binding proteins, were identified in only
three species (SAG, SHY, and SCH) from clade B. The cna gene, which contributes to
collagen adhesion, was detected in two (of three) species from clade B (SAG and SHY)
only. The distributions and frequencies of other clade-specific VF genes are shown in
Fig. 1A. In this study, a VF was considered present in the NAS species, even if that VF
was detected only in one isolate of that particular species.

Associations between 28 adherence genes in NAS species are shown (Fig. 1B). A
strong positive association was detected between fnbB and cna, with both fnbB and cna
present in 100% isolates of SAG and SHY (Fig. 1A). There were also positive associations
for a second fibronectin binding fnbA and cna, however, with lower intensity compared
to the previous example shown for fnbB, corresponding to frequencies of 62 and 67%
in isolates of SAG and SHY (Fig. 1A), although cna was present in 100% of isolates of
these species. Similarly, strong positive associations were present among icaA, icaB, and
icaD of the ica operon (Fig. 1B). Generally, within the adherence category, most
associations were either neutral or positive; no strong negative association was de-
tected within this category, and all negative associations were very weak.

Distribution and associations of exoenzymes. The second category of VFs (21
genes), exoenzymes (Fig. 2A), consisted of adenosine synthase A (adsA), aureolysin
(aur), cysteine proteases (sspA, sspB, sspC, sspD, sspE, and sspF), hyaluronate lyase (hysA),
lipases (lip and geh), serine proteases (splA, splB, splC, splD, splE, and splF), staphyloco-
agulase (coa), staphylokinase (sak), thermonuclease (nuc) and von Willebrand factor
binding protein (vWbp). Thermonuclease (nuc) was present in almost 100% of NAS
isolates, except SVI, where it was identified in 17% of isolates. The second most
frequent exoenzyme genes were aur and lip, which were detected in 19 and 18 NAS
species, respectively. The gene for another lipase, geh, was detected in six NAS species.
The enzyme adsA was identified in all species from clades B and C and in all species
from clade D, except SPA and SEP, but in only one species from clade E (SKL)
(represented by a single isolate). Clade-specific distributions of enzymes were observed
for sspB, which was identified in all isolates of SPA and SWA (species from clade D2) and
vWbp, detected in SAG (100%), SHY (100%), and SCH (94%) species from clade B.
Hyaluronate lyase (hysA) was present in only two clade B species (SAG and SHY). Seven
of the listed exoenzymes (sspD, sspE, and sspF and splA, splB, splC, and coa) were not

FIG 1 Legend (Continued)
(32). Values and different colors within cells represent the percentage of isolates containing a given gene. The color gradient from
red to dark green indicates increasing percentage of isolates containing the particular gene within species (light yellow, 1 to 25% of
isolates; light blue, 26 to 50% of isolates; light green, 51 to 75% of isolates; dark green, 76 to 100% of isolates). (B) Pairwise associations
of genes, computed using phi coefficients (143), with a color gradient representing the type of association (blue for positive; red for
negative), while the intensity of the color and size of the circle show the strength of the association.
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FIG 2 Distributions and pairwise associations of 21 exoenzyme genes in NAS species. (A) Distribution of exoenzymes genes of 25 NAS species,
arranged into five clades (A, B, C, D, and E) according to their placement in phylogenetic trees (32). Values and different colors within cells represent

(Continued on next page)
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detected in any NAS species. Distributions and frequencies of each exoenzyme de-
scribed above are shown (Fig. 2A). Within exoenzymes, there was a strong positive
association between splF and geh, whereas there was a strong negative association
between sspA and adsA (Fig. 2B).

Distribution and associations of VF genes involved in host immune evasion.
The host immune evasion category consisted of 16 genes involved in capsular synthesis
(capA, capB, capC, capD, capE, capF, capG, capH, capI, capJ, capK, capL, capM, capN,
capO, and capP), chemotaxis inhibitory protein (chp), staphylococcal complement
inhibitor (scn), staphylococcal protein A (spa), staphylococcal binder of immunoglob-
ulin (sbi) gene. The distribution and frequencies of these VFs are shown (Fig. 3A). The
chp gene was not detected in any NAS species. The scn and sbi genes were exclusively
identified in species from clade B (SAG, SHY, and SCH) and were absent in other NAS
species. The spa gene was present only in SHY (100%) and SSI (62%) species. Capsular
genes were the most commonly detected and frequently distributed genes in this
category. In this study, cap genes were considered present if hits were detected for
either isoform cap5 or cap8 (34, 35). Among capsular genes, capM was detected in all
441 NAS isolates, and most NAS species contained �8 capsular genes, except SAC, SSA,
and SNE which contained capM and capP only. SCH contained most of the capsular
genes, except capN. However, except for capM, capO, and capP, which were detected
in all isolates of SCH, frequencies of other genes were within 7 to 14% of isolates. Most
capsular genes had positive associations, except capP which had a negative association
with capD and capL. The strongest associations were between capA and capB and
among capE, capF, and capG (Fig. 3B).

Distribution and associations of VF genes involved in iron uptake and metab-
olism. Twenty-nine genes involved in iron uptake and metabolism were detected,
including 9 iron-regulated surface determinant genes (isdA, isdB, isdC, isdD, isdE, isdF,
isdG, isdH, and isdI), 7 ABC transporter (also known as siderophore receptors) genes
(htsA, htsB, htsC, sfaA, sfaB, sfaC, and sfaD), 12 staphyloferrin A and B synthesis-related
genes (sirA, sirB, sirC, sbnA, sbnB, sbnC, sbnD, sbnE, sbnF, sbnG, sbnH, and sbnI) and 1
sortase B gene (srtB). Among 9 iron-regulated surface determinant genes, isdI was
detected in 22 NAS species but was not present in SEP, SAR, and SSU. The isdC, isdE, and
srtB genes were detected in SSC, SSI, SPA, SCR, SCI, and SAC only. The isdH gene was
identified only in SPA (100%). Two genes from iron-regulated surface determinants
(isdB and isdD) were not detected in any NAS species. Seven genes of ABC transporters
(siderophore receptors) were uniformly distributed, with few exceptions, such as the
absence of htsA from SVI, SFL, and SAR and the absence of htsB and htsC from SAR and
SFL, respectively. Staphyloferrin A synthesis-related genes (sirA, sirB, and sirC) were
detected more frequently than staphyloferrin B synthesis-related genes. sbnA, involved
in staphyloferrin B synthesis, was the only gene from the iron uptake and metabolism
category identified in all 441 NAS isolates. Distributions and frequencies of all 29 VFs
involved in iron uptake and metabolism are shown (Fig. 4A). Both negative and positive
associations were detected among VFs of iron uptake and metabolism. For instance,
siderophore receptor genes (ABC transporters) were mostly positively associated
(Fig. 4B). Similarly, staphyloferrin B synthesis genes also had positive associations.
Negative associations were present among the ABC transporter htsA and htsB (Fig. 4B).
Iron-regulated surface determinant isdC and isdE had strong positive associations,
whereas isdG and isdI had a negative association (Fig. 4B). The srtB gene had strong
associations with isdC and isdE (Fig. 4B).

