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Abstract: (1) Obesity and exercise are believed to modify age-related telomere shortening by regu-
lating telomerase and shelterins. Existing studies are inconsistent and limited to peripheral blood
mononuclear cells (PBMCs) and selected solid tissues. (2) Female Sprague Dawley (SD) rats received
either standard diet (ND) or high-fat diet (HFD). For 10 months, half of the animals from both diet
groups performed 30 min running at 30 cm/s on five consecutive days followed by two days of rest
(exeND, exeHFD). The remaining animals served as sedentary controls (coND, coHFD). Relative
telomere length (RTL) and mRNA expression of telomerase (TERT) and the shelterins TERF-1 and
TERF-2 were mapped in PBMCs and nine solid tissues. (3) At study end, coND and coHFD animals
showed comparable RTL in most tissues with no systematic differences in TERT, TERF-1 and TERF-2
expression. Only visceral fat of coHFD animals showed reduced RTL and lower expression of TERT,
TERF-1 and TERF-2. Exercise had heterogeneous effects on RTL in exeND and exeHFD animals with
longer telomeres in aorta and large intestine, but shorter telomeres in PBMCs and liver. Telomere-
regulating genes showed inconsistent expression patterns. (4) In conclusion, regular exercise or HFD
cannot systematically modify RTL by regulating the expression of telomerase and shelterins.

Keywords: telomeres; telomerase; shelterin; moderate exercise; high-fat diet; Sprague Dawley rats

1. Introduction

The shortening of telomeres, protective nucleoprotein structures at the end of all
chromosomes, is a hallmark of aging that compromises genomic integrity and alters the
expression of many genes [1]. Due to the inability of the DNA polymerase to fully replicate
the 3′ end of chromosomes, telomeres progressively shorten with every cell division until
they reach a critical threshold below which they lose their DNA-protecting properties and
send cells into senescence or apoptosis [2]. Numerous studies have shown that short and
dysfunctional telomeres are linked to premature atherosclerosis, diabetes, and hyperten-
sion [3–7]. Furthermore, telomere length is inversely related to mortality risk [8–11].

Aging is an individual process that can be influenced by modifiable lifestyle factors,
such as physical activity, nutrition, stress, sleep, smoking and others [12–21]. Physical
inactivity and obesity are established triggers of metabolic dysfunction, chronic inflamma-
tion, and oxidative stress, which increase the risk of atherosclerosis, diabetes, hypertension,
dementia, and other age-related diseases [22,23]. Based on previous studies, it has been
speculated that physical inactivity and obesity also accelerate telomere attrition and pro-
mote telomeric dysfunction [24]. Conversely, it has been proposed that regular exercise
and a balanced diet promote healthy aging not only through beneficial effects on body
composition, metabolic function, vascular function, blood pressure, inflammatory pro-
cesses, and mental stress [25], but also through the preservation of telomere length and
function [13,26–30]. It has further been hypothesized that lifestyle-induced effects on
telomeres are mediated through telomere-regulating proteins, such as telomerase and
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shelterins [16,18,19,21,27,31]. Telomerase can counteract telomere shortening by adding
new hexanucleotides to the telomeric ends. With the help of shelterins, a complex of
six individual proteins, telomeres assume a unique three-dimensional structure that is
essential for their function. Upon binding of the shelterin complex to the TTAGGG motif,
telomeric DNA folds backward forming a structure known as t-loop [32,33]. A breakdown
of the t-loop structure, called telomere uncapping, represents a critical mechanism that
promotes age-related vascular dysfunctions, cellular senescence and inflammation beyond
telomere shorting [34].

Obesity and physical inactivity are highly prevalent in modern societies [35]. Accord-
ing to the World Health Organization (WHO), approximately 30% of the global population
is obese [36] and the Centre of Disease Control in the US has estimated an overall preva-
lence of physical inactivity in the US of approximately 25% [37]. Despite intensive research
activities, the mechanisms that mediate the increased risk of chronic degenerative diseases
in obese and inactive individuals are incompletely understood. Previous studies have nur-
tured the idea that both of these lifestyle factors could increase disease risk and mortality
through an enhancement of telomere shortening that compromises genomic integrity [38].
However, the results of observational studies are controversial, and experimental evidence
that establishes a mechanistic link between obesity, physical inactivity and accelerated
telomere shortening is largely lacking. Several observational studies showed an inverse
relationship between telomere length (TL) in leucocytes (LTL) and BMI [39,40], whereas
others found the opposite [41] or no significant association [42,43]. Inverse correlations
have also been reported for LTL and different indices of body composition, such as body
fat content, waist circumference, waist-to-hip ratio, and nuchal fat thickness [43–50]. In
contrast, two mouse models of obesity and metabolic syndrome failed to show acceler-
ated telomere shortening despite an upregulation of telomerase and senescence-associated
genes, such as checkpoint kinase 2 (Chk2), p53, and p21 [22,23].

