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Summary  
We analyzed the frequency of somatic mutation in immunoglobulin genes from hybridomas 
that secrete anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) monoclonal antibodies. A high frequency 
of mutation (3.3-4.4%) was observed in both the rearranged VH186.2 and VM genes, indicating 
that somatic mutation occurs with similar frequency in these genes in spite of the absence of 
an intron enhancer in X1 chain genes. In contrast to the high frequency in J-C introns, only 
two nudeotide substitutions occurred at positions -462 and -555 in the 5' noncoding region 
in one of the M-chain genes and in none of the other three so far studied. Since a similar low 
frequency of somatic mutation was observed in the 5' noncoding region of inactive ~2-chain 
genes rendered inactive because of incorrect rearrangement, this region may not be a target or 
alternatively, may be protected from the mutator system. We observed a low frequency of nudeotide 
substitution in unrearranged VM genes ('~1/15 that of rearranged genes). Together with previous 
results (Azuma T., N. Motoyama, L. Fields, and D. Loh, 1993. Int. Irnmunol. 5:121), these findings 
suggest that the 5' noncoding region, which contains the promoter dement, provides a signal 
for the somatic mutator system and that rearrangement, which brings the promoter into close 
proximity to the enhancer element, should increase mutation efficiency. 

T he Ig gene family consists of H, K, and )~ chain genes, 
each of which has a unique structure in terms of the 

length of the J-C introns, and the number and location of 
enhancer dements (1-6). H and K chain genes contain two 
enhancer dements, one in the J-C intron (intron enhancer) 
and the other, 3' to C exons (3' enhancer), whereas the 
X chain gene lacks an intron enhancer (4-6). In a previous 
paper (7), we showed that a reporter gene, chloramphenicol 
acetyl transferase (CAT) 1, was recognized as a target by the 
somatic mutator system when its expression was controUed 
by the VH promoter and IgH intron enhancer. Although 
the mechanism of somatic mutation is not yet understood, 
these results suggest that the promoter and enhancer elements, 
but not the V-(D)-J exon, are essential for induction of so- 
matic mutation. Since )~ chain genes lack the intron enhancer, 
it is possible that the frequency of somatic mutation is different 
between H and ~, chain genes. Cumano and gajewsky (8) 
reported a higher frequency of somatic mutation in the VH 
gene than in the VX1 gene from idiotype suppressed C57BL/6 

1 Abbreviations used in thisfal, er: CAT, chloramphenicol acetyi transferase; 
CGG, chicken gamma globulin; NP (4-hydroxy-3-nitrophenyl)acetyl. 

mice after immunization with NP-chicken gamma globulin 
(CGG). The question arose as to whether such a skewed ex- 
pression of somatic mutation was due to a difference in the 
effectiveness of promoter and enhancer functions or due to 
the use of these idiotypically suppressed mice. We addressed 
this question by comparing the DNA sequences of VH-D- 
JH and VM-JM genes from the same hybridomas prepared 
from mice immunized with only NP-CGG. 

If the promoter and enhancer play a critical role in expres- 
sion of somatic mutation, it was expected that these regions 
would not be a target for somatic mutation. A low frequency 
of somatic mutation was shown in the promoter region of 
VH genes, which suggests the importance of its transcrip- 
tion (9-11). To estimate the 5' boundary for somatic muta- 
tion in X1 chain genes, we first examined its frequency in 
the promoter region. However, an analysis using Ig genes 
from Ab-producing hybridoma ceils would not be rdevant 
because only genes with a promoter that retains this activity 
would be selected. Therefore, we analyzed the DNA sequences 
of the promoter region in ~2 chain genes that were inactive 
because of incorrect recombination in order to determine 
whether the lower frequency was related to gene expression. 