Distribution and association of toxin, type IV secretion, and phenol-soluble
modulin genes. The identification and distributions of 93 toxin genes (Fig. 5 and 6)

FIG 2 Legend (Continued)
the percentage of isolates containing a given gene. The color gradient from red to dark green indicates increasing percentage of isolates containing
the particular gene within species(light yellow, 1 to 25% of isolates; light blue, 26 to 50% of isolates; light green, 51 to 75% of isolates; dark green,
76 to 100% of isolates). (B) Pairwise associations of genes, computed using phi coefficients (143), with a color gradient representing the type of
association (blue for positive; red for negative), while the intensity of the color and the size of the circle show the strength of the association.
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FIG 3 Distributions and pairwise associations of 16 host immune evasion genes. (A) Distribution of host immune evasion genes of 25 NAS species,
arranged into five clades (A, B, C, D, and E) according to their placement in phylogenetic trees (32). Values and different colors within cells represent
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Virulence Genes of Non-aureus Staphylococci

March/April 2019 Volume 4 Issue 2 e00098-18 msystems.asm.org 7

https://msystems.asm.org


were determined in NAS isolates. Figure 5 includes 36 toxin genes from various
categories, including 6 genes for alpha, beta, delta, and gamma hemolysins (hly/hla, hlb,
hld, hlgA, hlgB, and hlgC), 4 genes for leukocidins, including leukocidin M (lukM and
lukF-like) and Panton-Valentine leukocidins (lukS-PV and lukF-PV), 2 leukotoxins (lukD
and lukE), toxic shock syndrome toxin (tsst), 4 exfoliative toxins (eta, etb, etc, and etd),
8 genes of type VII secretion system (esaA, esaB, esaC, essA, essB, essC, esxA, and esxB),
and 11 genes for phenol-soluble modulins, including the 5 alpha modulins (PSM�1,
PSM�2, PSM�3, PSM�4, and PSMmec) and 6 beta modulins (PSM�1, PSM�2, PSM�3,
PSM�4, PSM�5, and PSM�6). The majority of these toxin genes were not identified in
NAS species. Among hemolysin genes, beta-hemolysin (hlb) was identified from species
of clade B (SAG, SHY, and SCH) and clade D3 (SEP, SCR, and SCI) and in 4% of isolates
of SXY. The delta-hemolysin gene (hld) was detected in 16% of isolates of SWA only.
Genes for other hemolysins (alpha and gamma), leukocidins, and leukotoxins were not
detected in any NAS isolates. Similarly, tsst, etc, and etd were also not detected in NAS.
Among the eight known genes of the type VII secretion system, esaC and esxB were not
identified in NAS. The other six genes of secretion system (esaA, esaB, essA, essB, essC,
and esxA) were detected in SVI, SAG, SHY, SCH, SEP, SCR, SAR, SGA, SCO, SSA, and SXY
in frequencies ranging from 4% to 100%. Among PSMs, none of the PSM� genes were
identified in NAS. In contrast, PSM� genes were present in various NAS species.
Detection and distribution patterns of 21 enterotoxins and 36 staphylococcal exotoxins
(SETs) genes are shown (Fig. 6). These genes were not identified in the majority of the
NAS isolates except for some species in clade B, especially SAG and SHY. For instance,
enterotoxins, sed, seg, seh, sei, sej, seln, selo, and selp were identified in 15% of SAG
isolates, whereas 33% of isolates of SHY contain seb, seg, seh, sej, sell, and selm. Similarly,
from 36 SETs, only 5 SET genes were detected in 1 or more species of clade B. Of 93
toxin genes, 32 were detected in 1 or more NAS isolates (Fig. 5 and 6). There were
strong positive associations among type VII secretion system genes (esaA, esaB, essA,
essB, essC, and esxA) (Fig. 7). In addition, there were positive associations for some
enterotoxins and staphylococcal exotoxins (Fig. 7). However, these genes were mostly
identified only in SAG and SHY species (Fig. 6).

Associations between VF genes of different categories. Relationships between
the VFs from five categories were investigated using an association plot in which VFs
from the VF functional categories adherence, exoenzymes, host immune evasion, iron
uptake and metabolism, and toxins were analyzed concurrently (Fig. 8A). Most associ-
ations among the VF functional categories were neutral or very weak (Fig. 8B), with
some moderate to strong associations. For instance, adhesin genes (icaA, icaB, icaC, and
icaD) were positively associated with iron regulatory genes (Fig. 8A). Similarly, capsular
genes (capE, capF, capG, capH, and capI) were positively associated with staphyloferrin
B synthesis-related genes (Fig. 8A). To assess differences in associations among four SSC
classes, association plots were generated separately for isolates from low, medium, and
high SCC and from CM cases. Differences in association patterns between the isolates
from low SCC and isolates from CM are shown (Fig. 9). There were many distinct
positive and negative association patterns in CM isolates. For example, PSM�5 and
PSM�6 had very strong positive associations with the icaA, icaB, and icaD genes of the
ica operon. Similarly, there were strong positive associations for staphyloferrin B
synthesis-related genes and cna, hysA, and sbi, whereas these positive associations were
absent in low SCC isolates. Also, there were many strong negative associations in CM
isolates, but absent in low SCC isolates. For instance, sirB and sirC from the staphylo-
ferrin A synthesis family had strong negative associations with collagen adhesion genes