Considering that exercise is a highly cost-effective way to improve health and to
prolong life [51–55], obese individuals are often prescribed a physical activity program with
moderate endurance exercise, such as walking or cycling [56]. Observational studies have
reported higher LTL in exercising individuals of different age groups and different activity
levels [15,17,18,57,58]. However, available prospective and interventional studies provide
conflicting results. In a 5-year longitudinal study by Soares-Miranda L et al., physical activ-
ity and physical performance were unrelated to LTL [59]. In contrast, Werner et al., showed
increased LTL and an upregulation of telomerase and telomere repeat binding factor (TRF)
2 after 6 months of aerobic endurance training or high intensity training [17,18]. The results
from animal studies are also inconclusive. While Ludlow et al. showed a preservation of TL
in cardiomyocytes and hepatocytes of exercising mice [16,17,21,60], Werner et al. did not
find differences between cardiac TL of exercising and sedentary mice [16,17,21,60]. Regard-
less of potential effects on TL, exercise seems to alter the expression telomere-regulating
proteins, such as telomerase and shelterins [60].

Whether or not obesity and physical activity are causally related to telomere length
and the expression of telomere-regulating proteins remains elusive. Furthermore, previous
studies are limited to analyses of TL in leucocytes, myocardium, skeletal muscle, and liver.
Additionally, potential interactions between the consumption of a hypercaloric diet and
regular exercise has not been studied systematically. This aspect is of particular relevance
as exercise is often used to compensate bad eating habits and to treat obesity. Therefore,
the present study aimed to address this gap of knowledge by mapping TL in leucocytes
and 9 solid tissues from aged sedentary rats that were fed for 10 months either a normal
chow-based diet (ND) or a synthetic high-fat diet (HFD). In order to explore potential
interactions between the consumption of HFD and exercise, half of the animals from both
groups performed regular treadmill running with moderate intensity.
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2. Materials and Methods
2.1. Animal Model

Ninety-six female Sprague Dawley (SD) rats were purchased from Janvier Labs
(Le Genest-Saint-Isle, France) at four months of age. The animals were kept in groups
of three animals per cage under constant conditions on a 12 h/12 h light/dark cycle at the
core facility animal housing at the Medical University of Graz (Austria). Temperature was
maintained between 22 and 25◦C. Humidity ranged between 55 to 58%. After one week
of acclimatization, the animals were randomly assigned to receive either a standard diet
(ND) (Altromin, Lage, Germany) with 3230 kcal/kg and 11% fat or a custom-designed
beef-tallow high-fat diet (HFD), rich in saturated fatty acids (SFA), in particular C16:0 and
C18:0, with 5150 kcal/kg and 60% fat (Table 1; ssniff, Soest, Germany). Food and tap water
were provided ad libitum.

Table 1. Organ weight in female SD rats after 10 months of treadmill exercise.

Organs Measurement ND HFD
Sedentary

n = 22
Exercising

n = 22
Sedentary

n = 16
Exercising

n = 12

heart
average weight 1.31 ± 0.21 1.24 ± 0.11 1.40 ± 0.14 1.46 ± 0.19 ###

normalized weight 0.28 ± 0.04 0.27 ± 0.03 0.30 ± 0.03 0.31 ± 0.03 ###

spleen average weight 0.98 ± 0.16 0.97 ± 0.15 1.20 ± 0.16 ### 1.18 ± 0.23 ##

normalized weight 0.21 ± 0.03 0.21 ± 0.03 0.24 ± 0.07 0.25 ± 0.04 ###

liver
average weight 12.53 ± 1.72 12.50 ± 1.80 14.03 ± 2.36 # 15.16 ± 4.40 #

normalized weight 2.67 ± 0.31 2.56 ± 0.68 2.98 ± 0.52 # 3.28 ± 0.89 #

visceral fat
average weight 13.20 ± 5.26 10.46 ± 4.48 40.13 ± 12.81 ### 39.46 ± 23.20 ###

normalized weight 0.03 ± 0.01 0.03 ± 0.01 0.08 ± 0.018 ### 0.07 ± 0.03 ###

Organ weight is given in grams. The weights of heart, spleen, and liver were normalized to total tibia length
(cm), while visceral fat weight was normalized to body weight (g). Data are presented as mean ± SD; # p < 0.05,
## p < 0.01, ### p < 0.001 compared to the appropriate normal diet control group with the two-tailed Student’s
t-test for independent samples.