F'inally, we examined DNA sequences of unrearranged VM 
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genes. It is important to analyze somatic mutation in unrear- 
ranged V genes in order to determine whether the promoter 
dement alone, without cooperation of the enhancer, is capable 
of inducing somatic mutation. Somatic mutation was ob- 
served in unrearranged VX1 and VX2 genes from a myeloma 
MOPC315 which secretes IgAX2 myeloma protein (12), al- 
though none was observed in unrearranged V genes of other 
plasmacytomas (13-16). Since these studies were performed 
using plasmacytomas and since the number of somatic muta- 
tion in the rearranged genes used as controls was rather low, 
we thought it necessary to determine whether somatic mu- 
tation occurs in unrearranged genes using hybridomas with 
a high frequency of somatic mutation in their rearranged 
genes (17). 

Analyses of the frequency and location of somatic muta- 
tion are obviously important to further elucidate the somatic 
mutation mechanism (9, 10, 18-20). In this study, we com- 
pared the frequency among Ig genes from hybridomas in which 
rearranged V M  genes were shown to have a high level of 
somatic mutation (17). 

Materials and Methods 

Hybridoraas. Hybridomas producing anti-NP mAbs were pre- 
pared at 5 wk (5E2, 72bM), 12 wk (C6-8-2, 71M), and 42 wk 
(E3-19, 3~2aM; El1-14, ~/2aM) after immunization of C57BL/6 
mice with NP-CGG (17, 21). 

PCR, Clonin~ and Sequencing. DNA was prepared from liver 
and hybridoma cells. Genomic DNA was amplified in a thermal 
cycler (Perkin-Elmer Corp., Norwalk, CT) using a Gene-Amp kit 
(Cetus, Norwalk, CT). The oligonucleotide primers used for the 
cloning ofVM, V)x2 and VH186.2 genes are shown in Fig. 1. Since 
DNA sequences for the 5' noncoding regions flanking VX1 or V)~2 
genes from BALB/c mice had been determined (Motoyama, N., 
unpublished results), the primers which crosshybridize to C57BL/6 

DNA were synthesized. For amplification, either liver or hybridoma 
DNA (0.1 #g) was mixed with appropriate primers shown in Fig. 
1 at concentrations of 0.5/~M. The thermal protocol included 30 
cycles of denaturation at 940C for 1 min, primer annealing at 50~ 
for 1 rain, and extension at 72~ for 2 min. The amplified DNA 
was digested with EcoRI and subjected to 1% agarose gel elec- 
trophoresis. The DNA was purified with silica beads and ligated 
with pBluescript SKII(+) and the ligation mixture was transfected 
into Escherichia coli XL1-Blue. DNA from putative recombinants 
was analyzed by restriction enzyme digestion to confirm that a 
fragment of the appropriate size had been cloned. 

Cloned DNA was sequenced by the dideoxy method with 
primers, as shown in Fig. 1. To minimize cloning artifacts, PCR 
and cloning were performed twice independently. At least two to 
six clones from each PCR were subjected to sequencing, but only 
the consensus nucleotide sequences produced in independent ex- 
periments are presented in this paper. In some experiments, DNA 
sequences were analyzed using an automatic 373A sequencer and 
a Taq Dye Primer Cycle Sequencing Kit, T3/T7 (Applied Bio- 
systems, Foster City, CA). 

Results 
Fig. 2 shows the DNA sequences of rearranged VH-D-J 

genes from hybfidomas secreting anti-NP mAbs, E3-19, Ell- 
14, 5E2, and C6-8-2. As has been shown previously (22, 23), 
the major population of anti-NP Abs bearing ),1 chains from 
C57BL/6 mice use VH186.2, DFL16, and J2 gene segments. 
In fact, all four mAbs sequenced were encoded by VH186.2 
and J2 gene segments; E3-19, El1-14, and 5E2 use DFL16, 
and C6-8-2 uses DQ52 (24). The DNA sequences were com- 
pared with the gennline structure of respective gene segments. 
12-29 nucleotide substitutions arising from somatic muta- 
tion were observed in VH genes. These occur predominantly 
in the CDR1 and CDR2. Previously, we examined the DNA 
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L 