FIG 3 Legend (Continued)
the percentage of isolates containing a given gene. The color gradient from red to dark green indicates increasing percentage of isolates
containing the particular gene within species (light yellow, 1 to 25% of isolates; light blue, 26 to 50% of isolates; light green, 51 to 75% of isolates;
dark green, 76 to 100% of isolates). (B) Pairwise associations of genes, computed using phi coefficients (143), with a color gradient representing
the type of association (blue for positive; red for negative), while the intensity of the color and the size of the circle show the strength of the
association.
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FIG 4 Distributions and pairwise associations of 29 virulence factors related to iron uptake and metabolism. (A) Distribution of iron uptake-
and metabolism-related virulence factors of 25 NAS species, arranged into five clades (A, B, C, D, and E) according to their placement in

(Continued on next page)
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(icaC and icaR) with isdE, isdF, and isdF. Other important differences in gene associations
between low SCC and CM isolates are shown (Fig. 9). Medium and high SCC-specific
associations are shown (see Fig. S1 and S2 in the supplemental material). Finally, to
discover species-specific differences in VF associations between NAS species, graphs
were generated for each NAS species (n � 25). An example showing the species-specific
difference in association between SCH and SSI is presented (Fig. 10). In this case, no
strong positive and negative associations were observed in SSI, except for capL, which
was strongly negatively correlated with capH, whereas in SCH, there were strong
positive associations among capsular genes and type VII secretion system genes
(Fig. 10). However, there were no strong negative associations in SCH VF genes.

Association between the presence of virulence factors and mastitis. Overall, an
increase in the number of putative VFs was not associated with an increase in log SCC,

FIG 4 Legend (Continued)
phylogenetic trees (32). Values and different colors within cells represent the percentage of isolates containing a given gene. The color
gradient from red to dark green indicates increasing percentage of isolates containing the particular gene within species (light yellow, 1 to
25% of isolates; light blue, 26 to 50% of isolates; light green, 51 to 75% of isolates; dark green, 76 to 100% of isolates). (B) Pairwise associations
of genes, computed using phi coefficients (143), with a color gradient representing the type of association (blue for positive; red for negative),
while the intensity of the color and the size of the circle show the strength of the association.

FIG 5 Distributions of toxin genes of different categories. Distribution of 36 toxin genes of 25 NAS species, arranged into five clades (A, B, C, D, and E) according
to their placement in phylogenetic trees (32). Values and different colors within cells represent the percentage of isolates containing a given gene. The color
gradient from red to dark green indicates increasing percentage of isolates containing the particular gene within species (light yellow, 1 to 25% of isolates; light
blue, 26 to 50% of isolates; light green, 51 to 75% of isolates; dark green, 76 to 100% of isolates).
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although upon stratification by type of VFs, the presence of each additional toxin gene
was associated with a 0.024 increase in log SCC (P � 0.006). None of the other VF types
were associated with changes in log SCC (Table 1). With inclusion of CM samples,
association of numbers of VF genes were tested, with the probability of greater

FIG 6 Distributions of enterotoxin and staphylococcal exotoxin genes. Distribution of 21 enterotoxin (A) and 36 staphylococcal exotoxin (B) genes of 25 NAS species,
arranged into five clades (A, B, C, D, and E) according to their placement in phylogenetic trees (32). Values and different colors within cells represent the percentage
of isolates containing a given gene. The color gradient from red to dark green indicates increasing percentage of isolates containing the particular gene within species
(light yellow, 1 to 25% of isolates; light blue, 26 to 50% of isolates; light green, 51 to 75% of isolates; dark green, 76 to 100% of isolates).
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inflammation (i.e., higher SCC), with CM having the strongest host response. The
presence of each additional VF gene associated with host immune evasion increased
the odds of having a more severe immune response by 0.074 (P � 0.003) (having one
more host immune evasion gene made the isolate 1.07 times more likely to cause a
more severe inflammation [i.e., increased SCC and/or CM]). Other types of VFs, however,
were not associated with an increased risk of having a more severe immune response
(Table 1). To investigate whether any unique pattern of the presence and absence of VF
could predict disease outcome, a decision tree was generated. Although this revealed
many unique patterns of VF distributions, none of these patterns were clearly
associated with the level of host immune responses (low SCC, medium SCC, high SCC,
and CM). In dendrograms, created by Ward clustering and complete-linkage clustering
methods, placement of isolates (from low, medium, or high SCC, and CM) was polyphyl-
etic. Isolates from all categories were randomly distributed over dendrograms (Fig. S3
and S4). No single clusters dominated by isolates from a single category were identified.
Rather, most of the clustering in these dendrograms was according to species. Isolates
from the same species, regardless of their isolation stage (low, medium, or high SCC or
CM) were grouped together. Similarly, based on distribution patterns (generated using
t-SNE algorithms), most NAS isolates clustered according to their respective species
(Fig. 11A). For example, isolates from SAG, SHY, SAR, SEP, SEQ, SCI, and SSI were
grouped in distinct clusters according to respective species (Fig. 11A). However, isolates
from SCH were grouped in two clusters, whereas intermixing of isolates was also
present for some isolates of various NAS species (Fig. 11A). Similarly, a t-SNE plot was
also generated after grouping isolates into low, medium, or high SCC or CM. However,
there were no unique clusters or unique patterns distinct for isolates from each of these

FIG 7 Pairwise associations of toxin genes. Pairwise associations of toxin genes, computed using the phi coefficient
(143). Colors represent the type of association (blue for positive; red for negative), while the intensity of the color
and the size of the circle show the strength of the correlation.
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FIG 8 Pairwise associations and histogram of virulence factors from different functional categories. (A) Pairwise associations between virulence genes of five
functional categories: adherence, exoenzymes, host immune evasion, iron uptake, and toxins. The associations were computed using the phi coefficient (143).
(B) Histogram shows the total numbers of associations that fall within a particular association type. Colors in both panels represent the type of association (blue
for positive; red for negative). Red boxes in panel A represent examples of clusters of positive associations between different functional categories.
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categories (Fig. 11B). Interestingly, a comparison of clusters between (Fig. 11A and B)
revealed that clustering in Fig. 11B was based on species.