2.2. Experimental Design and Treatment

Animals were randomly allocated to following 4 groups, each consisting of 24 animals:
coND, exeND, coHFD and exeHFD. coND and exeND animals were fed with ND for the
entire study period, whereas coHFD and exeHFD received HFD. The animals from exeND
and exeHFD groups performed a 10-month exercise program consisting of 30 min of forced
running on a treadmill (Panlab, Barcelona, Spain) on five consecutive days followed by
2 days of rest. The running speed was constant and set at 30 cm/s. The training protocol
was based on previous experimental studies [61–64]. The animals in the coND and coHFD
groups did not exercise and had no access to a running wheel. These animals were used as
sedentary controls.

2.3. Euthanasia and Sample Preparation

At the time of scarification, blood was collected by heart puncture into plasma-EDTA
and serum tubes (Sarstedt, Nümbrecht, Germany) under deep isoflurane anaesthesia
(Forane, Abbott, Austria). After centrifugation at 2000× g for 12 min at room temperature,
plasma and serum samples were aliquoted and stored at −80◦C until batched analysis.
Immediately after blood collection, the following organs were explanted and snap frozen
in liquid nitrogen: liver, skeletal muscle, heart, aorta, large intestine, spleen, kidney, brain,
lung, visceral fat. Subsequently, all tissue samples were stored together deep-frozen at
−80◦C until analysis. Exclusion criteria were the development of illnesses or tumours
during the intervention period.
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2.4. Analysis of Relative Telomere Length (RTL) in PBMCs and Solid Organs

After diluting 100 µL of whole blood with 100 µL of dH2O, DNA was isolated with the
MagNA Pure LC instrument (Roche, Austria) using the Total Nucleic Isolation Kit (Roche,
Austria). Subsequently, relative telomere length (RTL) of peripheral blood mononuclear
cells (PBMCs) was measured by quantitative real-time PCR (qPCR) using a protocol devel-
oped by Cawthon [65]. This assay quantifies the ratio of average TL (T) to glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as single copy reference gene (S). The single copy
gene is used as amplification control for each sample and to determine the number of
genome copies per sample. All qPCR analyses were performed on a Thermocycler CFX384
TouchTM (Biorad, Feldkirchen, Germany) instrument using the following primers:

1. Telomere For: 5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′;
2. Telomere Rev: 3′-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-5′;
3. GAPDH For: 5′-CACCTAGACAAGGATGCAGAG-3′;
4. GAPDH Rev: 3′-GCATGACTGGAGGAATCACA-5′.

All primers have been purchased from Eurofins Genomics, Austria. Each run included
a standard curve made by dilutions of isolated and pooled rat DNA from 21 different blood
samples, to determine the quantity of the targeted templates. RTL has been calculated as
the ratio of telomere quantity to single copy reference gene quantity (T/S ratio).

RTL in solid organs was analysed with the same method described before. For this
purpose, approximately 10 mg of tissue were homogenised in 300 µL Magna Pure Lysis
Buffer (Roche, Wien, Austria) using the MagnaLyser (Roche, Wien, Austria). Subsequently,
the DNA was isolated and quantified using the same procedure as for blood leucocytes.