1. 5'-ACAGAATrCTATGCCCACGTTGAAGACAAA- 3 ' 
2.  5 ' - CATGAATrCAGCACCTCAAGTCI"FGGAGA G- 3 ' 
3. 5'-AAACATAGGGTGACAGAATCT- 3 ' 
4 .  5 '  -AGAAGTTAATGTGTATATA GC - 3 ' 
5.  5 '  - TGTrCATC CCAATGGTCAG'I-r - 3 ' 
6.  5 ' - TACTAAGAACAGAGCTCAGGG - 3 '  
7. 5 ' - CATGAATTCACTCAATCCCAAACTGGTGGAAGT- 3 '  
8.  S ' -ATrG'I-rGCATACCCACTG - 3 '  
9.  5 ' -  CTGCTGACCAATATTGAAAAG - 3 '  

V J 

J J ~  rearranged X 1 

,L 1 unrearranged 

~-,o 
I ~.~__13~14 rean'anged Z 2 

V DJ 

I l l  rearranged VH 186.Z 

10.  5 ' -  CACGAA'I-rCGTAGCCACCTGTTAAGAAGA- 3 ' 
11,  5 '  -CCGGAATrCCATTCCAI-FI'CTCAATCATC - 3 ' 
12.  5 ' - GGCGAA'I'rCCATTI'CCCAGATTTAGA CTC - 3 ' 
13.  5 ' -  CATGAATrCTATTAGGAA GAA GCTTTGAAA - 3 ' 
14.  S' -CTCGAA'ErCAGACCCTTGCAAGACAACAAG- 3 ' 
15. $ ' - CCTGACCCAGATGTCCCTTCTI'CTCCAGCAGG - 3 ' 
16. 5 '  - CCCCGAA'n'CATGGGATGGAGCTGTATCAT- 3 ' 
17. 5 ' -GGGCTCGAGGGTGTCCCTAGTCCI"rCATGACC - 3 ' 

Figure 1. Schematic presenta- 
tion of VX and VH genes and oli- 
gonucleotide primers used for 
PCR, cloning, and sequencing. 
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50 100 

GERMLINE ATGGGATGC, A GCTGTATCAT ~ ~ CTACAGGTAA GGGGCTCACA GTAGCAGGCT TGAGGTCTGG ACATATACAT ~ T  

E3-19 .................................................................................................... 

E11-14 .................................................................................................... 

5E2-I .................................................................................................... 

C6-8-2 .................................................................................................... 

150 200 

GERRLINE GACATCCACT TTGCL-~-~-~L~T CTCCACAGGT G T C C A ~  ~ GCAGCAGCCT ~ ~ C  ~ 

E3-19 .................................................................... A ........................... T--- 

Eli-14 ......................................................................... C ..... T ............ CC--T--- 

5E2-I ..................................................................... G .............................. 

C6-8-2 .................................................................................................... 

250 300 

CIRRI 

GERMLINE CCTGCAAGGC TTCTGGCTAC ACCTTCACC~ G C T ~ T  GCA~QGGTG AAGCAGAGGC CTGGACGAGG CCTTGAGTGG A ~  TTGATCCTAA 

E3-19 ......... T .......... T ........ G ..................... GC ................................ CC ............. 

EII-14 ......... G ................ C--- A .................... C ................................................ 

5E2-I ............... C .............. A ..... T--- A ............... T ........................................... 

C6-8-2 ........ A ................. C--T A ..................... T ............................................ ~-- 

350 400 

CDR2 

GERMLINE TAGTGGTGGT ACTAAGTACA ATGAGAAGTT ~ G  GCCACACTGA CTGTAGACAA ACCCTCCAGC ACAGCCTACA TGCAGCTCAG CAGCCTGACA 

E3-19 G ..... A--- CT--GA--TC ....... T ....... CT-G ....... T ........... G .......... T ......... T --G--G .... G ......... 