DISCUSSION

In this study, we determined the distribution of 191 Staphylococcus VF genes, across
441 isolates from all 25 known NAS species isolated from multiple Canadian dairy herds.
Most earlier studies on VFs in NAS species were limited by the following: (i) using only
a few NAS species (36), (ii) testing for a few and different VF genes (37–39), or (iii)

FIG 9 Pairwise associations and comparison of low somatic cell count isolates with clinical mastitis isolates. Mirror image showing difference in VF associations
between low somatic cell count and clinical mastitis isolates. The top right triangle shows the pairwise associations of genes from clinical mastitis isolates. The
bottom left triangle represents associations of virulence genes detected in low somatic cell count isolates. The associations were computed using phi coefficient
(143). Colors represent the type of association (blue for positive; red for negative), while the intensity of the color and the size of the circle show the strength
of the correlation.
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collecting samples from very few herds (28). The first study identifying a large number
of VFs in bovine-associated staphylococci was published recently (31). However, this
study had only three NAS species. The 191 VFs tested in this study were grouped into
five functional categories, and their distributions were determined in 441 isolates from
25 NAS species.

In this study, 28 VF genes involved in adherence and biofilm formation were tested
in 25 bovine NAS species. Of these 28 adherence- and biofilm-related genes, the ica
operon, encoding the polysaccharide intercellular adhesins (PIA), is the earliest recog-

FIG 10 Comparison of pairwise associations between Staphylococcus chromogenes and Staphylococcus simulans. Mirror image showing differences in VF
associations between two NAS species. The top right triangle shows the pairwise associations of virulence genes identified in Staphylococcus chromogenes. The
bottom left triangle represents associations of virulence genes detected in Staphylococcus simulans. The distinctive associations between two species are
marked with red boxes. The associations were computed using the phi coefficients (143). Colors represent the type of association (blue for positive; red for
negative), while the intensity of the color and the size of the circle show the strength of the correlation.
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nized and most widely distributed genetic determinant of biofilms, mostly in human-
associated NAS species (16, 40, 41). Biofilm formation starts with adhesion, initiated
mostly by atl, followed by PIA production from the ica operon, which consists of icaA, icaB,
icaC, icaD, and a promoter icaR. The icaA gene encodes a transferase enzyme, and icaB
promotes deacetylation of PIA. Furthermore, icaC synthesizes N-acetylglucosamine, and
icaD complements icaA action (41–43). In previous studies, there were contradictory
results regarding the distribution of ica genes in bovine NAS species. For example, icaA
was detected in �50% of NAS isolates by Tremblay et al. (37), whereas a much lower
prevalence (�5%) of icaA was reported by Piessens et al. (44). A difficulty in determin-
ing the role of the ica gene in biofilm formation by bovine NAS is that various studies
have tested for different ica genes (37, 45, 46). We tested all genes and determined that
icaC (17/25) was the most frequent gene, followed by icaA, icaD (8/25), and icaB (7/25).
In contrast, most previous studies have either used icaA or icaD (or both) in biofilm
studies (28, 46, 47), which may have underestimated the true prevalence of ica-based
biofilm formation ability of NAS, especially in Canada.

None of the 25 NAS species tested in this study contained aap (encodes the
accumulation-associated protein Aap) (48) which contributes to the primary attach-
ment and establishment of intercellular connections in biofilms. Biofilms formed by Aap
are proteinaceous in nature, in contrast to ica-dependent polysaccharide-based bio-
films (48, 49). The absence of aap in our analysis, consistent with previous studies,
indicated the ica-dependent biofilm-forming potential of our isolates (48, 49). However,
distribution of bap (encoding biofilm-associated protein), the second most important
biofilm-related gene, was sporadic. Previously, bap was described as a cattle-specific
pathogenic factor of biofilm formation (50–52). However, in our study, this gene was
detected only in species of clade D2 (SPA and SWA) and some species of clade E (SSU,
SGA, SCO, and SEQ) with modest distribution frequencies (44% to 53%). Interestingly,
bap was not detected in SCH, SSI, SHA, SXY, and SEP, the five most prevalent species
causing IMI in Canada (1). However, our results are in contradiction to a recent study of
three bovine NAS species, which reported the presence of bap in SAG and in a few
isolates from SCH (31).

After adhering to the host surface, bacterial pathogens often produce a variety of
exoenzymes to neutralize the immune system, damage host tissue, and degrade
complex macromolecules (53) to be used as nutrients. Consistent with the results of a
recent study (31), nuc (encodes thermonuclease) was the most frequent exoenzyme
gene in our study, followed by aur and sspA. Adenosine synthase A (adsA) was detected
mostly in species of clades B, C, and D; it converts AMP to adenosine and is considered
a critical VF of SAU (54). Among proteases, cysteine proteases (ssp locus encoded) were
more widespread than serine proteases (spl encoded). In SAU pathogenesis, both serine
and cysteine proteases have important roles in cleaving the activity of neutrophil serine
proteases, which have key roles in immune defense (55–57). Lipases were frequently
distributed among NAS, except in species of clade A (Fig. 2A). The exact role of lipase

TABLE 1 Regression model results showing the association between numbers of VFs and log SCC and inflammation severity

VF gene type
No. of VF
genes

Linear regressiona Logistic regressionb

Coefficient
Standard
error P value Coefficient

Standard
error P value

Adherence 28 0.067 0.036 0.065 �0.020 0.039 0.607
Exoenzyme 21 0.098 0.055 0.078 0.076 0.060 0.199
Host immune evasion 20 0.045 0.023 0.054 0.074 0.025 0.003
Iron uptake 29 0.011 0.029 0.714 �0.006 0.031 0.858
Toxin 93 0.067 0.034 0.045 0.019 0.040 0.638

Total 191 0.024 0.010 0.017 0.015 0.011 0.168
aMixed-effects linear regression using log SCC as the outcome. The coefficient represents the increase in log SCC (log number of cells/milliliter) for each additional VF
detected.

bMixed-effects ordinal logistic regression using inflammation severity as the outcome (measured as low, medium, and high SCC and clinical mastitis in order of
increasing severity). The coefficient represents the increase in odds of the inflammation being more severe for each additional VF detected.
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in NAS pathogenicity is not understood; however, lipases are involved in release of free
fatty acids (octadecanoic acid) in blood plasma (58–60). These free fatty acids affect
several immune system functions and thus indirectly enhance pathogenic potential (58,
61, 62). Interestingly, SAG, SHY, and SCH contain vWbp, which along with coa and clfA
were considered sufficient to convert commensal SSI into an invasive pathogen (63).
Importantly, coa and clfA were not detected in these species in our study. However, the
presence of coa in SAG was reported recently (31). The variable results in the coagulase
test of SAG, SHY, and SCH strains (64, 65) may be due to the presence and expression
of vWbp in these species.