2.5. The mRNA Expression Analyses in Blood Cells and Solid Organs

TERT, TERF-1, and TERF-2 gene expression was analysed in RNA extracts of all solid
organs. As blood leucocytes were used up for the measurement of RTL, they were not
available for mRNA expression analyses. Therefore, mRNA expression in spleen was used
as reference because the organ belongs to the lymphatic system and is rich in leucocytes.
From each organ, 10 mg of tissue were homogenised in 300 µL Magna Pure Lysis Buffer
(Roche, Wien, Austria) using the MagnaLyser (Roche, Wien, Austria). RNA was extracted
from these homogenates with the Total Nucleic Isolation Kit (Roche, Wien, Austria) on a
MagNA Pure LC instrument (Roche, Wien, Austria). Subsequently, the mRNA in these
extracts was transcribed into cDNA using the QuantiTect Reverse Transcription kit (Qiagen,
Hilden, Germany). Finally, mRNA expression of TERT, TERF-1, and TERF-2 was analysed
by qPCR with TaqMan probes (Life Technologies dba Invitrogen, Waltham, MA, USA). The
expression of each target gene expression was calculated with the ∆∆CT method using
β-actin as reference gene. The sequences of the probes used were as follows:

5. B-actin: 5′-CTTCCTTCCTGGGTATGGAATCCTG-3′;
6. Tert: 5′-ATCGAGCAGAGCATCTCCATGAATG-3′;
7. Terf-1: 5′-AAAACAGACATGGCTTTGGGAAGAA-3′;
8. Terf-2: 5′-GAGAAAATTTAGACTGTTCCTTTGA-3′.

2.6. Statistical Analyses

Results are shown as mean ± standard deviations (SD). Qualitative variables such as
tumor abundance and type were assessed with the Fisher’s exact test or the Chi-squared
test. Group differences were assessed using the two-tailed Student’s t test for dependent or
independent samples or the Mann–Whitney U test depending on the distribution of the data.
Group comparisons with three or more groups were analysed using the two-way ANOVA
or the Kruskall–Wallis test for independent samples. Correlations between variables were
determined by linear regression analysis according to Pearson (r, Pearson Correlation
coefficient; p, univariate ANOVA). Data were plotted using Python programming language
with Jupyter Notebook within the data science package Anaconda3 for Windows. IBM
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SPSS v. 26 for Windows was used for explorative data analysis and a level of acceptance of
the null hypothesis was set at p = 0.05.

3. Results
3.1. Characterization of the Animal Model

From the 96 rats, 6 were excluded prior to the end of the study due to general health
issues. A total 18 animals developed benign tumours and, thus, were excluded from
the final analysis. Tumours were more frequent in animals on HFD rather than on ND
(16 vs. 2 rats, p = 1.289 × 10−4). The tumours in the HFD animals were of heterogeneous
nature compared to the ND group (p < 0.001), as masses were found in breasts, ovaries, and
abdomen of obese animals. Regular exercise did not significantly change tumor incidence
in both diet groups (coND vs. exeND, p = 0.975; coHFD vs. exeHFD, p = 0.347) nor tumor
diversity in the HFD group (p = 0.197). After exclusion of dropouts, 72 eligible animals
were included in the final statistical analyses.

At study end, the animals in the two HFD groups had a significantly higher body
weight than those in the ND groups (Figure 1). Median body weight between ND and HFD
differed by 115 g in sedentary animals and by 90 g in exercising animals. In line with this
finding, also the weight of individual organs and tissues, such as heart, liver, and visceral
fat, was significantly higher in HFD animals (Table 1).
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Figure 1. Box and Whisker plot of the body weight at the end of the 10 months study period. Outliers
are shown as white circles above the box plots. The two-tailed Student’s t-test was used for group
comparison of independent samples. ** p < 0.01 compared to appropriate sedentary control group;
### p < 0.001 compared to appropriate normal diet control group.

The exercise protocol was well tolerated by the animals of both diet groups. Body
weight of exeND animals was significantly lower than that of coND animals (p < 0.01),
whereas coHFD and exeHFD animals showed no difference. In the factorial ANOVA, the
main effects of diet and exercise on body weight were significant with F (1, 67) = 80.92,
p = 3.89 ×10−13, and F (1, 67) = 8.29, p = 0.005, respectively. There was no significant
interaction between diet and exercise, F (1, 67) = 0.138, p = 0.712. Regular exercise induced
a higher organ weight of heart and liver in HFD animals, but not in ND animals (Table 1).