Eli-14 ....... TT- -T--G---TG ...... GA ....... C ........................ G ....................... A .............. G 

5E2-1 ....... TA ...... A .......... G ........ A ................................. T .............................. 

C6-8-2 -G ............ G ..... G ................................. C ............. A~ --T ........... A ............... 

CDR3 

' DFLI6.1 I JH2 

GERMLINE TCTGAGGACT CTGCGGTCTA TTATTGTGCA AGA ~I~TATTACTACGGT~AGCTA~ TACT TTGACTACTG GGGCCAAGGC ~CCACTCTCA CAGTCTCC 

E3-19 ...................... T ......... G GG--GT .... C-T---T- C ......... T ............................... 

Eli-14 ..... C ................ T ......... G GG--G ....... T---T- C ......... T ............................... 

5E2-1 ............................. G ............. C-G .... T ....................................... 

DQ52 
~ d  

C6-8-2 ................................. GGAA ........ AAC C .......................................... 

"---I 
GERMLINE TCA 

E3-19 --- 

El1-14 -- - 

5E2-I - - - 

C6-8-2 --- 

Figure 2. Nucleotide sequences of the Leader-V intron and V-D-J exon expressed in anti-NP mAbs are aligned with the germline sequence of VH186.2 
and J2 genes. Since 5E2, E3-19, and El1-14 were encoded by DFL16.1, whereas C6-8-2 was encoded by DQ52, corresponding germline sequences are shown. 

sequences of rearranged VM-JM genes in the same hybridoma 
used in the present experiment and found 9-24 mutations 
also predominantly in CDR1 and CDR2 of VX1 genes (17). 
Therefore, the number and the distribution of somatic mu- 
tations in VH genes were similar to those in their VM gene 
counterparts in the same Ab-producing cells. 

Fig. 3 shows the DNA sequences of the 5' noncoding 
regions in active X1 chain genes. In contrast to DNA sequences 
of the coding region or of the JX1-CX1 intron (17), only 
two mutations at position -462 (T to G) and -555 (T to 
C) from the start codon, A T ,  were observed in El1-14. No 
substitutions, deletions, or additions of nucleotides were de- 
tected in the region from -1,059 to 90 of E3-19, 5E2, and 
C6-8-2. The frequency of somatic mutation was calculated 
to be 0.04%, which is '~1/30 of that observed in the JX1- 
CM noncoding region. Since we prepared hybridomas se- 
creting anti-NP mAbs, the genes encoding these Abs may 
be positively selected, that is, the genes in which the pro- 
rooter element loses function by somatic mutation would not 
be capable of Ab synthesis. Using inactive VX2-JX2 genes 
with a frequency of somatic mutation similar to that of ac- 
tive VX1-JX1 genes (17), we examined whether such muta- 
tion occurs in the region 5' upstream of VX2. Nucleotide 
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sequences of inactive VX2-JX2 genes from E3-19 and El1-14 
are compared with those from liver cells in Fig. 4. The se- 
quences of coding regions were in agreement with those 
reported previously except for the position 444, at which we 
had assigned T in a previous experiment (17) but found to 
be C in this experiment. In any case, the sequences of coding 
regions showed a high frequency of nudeotide substitution. 
On the other hand, only two nucleotide substitutions were 
observed in the 5' noncoding regions at positions -119 
(T to C) and -436 (A to C) for E3-19, and -99 (A to G) 
for El1-14. Although the number of samples analyzed was 
limited because of the low numbers of rearranged genes in 
both X1 and X2 loci in one cell (one was active and the other 
inactive) (25), it was evident that somatic mutation occurs 
less frequently (0.4%) in the 5' noncoding region of inactive 
~2 genes from about - 500 bp to the initiation codon, similar 
to active X1 genes. 