FIG 11 Dimensionality reduced clustering for NAS isolates determined using t-SNE. (A) Clusters labeled by 25 NAS species. (B) Clusters labeled by the
inflammation severity determined in the original milk sample: low SCC, somatic cell count of �150,000 cells/ml; medium SCC, somatic cell count between
150,000 and 250,000 cells/ml; high SCC, somatic cell count of �250,000 cells/ml; CM, clinical mastitis.
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Apart from exoenzyme production, encapsulation is another strategy of pathogenic
bacteria to avoid host immune responses. Staphylococci, especially SAU strains, are
equipped with genes enabling production of capsular polysaccharide or capsule, to
protect them from phagocytosis, enhancing virulence and persistence (66–68). Among
11 known capsular polysaccharide serotypes, cap5A-P and cap8A-P are the most
widespread in SAU isolated from human and bovine infections (35, 69). In our study,
capM was the most frequent cap gene and was detected in all 25 NAS species, followed
by capP and capC. In other studies, depending on the animal model of infection, cap
genes either enhanced or decreased virulence of SAU. For example, capsular produc-
tion enhanced virulence of SAU in murine models of bacteremia (70) and surgical
wound infection (71). In contrast, there was a lower virulence of capsular gene-
containing SAU in IMI (72, 73) and in catheter-induced endocarditis (74) compared to
corresponding capsule gene mutants. Interestingly, based on recovery of more capsule-
negative isolates from human patients with osteomyelitis, mastitis, or cystic fibrosis, the
lack of a capsule was suggested to be advantageous for SAU during chronic infections
(72, 75, 76). In our study, 12 capsular genes (capA to capL), in agreement with the results
of a recent study (31), were present in very low frequencies (7 to 11%) among SCH
isolates, the most common species of NAS in IMI worldwide. The absence of capsular
genes may explain the persistence of SCH in Canadian IMI (5, 9, 77).

Apart from capsular genes, other genes common in the immune evasion cluster
(IEC), such as scn, chp, spa, and sbi, have important roles in host immune evasion (78,
79). Staphylococcal complement inhibitor (scn product) and the chemotaxis inhibitory
protein (chp product) are thought to be highly specific for staphylococcal isolates of
human origin (80, 81). Consistent with these studies, chp was not detected in any of the
441 bovine NAS isolates in this study. However, scn was detected in species of clade B
(SAG, SHY, and SCH), which is in contrast with the results of a recent study (31) who did
not detect scn in any NAS isolates.

All 25 NAS species contained at least one gene of the iron-responsive surface
determinant (isd) operon, with isdI the most frequently distributed among all NAS
species, which is consistent with the results of a recent study (31). Similar to most
bacteria, staphylococci must acquire iron to replicate and to sustain infections (82–84).
Iron becomes scarce during infections, as body fluids are actively depleted of free iron
by the host to prevent bacterial growth, a process called “nutritional immunity” (82, 83,
85). Various iron acquisition mechanisms have key roles in the pathogenesis of SAU
(82). Two principal mechanisms of iron uptake and metabolism are well studied in SAU
(82–84). The first mechanism involves direct uptake of iron from molecules such as
heme, using isd genes, whereas a second mechanism involves production of sidero-
phores called staphyloferrin A and staphyloferrin B, along with surface transporters (82,
86, 87). Both isdI and isdG are necessary genes for SAU pathogenesis (88, 89). Most ABC
transporter genes (siderophore receptors) were detected in NAS species.

Staphyloferrin A synthesis genes were more widespread than staphyloferrin B and
isd genes in NAS species; therefore, we inferred that staphyloferrin A production was
the predominant mechanism of iron acquisition among NAS isolates. Staphyloferrins
have also been linked to increased virulence in human NAS infections (90). However,
the frequent distribution of iron uptake and metabolism-related genes among bovine
NAS species (Fig. 4A) may or may not be linked to their pathogenesis, and these genes
may just be required for commensalism and survival in the host.

Virulence of staphylococci, especially SAU, can be related to their ability to produce
a variety of toxins. These toxins can broadly be classified as cytotoxins (hemolysins,
leukotoxins, and leukocidins) and superantigenic toxins (enterotoxins, exfoliative tox-
ins, and toxic shock syndrome toxin [TSST]). In our study of cytotoxins, beta hemolysin
(hlb), in accordance with the results of a recent study (31), was the most frequent and
mainly detected in species of clade B (SAG, SHY, and SCH) and clade D3 (SEP, SCR, and
SCI), whereas delta hemolysin (hld) was only detected in 16% of SWA isolates. Alpha
and gamma hemolysins were not detected in any of our NAS isolates. A similar study
in NAS of human and bovine origin, conducted in Iran, detected the presence of hla,
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hlb, and hld and the absence of hlg in bovine species (91). Similarly, both hla and hlb
were not detected in 76 bovine NAS isolates, although that study was limited to one
herd in China (28) and genes for delta and gamma hemolysin were not included.
Recently, in India, gamma hemolysin gene was present in 10 bovine NAS species;
however, other hemolysin genes (hla, hlb, and hld) were not tested (39). None of the
leukocidins (lukM, lukF-like, lukS-PV, and lukF-PV) or leukotoxins (lukDE) were detected
in our study. However, the presence of lukD in one isolate of bovine SSI was reported
recently (31). Recently, the pvl gene was reported in a few NAS isolates (4/62) in India
(39). It is noteworthy that Panton-Valentine leukocidin was strongly active against
human neutrophils but only weakly active against bovine neutrophils (92–94); there-
fore, its absence in the present study, in agreement with the results of a recent study
(31), was not surprising. Inconsistencies with other studies might have been due to
methodical differences and/or inclusion of isolates from different geographical niches/
areas. Of four exfoliative toxin genes, eta was detected in all isolates of SAG, SHY, and
SEQ, whereas etb was only in SAG (8%) and etc and etd were not detected in any NAS
species in our study. Previously, etb was detected in SAG (31); however, eta, etc, and etd
were not tested in this study. The etd was detected in SXY (95), and in SAG and SHA (39)
isolated from milk from cows with mastitis. We also detected the presence of six (esxA,
esaA, esaB, essA, essB, and essC) type VII secretion system (T7SS) genes in multiple
species. T7SS is a protein secretion pathway in Gram-positive bacteria (96–98). In SAU,
T7SS is dispensable for laboratory growth, but it is essential for virulence (97, 99, 100).
The six genes detected in our study code for core components of the secretion
apparatus (97, 100). On the basis of the presence of all core genes of T7SS system, we
inferred that these genes may have important roles, although further characterization
is needed.