3.2. Influence of HFD on RTL and the Expression of Telomere-Regulating Genes in
Different Tissues

When compared to ND, 10 months of HFD consumption had no systematic effect on
RTL across different organs. In visceral fat RTL was significantly lower in coHFD animals
than in coND animals. In contrast, renal RTL was slightly higher in coHFD than in coND
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animals. All other solid tissues and PBMCs showed comparable RTL between the two diet
groups. (Figure 2).
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TERT mRNA expression varied substantially between tissues with highest expression
levels in liver and kidney. The consumption of HFD did not result in a systematic difference
of TERT mRNA expression across different organs (Figure 3). Spleen, large intestine, and
kidney showed higher TERT mRNA expression levels in coHFD than in coND animals,
whereas in visceral fat a lower TERT mRNA expression was observed.
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Similar to TERT, also mRNA expression of the two shelterins, TERF-1 and TERF-2,
varied substantially between tissues. The consumption of HFD upregulated TERF-1 and
TERF-2 mRNA expression in 3 (Figure 4a) and 5 (Figure 4b) out of nine tissues, respectively.
In contrast, a reduced mRNA expression of both shelterins was seen in only one and two
tissues, respectively. A simultaneous upregulation of TERF-1 and TERF-2 in coHFD animals
was found in skeletal muscle, aorta, and large intestine. In contrast, visceral fat showed
a lower mRNA expression of both shelterins in these animals. Furthermore, TERF-1 was
markedly reduced in the liver of coHFD rats, whereas TERF-2 was increased in spleen and
kidney but decreased in lung tissue.
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Combining all the differences described before in an effect matrix, it becomes apparent
that only in visceral fat HFD consistently reduces RTL and the mRNA expression of
telomere-regulating genes (Figure S1). Instead, in four out of nine tissues mRNA expression
of one or more telomere-regulating genes was increased without a change in RTL.

3.3. Influence of Exercise on RTL and the Expression of Telomere-Regulating Genes in
Different Tissues

Ten months of regular treadmill running had heterogeneous effects on RTL in different
tissues with significantly longer telomeres in aorta and large intestine tissue, but shorter
telomeres in PBMCs and liver RTL (Figure 5). In all other tissues, RTL did not significantly
differ between sedentary and exercising animals. Of note, the simultaneous administration
of HFD did not substantially change this pattern.

Exercise had vastly different effects on mRNA expression of TERT, TERF-1 and TERF-2
in different tissues. In some tissues, but not all, HFD altered the exercise-induced effects
observed in ND animals. TERT mRNA expression was increased in spleen, liver, kidney,
and lung of exeND animals compared to coND animals (Figure 6a). Conversely, in exeHFD
animals, TERT expression in large intestine and kidney was significantly lower than in
coHFD, whereas spleen, liver and lung showed no differences (Figure 6b).
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(exeND) animals on ND, (b) sedentary (coHFD) vs. exercising (exeHFD) animals on HFD. Outliers 
are shown as white circles above the box plots. RTL is expressed as ratio of average telomere length 
to the reference gene GAPDH. The two-tailed Student’s t-test or the Mann–Whitney U-test were 
used for group comparison of independent samples. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. respective 
sedentary controls. 
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Figure 6. Comparison of TERT expression in nine solid organs from exercising and sedentary SD 
rats that received either normal diet or HFD for 10 months. (a) sedentary lean animals (coND) vs. 
exercising lean animals (exeND), (b) sedentary obese animals (coHFD) vs. exercising obese animals 
(exeHFD). Outliers are shown as white circles above the box plots. TERT mRNA expression is 
shown in arbitrary units. The two-tailed Student’s t-test or the Mann–Whitney U-test were used for 
group comparison of independent samples. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. respective sedentary 
controls. 

TERF-1 mRNA expression was significantly reduced in liver, lung, and visceral fat, 
but increased in skeletal muscle, aorta, and large intestine of exeND rats when compared 
to coND animals (Figure 7a). In exeHFD animals instead, TERF-1 mRNA expression was 

Figure 5. Comparison of RTL in PBMCs and nine solid organs isolated from exercising and sedentary
SD rats that received normal diet or HFD for 10 months. (a) sedentary (coND) vs. exercising (exeND)
animals on ND, (b) sedentary (coHFD) vs. exercising (exeHFD) animals on HFD. Outliers are shown
as white circles above the box plots. RTL is expressed as ratio of average telomere length to the
reference gene GAPDH. The two-tailed Student’s t-test or the Mann–Whitney U-test were used
for group comparison of independent samples. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. respective
sedentary controls.
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Figure 6. Comparison of TERT expression in nine solid organs from exercising and sedentary SD
rats that received either normal diet or HFD for 10 months. (a) sedentary lean animals (coND) vs.
exercising lean animals (exeND), (b) sedentary obese animals (coHFD) vs. exercising obese animals
(exeHFD). Outliers are shown as white circles above the box plots. TERT mRNA expression is
shown in arbitrary units. The two-tailed Student’s t-test or the Mann–Whitney U-test were used
for group comparison of independent samples. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. respective
sedentary controls.