The distribution of somatic mutation in X1 chain genes 
is summarized in Fig. 5. The published results are also in- 
cluded in this figure (17). The highest frequency of somatic 
mutation occurred in the VX1-JX1 coding region, followed 
by gradually lower levels along the J-C intron and even into 
the CM region. On the other hand, the frequency of so- 
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G E R M L I ~  
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GERMLINE 
E3-19 
Eli -14  

GERMLINE 
E3-19 
Eli -14  

-450 
CATTT CCCAGATTTA GACTCATTAT ACTI~ACACA TTILATCTTCT TCCATGAACT C=~CCATTGGA ATC~CAI~AC ACAGTAT~%G T C A ~ C  
........................................................... C ................................... 

......................................................................... G- .................... 

&TAATTAATG TAGTTACTGG AAACTATAAA AACTTTC, CTT TTTTCTCCTT ATTCATTCCT TTACACTGGT CTACATATTT GTAATGCT@T GAGTAG'~GCA 
.................................................................................................... 

.................................................................................................... 

-300 -250 
ACACATGGTG ACACATGATT TTCATTACTA TTGTCACTCT AAAATATTGA TAGGATGTGT TTATGACTCT GGATAAGCCT GAAAAATTGA TGATTAATGC 
.................................................................................................... 

.................................................................................................... 

-200 -150 
CCCTGAGCTC TGTTCTTAGT AACATGTGAA CATTTATTTG TGTCAGTGTA GTAGATCTCA CGTGACATCT TATAATAAAC CTGTAAATGA AAGTAATTTG 
................................................................................. C .................. 
.................................................................................................... 

- I00 -50 
CATTACTAGC CCAGCCCAGC CCATACTAAG AGTTATATTA TGTCTGTCTC ACTGCCTGCT GCTGACCAAT ATTGAAAATA ATAGACTTGG TTTGTC~ATT 
.................................................................................................... 

-G .................................................................................................. 

5O I00 
ATGGCCTGGA CTTCACTTAT ACTCTCTCTC CTGGCTCTCT GCTCAGGTCA GCAGCCTTTC TACACTGCAG TGGGTA~ ACAATACACA TCTTGTCTCT 
.... T ............................................. A ................... G ............................. 

............................................... A .................................................... 

150 2OO 
GATTTGCTAC TGATGACTGG ATTTCTTACC TGTTTGCAGG AGCCAGTTCC CAGGCTGTTG TGACTCAGGA ATCTGCACTC ACCACATCAC CTGGTC, GAAC 

.................................. C ................................................................. 
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25O 
AGTCATACTC ACTTGTCGCT CAAGTACTGG GGC~ACA ACTAGTAACT ATGCCAACTG GGTCCAAGAA AAACCAGATC ATTTATTCAC TGGTCTRATA 
..... G ...... C .......... C--A .......... T ...... C---G- T--T---T ...................................... TT-- 

............ C ................................... G- C--T---T .......... G- .............................. 

35O 4OO 
GGTGGTACCA GCAACCGAGC TCCAGGTGTT CCTGTCAGAT TCTCAC, GCTC CCTGATTGGA GACAAGGCTG CCCTCACCAT CACAGGGGCA CAGACTC, AGG 

.... A-T--- A ....... A .................... C ....... T-~ T ................. C ............................... 

................... G --T ................................................................... T ......... 

G ~ N E  ATGATGCAAT GTATTTCTGT GCTCTATC, GT ACAC, CACCCA TTTC 

E3-19 G- ............................ TT ............ 

El l-14 ...... A ..................... ~ .... ~ .......... 

Figure 4. Nudentide sequences of inactively rearranged VX2 genes in hybridomas, E3-19 and El1-14, producing anti-NP mAbs bearing X1 chains. 
The gerratine sequence obtained from liver DNA was compared with those from E3-19 and El1-14. (- - -) Nucleotides identical to the germline sequence. 

matic mutation decreased sharply 5' upstream and only two 
substitutions were observed in the 5' noncoding region of 
X1 chain genes. 