Alpha-type phenol-soluble modulins (PSMs) were not detected in any NAS species,
consistent with previous findings, as �-type PSMs are considered more aggressive, and
have mostly been associated with more virulent SAU strains (101). According to their
length, PSMs can be classified as �-type (�20 to 25 amino acids) or �-type (43 to 45
amino acids). In our study, most NAS species contained �-type PSMs, considered less
aggressive forms of PSMs. Similarly, in previous studies, SEP produced �-type but not
�-type peptides (102–104). PSMs have recently emerged as a novel toxin family of
staphylococci and are considered major determinants of SAU virulence (94, 102, 105).
PSMs have multiple roles in staphylococcal pathogenesis, including lysis of red and
white blood cells, development of biofilm, and stimulation of inflammatory responses.
Since PSM genes are encoded within the core genome, they are present in virtually all
Staphylococcus species (102, 106, 107). In contrast to PSMs being present in all staph-
ylococci, PSM� were not detected in three species of clade A (SVI, SFL, and SSC) and
two species of clade E (SAR and SKL). However, the absence of these genes may have
been due to limitations of similarity search methods. Although not true for �-type
PSMs, as they have been detected by similarity searches (107), PSM�, because of their
short size, often do not yield meaningful results in similarity searches (102, 107).

Much of the toxicity of staphylococci can be attributed to superantigens. Among the
superantigens, toxic shock syndrome toxin (tsst) gene was not present in any NAS
species. This was consistent with several other studies (28, 108). Although tsst is mainly
detected in SAU, the presence of this gene in NAS has been reported (39, 109).
Enterotoxins and staphylococcal exotoxins, identified originally from SAU, have been
studied extensively in staphylococcal isolates originating from humans (110, 111) and
animals (108, 112, 113) and in animal-derived food products (114–116). Enterotoxins
produced by some staphylococcal species, apart from interrupting host immune re-
sponses, also cause food poisoning. Therefore, the presence of these toxins in milk is
of great concern for the dairy industry (115, 117, 118). In most studies, prevalence of
enterotoxins was determined for NAS as a group, ignoring species-specific prevalences
(108, 112, 113). In our study, 22 NAS species did not contain any enteroexotoxin genes.
Interestingly, all enterotoxins containing species belong to clade B of NAS (32). Unlike
most other bovine NAS studies (39, 108, 113), sea, one of the classical enterotoxins, was
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not detected in any of our isolates. The absence of sea in NAS and in bovine NAS
specifically has been reported previously (28, 119).

All isolates of each NAS species contained on average 30 or more VF genes, with the
highest virulence potential (defined by total number of VFs), assigned to SAG, SHY, and
SCH (clade B), largely due to exotoxins, host evasion and capsular genes, followed by
SPA and SEP (clade D) and SAR and SXY (clade E). Virulence potential was lowest for SFL
(clade A) and species of clade E (SAC, SSU, and SNE), which all contained �21 VF genes.
However, when associations between the total number of genes and disease severity
(SCC category or presence of CM) were assessed, there was no significant association
of the total number of genes with disease severity (Table 1). Notwithstanding, the mere
presence of genes does not guarantee their expression (120). Additionally, many other
factors (e.g., host environment, nutritional status, presence of other competing mi-
crobes, and host genetics) have crucial roles in successful colonization, persistence, and
pathogenicity of mammary pathogens. For example, conversion of nonpathogenic
bacteria into invasive pathogens in immunocompromised hosts has been reported (13,
121). Pathogenesis is complex and often involves an organized and systematic partic-
ipation of various VFs to establish disease. Often VFs complement each other to
promote pathogen colonization and persistence of disease (13).

NAS isolates clustered according to their distinct species when analyzed by t-SNE
and in dendrograms created by Ward clustering and complete-linkage clustering
methods, indicating that isolates from each NAS species are distinct and may represent
distinct pathogens. Thus, effects of NAS on udder health should not be assessed as a
single group; rather, they should be characterized according to individual species.
Intermixing of various NAS species observed in t-SNE plot corresponded with phylo-
genetic relationships of these species. For example, an intermixed cluster of SAG and
SHY and of SVI, SFL, and SSC reflects their close evolutionary relationship, as evident in
phylogenetic trees (32).

We also computed the difference in gene associations among NAS species and for
isolates from low, medium, and high SCC and CM. Differences in associations for
individual NAS species and isolates from various inflammatory responses suggest
complex interplay among virulence genes in causing disease. Unraveling these inter-
actions will be important to elucidate distinctive pathogenic mechanisms of individual
NAS species and assessing species-specific effects on udder health. However, caution
should be exercised in predicting synergistic functions of genes, solely based on
genetic studies, as expression of one gene could have antagonistic effects on other
genes (13), as demonstrated for luk-PV and lukED (122), where expression of luk-PV
inhibited expression of lukE and lukD genes.

Although we completed the largest VF screening of all known NAS species isolated
from dairy cow’s milk, our study also had some limitations. Identification of VFs based
on genetic similarity could be problematic for two reasons. First, we assumed a high
level of sequence conservation signified conserved function. Identification and predic-
tion of functions of NAS VFs were extrapolated from well-characterized analogues in
SAU or from NAS of human origin. However, SAU VF genes may have niche-adapted
functions, impacting their roles in virulence. Second, similarity-based identification
between two genes may change over time. For example, if another gene with higher
similarity was established as a separate VF gene, it would alter frequency distributions
in our results. Furthermore, the presence/absence of virulence-associated genes may
not directly correlate with pathogenesis and severity of disease, since in addition to
expression of these genes, host environment and host genetics also have major roles
in disease development and progression (13). Additionally, apart from the presence or
absence of VF genes, mutations in regulators, such as two-component systems, are
often involved in increased virulence (13), which were not investigated in this study.