TERF-1 mRNA expression was significantly reduced in liver, lung, and visceral fat,
but increased in skeletal muscle, aorta, and large intestine of exeND rats when compared
to coND animals (Figure 7a). In exeHFD animals instead, TERF-1 mRNA expression was
increased in spleen, liver, large intestine, and kidney, but reduced in skeletal muscle when
compared to coHFD animals (Figure 7c).
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expression levels in skeletal muscle and kidney in exeHFD rats when compared to coHFD 
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one or more telomere-regulating genes was associated with an increase in RTL (Figure 
S1). All other differences in mRNA expression of telomere-regulating genes were unre-
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Figure 7. Comparison of TERF-1 and TERF-2 expression in nine solid organs from exercising and
sedentary SD rats that received either normal diet or HFD for 10 months. (a) TERF-1 in sedentary
lean animals (coND) vs. exercising lean animals (exeND), (b) TERF-2 in sedentary lean animals
(coND) vs. exercising lean animals (exeND) (c) TERF-1 in sedentary obese animals (coHFD) vs.
exercising obese animals (exeHFD), (d) TERF-2 in sedentary obese animals (coHFD) vs. exercising
obese animals (exeHFD). Outliers are shown as white circles above the box plots. TERF-1 and TERF-2
mRNA expression is shown in arbitrary units. The two-tailed Student’s t-test or the Mann–Whitney
U-test were used for group comparison of independent samples. * p < 0.05; ** p < 0.01; *** p < 0.001 vs.
respective sedentary controls.

TERF-2 mRNA expression was significantly increased in five out of nine solid organs
of exeND animals when compared to coND rats (Figure 7b), namely spleen, skeletal muscle,
aorta, large intestine, and kidney. In exercising obese animals instead, TERF-2 mRNA
expression was profoundly different with a higher expression level in liver, but reduced
expression levels in skeletal muscle and kidney in exeHFD rats when compared to coHFD
animals (Figure 7d).

Summarizing all the results from sedentary and exercising lean animals in the effect
matrix (left column), it becomes clear that only in aorta and large intestine an increase in
one or more telomere-regulating genes was associated with an increase in RTL (Figure S1).
All other differences in mRNA expression of telomere-regulating genes were unrelated to
RTL. Similar to exercise, also HFD failed to induce systematic effects on RTL and telomere-
regulating genes. Only in kidney and visceral fat of obese sedentary animals, did RTL and
telomere-regulating genes show changes directed in the same way. However, the changes in
both tissues pointed in opposite directions. An interaction between HFD and exercise was
only observed in kidneys, where exercising obese rats exhibited a similar RTL to sedentary
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lean controls (Figure S1). Additionally, both exercising groups show reductions in hepatic
RTL, but inconsistent changes in the hepatic expression of telomere-regulating genes.

3.4. Correlation Analysis

To further explore our hypothesis that lifestyle factors can modify RTL through reg-
ulatory effects on the expression of telomere-regulating genes, we performed correlation
analyses that included the animals from all four groups. Figure 8 illustrates that RTL was
not consistently correlated to any of the telomere-regulating genes. For example, in kidney
(R = 0.337; p = 0.004) and visceral fat (R = 0.337; p = 0.004) RTL and TERT mRNA expression
were positively correlated, whereas large intestine (R = −0.252; p = 0.036) and spleen
(R = −0.263; p = 0.028) showed the opposite. Likewise, RTL and TERF-2 were positively
correlated in aorta (R = 0.373; p = 0.002), kidney (R = 0.318; p = 0.007) and visceral fat
(R = 0.332; p = 0.007), but negatively correlated in liver (R = −0.247; p = 0.053).
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4. Discussion

Here, we show for the first time that neither regular exercise nor the consumption of
HFD have a systematic effect on RTL in solid tissues and PBMCs of SD rats. In fact, most
tissues had comparable RTL in the respective intervention and control groups. Additionally,
dual stimulation by feeding HFD to exercising animals did not change this result. Never-
theless, some tissues exhibited significantly higher RTL after 10 months of HFD (kidney) or
exercise (aorta and small intestine), whereas other tissues showed reduced RTL upon HFD
(visceral fat) or exercise (PBMCs and liver). These differences were not accompanied by a
consistent mRNA expression pattern of the respective telomere-regulating genes tert, terf-1
and terf-2. Therefore, the present results do not support the hypothesis that regular moder-
ate endurance exercise or prolonged exposure to a diet rich in saturated lipids influence
RTL through the expression of telomerase and shelterins.