It was not known whether unrearranged V genes are a 
target in B cells in which somatic mutation is highly active. 
Therefore, we examined the unrearranged VX1 genes from 
C6-8-2, E3-19, El1-14, and 5E2. Since VX1 loci are supposed 
to be the germline configuration for both alleles in the parent 
cell (Sp2/0-Ag14), we assumed that there were three unrear- 
ranged VX1 genes in these hybridomas, two from the Sp2/0- 
Ag14 cell and one from the spleen cell (25). Primers were 
designed to amplify only unrearranged VX1 genes (Fig. 1), 
which were cloned and sequenced. Six toned from each PCR 
were subjected to sequencing and only recurrent mutations 
were considered somatic mutation. As shown in Fig. 6 A, 
eight clones from C6-8-2 showed the same nudcotide sequence 
as a germline counterpart, whereas four had two recurrent 
mutations at positions 270 and 313. Essentially similar pat- 

terns of mutation to Fig. 6 A were observed in the sequences 
from El1-14 and 5E2 in addition to Sp2/0-Ag14 (data not 
shown). Therefore, these mutations (positions 270 and 313) 
would originate from the VX1 gene of Sp2/0-Ag14 cells. In 
the case of E3-19, the recurrent mutations unique to E3-19 
were observed at positions 196, 251, 307, and 411 in two 
clones from the first PCR in addition to those shared with 
the other hybridomas (positions 270 and 313). These results 
suggest that unrearranged VX1 genes of Sp2/0-Ag14 and 
E3-19 were a target for the mutator system as in the case 
of MOPC315 (12). 

Frequencies of somatic mutation at various loci of Ig genes 
are summarized in Table 1. The average frequency in rear- 
ranged VH genes was 4.4%. This value is similar to that 
obtained for rearranged active VX1 (3.3%) or inactive VX2 
(4.2%), which is ,x,15-fold higher than unrearranged VX1 
genes. The frequency in the JX1-CX1 intron was about 1/3 
(1.1%) that of VH or VX genes, whereas that for the 5' non- 

Figure 3. Nucleotide sequences of the 5' noncoding region of active rearranged X1 chain genes from E3-19, El1-14, C6-8-2, and 5E2. 

399 Motoyama et al. 



~6- 

~4  

.~2- 

o 
-1000 

Figure S. 

, ,  I I h , , h  , , , ,  
I I I 

-500 1000 1500 

,,11 
1 

iiIll 
I 

500 
Position N u m b e r  

L V J C 

('/'bp) Distribution of somatic mutation in Xl chain genes. 
Mutation frequency (%) is the number of mutatiom per 50 bases sequenced 
and is plotted against the position number from the start codon ATG. 
For comparison, reference data (17) are included in this figure. (Bottom) 
Diagram showing rearranged M chain gene. 

coding region was 0.04%, only 1/100 that of rearranged VH 
or VX genes. It is also clear that somatic mutation occurs 
less frequently in 5' noncoding regions of inactive ~x2 chain 
genes (0.4%) than other loci. However, the frequency of mu- 
tation in the 5' noncoding region of the inactive ~2 chain 
gene is likely to be higher than that of the active M chain 
gene although only a limited number of samples was analyzed. 