MATERIALS AND METHODS
Selection of isolates. A total of 441 NAS isolates were selected for whole-genome sequencing (WGS)

from a collection of 5,507 isolates as described previously (32). The milk samples were not collected
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specifically for this study, rather the isolates were later selected from an already existing collection.
Originally, milk samples were collected in 2007 to 2008 as described previously (123), and they were
stored at the Mastitis Pathogen Collection of the Canadian Bovine Mastitis and Milk Quality Research
Network (CBMQRN). The SCC was measured using the Fossomatic method (Fossomatic 4000 series; Foss
Electric, Hillerød, Denmark) within 5 days after sample collection (123). Milk samples were collected from
87 herds distributed over four geographic regions encompassing Atlantic Canada (Nova Scotia, Prince
Edward Island, New Brunswick), Québec, Ontario, and Western Canada (Alberta) (123). Isolates included
68 NAS isolates from CM cases (defined as abnormal milk or severe clinical signs), 26 isolates with a
multidrug-resistant (MDR) phenotype (124), 1 isolate per cow of uncommon species (defined as species
isolated from fewer than 20 cows), and 1 randomly selected isolate per cow for all other species (Table 2).

DNA extraction and whole-genome sequencing, assembly, and annotation. Genomic DNA
extraction, WGS, and genome assembly and annotation for 441 NAS isolates were performed as
described previously (32, 125). Briefly, DNA was extracted with DNeasy Blood & Tissue kit (Qiagen,
Toronto, ON, Canada). Quality and DNA concentrations were determined with a Qubit 2.0 fluorometer
(Invitrogen, Burlington, ON, Canada). Sequencing libraries were prepared with an Illumina Nextera XT
DNA library preparation kit (Illumina, San Diego, CA, USA). Paired-end sequencing (2 � 250 bp) was
performed on the Illumina MiSeq platform (Illumina). An in-house pipeline, implemented in Snakemake
workflow engine (126), was used to assemble and annotate genomes. Adapter sequences from the raw
reads were removed using cutadapt (127), implemented in Trim Galore! 0.4.0. De novo assembly of these
genomes was performed with Spades version 3.6.0 (128, 129). The quality of each assembled genome
was assessed using Quality Assessment Tool for Genome Assemblies (QUAST) (130). Gene annotations for
all genomes and gene predictions for contigs of �200 bp were done with Prokka 1.11 (131).

Identification of virulence factors in NAS genomes. To ensure comprehensive analysis of all VFs
reported for staphylococci, a comprehensive VF data set of staphylococci (CVFS) was created (see Data
Set S1 in the supplemental material). For this data set, VF sequences were obtained from publicly
available databases, including the VFDB database (132), the Victors database (http://www.phidias.us/
victors/), the PATRIC database (133), and phenol-soluble modulin sequences from the UniProtKB data-
base (134). To identify VFs in NAS genomes, local “blastdbs” of individual NAS species as well as a
combined blast database of all 441 NAS genomes were created with the “makeblastdb” application from
BLAST� 2.5.0 (135). All VF sequences from CVFS were blasted against NAS genomes by conducting
BLASTp searches, and a single best hit for each VF query from each NAS genome was selected as a final
hit. Homology between query protein sequences and blast hits was determined by calculating H scores
(124, 136). The H scores between protein sequences, labeled Ha (where a represents amino acid) were
calculated using the following formula: Ha � VFid � Lm/Lq (124, 136), with VFid representing the level

TABLE 2 NAS isolates grouped according to species and inflammation groups

NAS species
No. of
isolatesa

% of
isolates

No. of isolates in the following group:

Low SCC Medium SCC High SCC
Clinical
mastitis

S. agnetis 13 2.9 2 1 8 2
S. arlettae 15 (1) 3.4 9 1 4 1
S. auricularis 2 0.5 2
S. capitis 22 5.0 11 10 1
S. caprae 1 0.2 1
S. chromogenes 83 (13) 18.8 33 7 20 23
S. cohnii 24 (2) 5.4 16 7 1
S. devriesei 8 1.8 4 2 1 1
S. epidermidis 27 (1) 6.1 14 2 7 4
S. equorum 17 3.9 15 1 1
S. fleuretti 2 0.5 2
S. gallinarum 21 4.8 12 1 7 1
S. haemolyticus 28 6.3 12 2 10 4
S. hominis 11 2.5 7 1 3
S. hyicus 3 0.7 1 2
S. kloosii 1 0.2 1
S. nepalensis 2 0.5 2
S. pasteuri 6 1.4 2 1 3
S. saprophyticus 16 3.6 9 1 6
S. sciuri 29 6.6 13 2 6 8
S. simulans 42 (3) 9.5 16 2 8 16
S. succinus 15 3.4 11 3 1
S. vitulinus 6 1.4 4 2
S. warneri 19 (1) 4.3 10 5 4
S. xylosus 28 (5) 6.3 12 7 7 2

Total 441 100 220 40 117 64
aValues in parentheses indicate the numbers of MDR isolates sequenced.
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of BLASTp identities between the VF query sequence and identified protein sequence, articulated as a
frequency ranging from 0 to 1, Lm representing the length of the matching sequence from the hit, and
Lq denoting the length of the query sequence.

A cutoff 30% sequence similarity and 50% query length coverage were used for initial searches (124,
137–139). All genomic hits that met the minimum cutoff for each individual query were selected at this
stage. A final blast hit table containing all possible hits for all query sequences from all NAS genomes was
imported into R v.3.4.2 (140). Hits from each query sequence were then arranged according to Ha score,
using “dplyr” version 0.7.2 in R (141). From this list, only hits with the highest Ha score (highest sequence
similarity and query length coverage) were selected as potential VFs in NAS genomes and the rest were
discarded. In order to prevent one VF query returning hits to two different genes within a particular
genome, only the highest scoring hit selected based on Ha score was retained (124). After identification
of putative NAS VFs, to confirm orthology between identified putative NAS VF and CVFS sequences,
reciprocal blast searches between putative NAS VFs and the CVFS database were performed (142).
Putative NAS VF sequences that failed to match with corresponding VFs from the CVFS database as the
best hit in reciprocal blast searches were not considered true orthologues and were excluded from
further analyses.

Classification and distribution of virulence factors. A total of 191 VFs were classified into five
functional categories: adherence (n � 28; Fig. 1A), exoenzymes (n � 21; Fig. 2A), host immune evasion
(n � 20; Fig. 3A), iron uptake and metabolism (n � 29; Fig. 4A), and toxins (hemolysin, leukocidins,
leukotoxins, toxic shock syndrome toxin, exfoliative toxins, type VII secretion system genes, phenol-
soluble modulins, enterotoxins, and exotoxins) (n � 93; Fig. 5 and 6). Distributions of each of these VFs
in all NAS isolates were determined by calculating the proportion of isolates in which they were
identified.

For ease of reporting, 25 non-aureus staphylococcal species were abbreviated as follows: Staphylo-
coccus agnetis � SAG, Staphylococcus arlettae � SAR, Staphylococcus auricularis � SAC, Staphylococcus
capitis � SCI, Staphylococcus caprae � SCR, Staphylococcus chromogenes � SCH, Staphylococcus cohnii �
SCO, Staphylococcus devriesei � SDE, Staphylococcus epidermidis � SEP, Staphylococcus equorum � SEQ,
Staphylococcus fleurettii � SFL, Staphylococcus gallinarum � SGA, Staphylococcus haemolyticus � SHA,
Staphylococcus hominis � SHO, Staphylococcus hyicus � SHY, Staphylococcus kloosii � SKL, Staphylococ-
cus nepalensis � SNE, Staphylococcus pasteuri � SPA, Staphylococcus saprophyticus � SSA, Staphylococcus
sciuri � SSC, Staphylococcus simulans � SSI, Staphylococcus succinus � SSU, Staphylococcus vitulinus �
SVI, Staphylococcus warneri � SWA, and Staphylococcus xylosus � SXY.

In the figures (Fig. 1A, 2A, 3A, 4A, 5, and 6), these 25 NAS species are grouped into five distinct clades,
according to phylogenetic placement (32).

Associations between virulence factors. Plots were generated to determine associations among
genes of five VF functional categories and between VF functional categories. Matrices of associations
among VFs were computed using the phi coefficient (vcd package) in R v.3.4.2 (143). Before generating
plots, VFs not identified in any NAS isolates were excluded from the data set. For visualization, resulting
matrices were plotted using the “corrplot” package in R (144). Association plots were also generated,
after classifying isolates into four SCC classes defined according to the inflammation severity score from
1 to 4, where 1 corresponds to low SCC (� 150,000 cells/ml), 2 is average SCC (150,000 – 250,000
cells/ml), 3 is high SCC (�250,000 cells/ml), and 4 corresponds to isolates from clinical cases of mastitis.
In all association plots, positive associations are shown in blue, and negative associations are shown in
red. Positive and negative associations were defined as the chance that if one gene was identified, then
the other gene would be more or less likely identified in the same isolates, respectively.

Association between the presence of virulence factors and mastitis. Relationships between four
SCC classes and VFs were examined after dichotomizing genes by presence or absence in all isolates.
Mixed-effects ordinal logistic regression models were used to compare the odds of having an increased
inflammation severity score with an increase in the total number of VFs. Ordinal logistic regression
models the log odds of having more severe inflammation compared to a reference category. The models
had the form:

ln �oddss� � �s � �X � 	i

where oddss is the odds of interest and represents the probability of score � s divided by the probability
of score � s, �s is the odds of having score � s divided by the odds of having score 	 s, � is the
regression coefficient associated with either the total number of virulence factors or the number of
virulence factors within a given functional category, and 	i is the random-effects term to account for
within-herd correlations.

A mixed-effects linear regression model was used to determine the association between the total
number of virulence factors or the number of virulence factors within a given functional category and
the natural logarithm of the SCC of the sample. This model had the form:

ln �SCC� � �X 
 � 
 	i

where � is the regression coefficient associated with either the total number of virulence factors or the
number of virulence factors within a given functional category, 	i is the random-effects term to account
for within-herd correlations, and � is the residual error.

Significance was assessed using a cutoff P of �0.05, and the strength of the association and model
fit were assessed using the log likelihood for the ordinal logistic regression models, and the adjusted
multiple-R2 for linear regression models. All statistical analyses were conducted using the “ordinal”
package (145) in R v.3.4.2 (140). To determine whether VF distributions were associated with four SCC
classes, agglomerative dendrograms were generated with the “AgglomerativeClustering” module, spec-
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ifying four clusters (low SCC, medium SCC, high SCC, and CM) using either Ward clustering (based on
analysis of within-cluster variances) or complete-linkage clustering (based on maximum within-cluster
distances) methods. After dendrograms were generated, labels of SCC level were applied, and their
distribution among four clusters was visually examined. Clustering was assessed using the “Scikit-Learn”
module in Python 3.6 (146). A decision tree based on the presence or absence of VFs was also
constructed using the “DecisionTreeClassifier” module in “Scikit-Learn” (146). A tree of depth 9 was used
to determine whether specific combinations of VFs could be used to predict CM. Model generalizability
was assessed by calculating the classification accuracy of the model for the training set and comparing
it to the accuracy of the model for a previously unseen validation set. To visualize similarities in VF
distributions between isolates, t-distributed stochastic neighbor embedding (t-SNE) (147) was conducted
using the “manifold.t-SNE” module within “Scikit-Learn” (146). Distributions were reduced to two
dimensions and plotted such that distances between points were proportional to relative differences
between isolates. Plots were labeled with CM or NAS species and visually examined to find patterns in
clusters in relation to either label.

Conclusions. On the basis of whole-genome sequencing (WGS) data of 441 distinct NAS isolates, we
established a comprehensive VF gene (n � 191) profile of 25 NAS species and determined associations
among VF genes. The VF profiles of various NAS species and their VF gene associations differed,
indicating their existence as distinct pathogens. Isolates from the same species usually had the same
virulence potential, with variation within species being smaller than variation between species. The
variation of VF genes among isolates of the same species may represent evolution and adaptation to
distinct niches or environments within the host. We also investigated the link between VF genes and
inflammatory response of the mammary gland but failed to detect a clear link between VF genes and
mastitis. Regardless, comprehensive studies such as ours provide foundational genetic knowledge to
design and conduct further experiments, focusing on understanding the synergy between VF and roles
of individual NAS species in IMI and characterizing species-specific effects on udder health. To the best
of our knowledge, this was the first study to determine the distributions of 191 virulence genes in 25 NAS
species isolated from bovine IMI.

Data availability. All whole-genome sequencing data used in this study are available (with no
restrictions) from NCBI under BioProject ID PRJNA342349.
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