Discussion 
The VH promoter and intron enhancer have been shown 

to be important in induction of somatic mutation using trans- 
genic mice carrying a reporter gene which was driven by these 
two regions (7). The finding that a non-Ig gene such as the 

CAT gene became a target of the somatic mutator system 
suggested that regulation dements such as the promoter and/or 
enhancer are involved. Since the H chain gene has an intron 
enhancer and the X1 chain does not (6), we thought it of 
interest to determine whether the frequency of somatic mu- 
tation of VH and VX in the same B cells was different. Al- 
though the frequency in VX1 seemed to be slightly lower 
than VH (4.4 compared to 3.3%), the skewed expression of 
somatic mutation in VH genes, reported by Cumano and 
Rajewsky (8), was not observed in this study. This discrepancy 
may have arisen from different immunization conditions since 
Cumano and Rajewsky used mice that had been injected with 
an anti-Id mAb, Ac38, before immunization with NP-CGG 
(8). Therefore, it is unlikely that somatic mutation occurs 
preferentially in VII genes but not in V~I genes under normal 
immunization conditions, although an intron enhancer is ab- 
sent in X chain genes (26). As shown by our group (7) and 
by Sohn et al. (27), somatic mutation was observed in trans- 
genes containing only the H chain intron enhancer, although 
the mutation rate was lower than that of complete H chain 
genes. Therefore, the intron enhancer may play an essential 
role in the induction of somatic mutation in H-chain genes, 
whereas the Y enhancer is more important in the case of X 
and K chain genes since X chain genes which lack an intron 
enhancer are able to induce mutation with a frequency similar 
to VH genes (17), and since K chain transgenes lacking the 
3' enhancer element are not (28). 

The lower frequency of somatic mutation in the 5' non- 
coding region compared with the JM-CM intron was dearly 
evident in our study. The average frequency in the 5' non- 
coding region was ~1/30 that of the JM-CM intron. Since 
the same region of inactive X2 chain genes showed a 10-fold 
higher frequency, although still lower than that of the other 
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Figure 6. Nucleotide sequences ofunrearranged VM genes from bybridoma, C6-8-2 (A) and E3-19 (B), producing anti-NP mAbs bearing X1 chains. 
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Tab le  1. Comparison of Frequency of Somatic Mutation among Ig Gene Loci 

Rearranged 

Active Inactive Unrearranged 

Cells VH V M *  5' V~2* 5' V M  

El1-14 23/433 13/441 2/1149 13/420 2/495 0/441 

C6-8-2 12/433 9/441 0/1149 - - 0/441 

5E2 13/433 12/441 0/1149 - - 0/441 

E3-19 29/433 24/441 0/1149 22/420 2/495 4/441 
S p 2 / 0  . . . . .  2/441, 

Average No. of 
mutations 19.3/433 14.5/441 0.5/1149 17.5/420 2/495 1/441 

Frequency 
(%) 4.4 3.3 0.04 4.2 0.40 0.23 

* Data taken from Motoyama et al. (17). 
t Not included for calcuhtion of average No. of mutations. 

loci, the much lower frequency of active ~,1 chain genes can 
be explained partly in terms of sdection of unmutated genes, 
since we analyzed R1 chain genes from hybridomas producing 
M chains. On the other hand, similar low frequencies in the 
5' noncoding regions of the VH gene have been reported by 
others (10, 11). In the case of H chain genes, mutation fre- 
quency decreased immediatdy 5' upstream from the cap site. 
Therefore, it can be generalized that somatic mutation occurs 
in the 5' noncoding region with a lower frequency than in 
other Ig gene loci. 

Somatic mutation was not prevented in unrearranged VM 
genes from E3-19, and results coincide with the occurrence 
of somatic mutation in unrearranged VXI and V~2 genes 
of a mydoma, MOPC315 (12). The frequency of mutation 
in unrearranged VM in our study was 0.23% which is ,,ol/15 
that of rearranged VM and of the same order as that of rear- 
ranged D-J genes (29). Since both E3-19 and MOPC315 se- 
crete Abs bearing )~ chains, it appeared that somatic muta- 
tion occurs in unrearranged V~, genes of B ceils producing 

chains. However, we found two nudeotide substitutions 
in the unrearranged VM gene in Sp2/0-Ag 14 ceils in which 
)~ locus retains the germline configuration (25). Since nine 
nudeotide substitutions were found in the inactively rear- 
ranged Jc chain gene (11), the mutator system was expected 
to be active at a specific developmental stage of Sp2/0-Ag14. 
Therefore, it can be generalized that somatic mutation occurs 
in the unrearranged V~, orB cells where the mutator mecha- 
nism is highly activated. 

No somatic mutation was found in unrearranged VH and 
V1r genes in contrast to V)~ genes (13-16). This may be ex- 
plained in terms of the different germline structure between 
the R locus and the H or K locus. The )~ locus is arranged 
as VX2/V~x/JCX2/JCM/E~2-4/VM/JCX3/JCM/EK3-1, 

where E~2-4 and EX3-1 are enhancer dements located 15.5 
kb downstream of CM and 35 kb downstream of CM, respec- 
tively (6, 30). Since these gene segments are distributed over 
a rather limited distance (•200 kb) and since two enhancer 
elements in this locus are active in both ~ and X chain-pro- 
ducing B cells, unrearranged V~, genes are thought to be 
present in the open chromatin structure to which the mu- 
tator system is accessible. This is not the case for VH and 
VK genes (31, 32). 

In a previous paper, we suggested that the signal for in- 
duction of somatic mutation resides in the promoter and/or 
enhancer but not in the V-(D)-J exon, and that targets for 
the somatic mutator system are genes existing immediately 
Y downstream of the promoter dement. The finding that 
somatic mutation was practically absent in the 5' noncoding 
region (0.04%) suggests that the binding of protein factors 
to the regulatory dements in this region may be essential 
for induction of somatic mutation. The occurrence of so- 
matic mutation in unrearranged VM genes, even though of 
low frequency (0.23%), supports the idea that the 5' non- 
coding region is able to induce mutation. Activity of the pro- 
moter would be highest when its position rdative to the en- 
hancer is optimized by recombination (28). Rogerson et al. 
(31) proposed a modal that predicted the occurrence of mu- 
tator factors that bind to the mutation initiation region (MIK) 
located upstream of promoter. Our previous and present results 
are consistent with their model, suggesting a pivotal role for 
this region in the induction of somatic mutation specific to 
Ig genes. 

Other than the 5' noncoding region, somatic mutation 
was not detected in CH and C~c loci (33). In the case of X1 
chain genes, somatic mutation occurred in VM-JM genes 
with highest frequency and decreased with distance from VM- 
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JM exon into J),I-CM intron, and was observed even in CM. 
This suggests that a specific signal for prohibiting mutation 
in the C exon does not reside in the J )d -CM intron or CX1 
exon. This may be the case for g and H chain genes and hence 
the absence of somatic mutation in CH or CK genes may 
be explained by their location some distance from the pro- 
moter elements. CH and CK exons were separated from 
V-(D)-J exons byJ-C introns of '~6.5 and 3 kb, respectively, 
which is lengthy in contrast to the short (1.2 kb) JM-CM 
intron. Therefore, it is likely that the distribution of somatic 
mutation 3' downstream is inversely proportional to the dis- 
tance from the promoter. Recently, an unusual distribution 
of somatic mutation was reported in VK12.37-JK1 gene (34). 
In this gene, somatic mutation was observed at a high fre- 
quency in the 3' flanking region rather than in the V-J exon. 

As suggested by the authors, (34) VK12.37 gene may lack 
a c/s-element or have one which is mutated and determines 
location where somatic mutation occurs. 

In conclusion, somatic mutation can be induced in V genes 
regardless of whether they are rearranged, although rearranged 
genes mutate with a higher frequency, more than 15-fold those 
of unrearranged genes. The signal for induction of somatic 
mutation may reside in the 5' noncoding region flanking V 
genes and the presence of an enhancer at the appropriate lo- 
cation would maximize promoter function. Cooperation of 
these regulatory elements should induce a high frequency of 
somatic mutation in V genes, or any genes which are regu- 
lated by these elements, in B cells after immunization with 
T-dependent antigens. 
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