The comprehensive mapping of RTL and related telomere-regulating genes after
long-term exposure to HFD and exercise significantly expands existing knowledge on
the influence of modifiable lifestyle factors on age-related telomere shortening. Previous
in vivo studies have mostly focused on RTL in specific cells or tissue types, such as PBMCs
or myocardium [16,17,21,60]. The results are rather inconsistent. Ludlow et al. showed
in wild type derived short telomere mice (CAST/Ei) that 1 year of voluntary running in
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a running wheel preserved TL in myocardium and liver, but not in skeletal muscle [60].
Similar to the present study, these effects were not accompanied by consistent alterations
of telomere-regulating genes that would explain these effects. In contrast, after 3 weeks
of voluntary wheel running, Werner et al. reported an upregulation of telomerase activity
(TA) in murine aorta and PBMCs, and an increased aortic gene expression of TERF-2.
Additionally, senescence-associated genes, such as Chk2, p53, and p21, were lowered in the
aorta of exercising animals. However, the increased expression of these telomere-regulating
genes did not result in a significant difference of aortic TL after 6 months of exercise when
compared to inactive controls [17]. The TL results reported by the two studies of Ludlow
et al. and Werner et al. are not in line with our findings, where 10 months of regular
moderate running exercise reduced RTL in PBMCs and liver, whereas aorta and large
intestine showed a significant increase.

The inconsistencies between existing exercise studies in animals may, at least partly,
be explained by differences in the animal models used. Our results were obtained in
SD rats, whereas previous studies worked with CAST/Ei [60] and C57/Bl6 mice [17].
Additionally, the duration of exercise varied amongst existing studies between a few weeks
and one year, which further limits comparability. In addition, a greater group size with
22 coND and 22 exeND animals provides robustness to our results. The studies from
Ludlow et al. and Werner et al. were performed with no more than 10 animals per group,
which limits statistical power and leaves more room for random effects. A major strength
of the present study is strict standardization of the exercise intervention, which consisted
in forced treadmill running for 30 min at fixed speed on 5 consecutive days per week. The
efficacy of this intervention is evidenced by a significantly lower body weight at the time of
scarification. In contrast, most previous studies used voluntary wheel running, which is
not standardized.

Similar to the exercise studies discussed before, mouse models of obesity and metabolic
syndrome also failed to show accelerated telomere shortening despite an upregulation
of Chk2, p53, and p21 [22,23]. For example, feeding mice for 60 weeks with a high-
fat/high-sucrose diet induced obesity and metabolic dysfunction, but did not accelerate
LTL shortening [23]. With advancing obesity, the animals were physically less active, which
should have amplified potentially adverse effects of obesity. Additionally, in genetically
modified rats with metabolic syndrome, Takahashi et al. showed comparable myocardial
TL than in wild-type controls [22]. At the same time, telomerase expression and TA were
upregulated together with the senescence-associated genes Chk2, p53, and p21. These
results are in line with our present study, showing similar RTL in PBMCs, liver, aorta, and
skeletal muscle after 10 months of HFD or ND. Additionally, large intestine, spleen, brain,
and lung showed comparable RTL in the two groups. In our model neither exercise nor
HFD induced a consistent expression pattern of telomere-regulating genes, namely tert,
terf-1 and terf-2. Only kidney and visceral fat showed significant differences in RTL, but in
opposite directions. Similar differences were detected for the expression of tert and terf-2.
However, the relevance of these effects is questionable as TERT, TERF-1 and TERF-2 were
also altered in several other tissues of HFD animals without affecting the respective RTL.
Furthermore, most existing studies reported effects of exercise and obesity on telomerase
and shelterins, but often this was not associated with changes in RTL. In line with existing
data, correlation analyses in the present study showed inconsistent correlations between
RTL and mRNA expression levels of the three telomere-regulating genes. Altogether, these
results question the pathophysiological relevance of such observations.

A unique aspect of the present study is the combination of exercise and HFD. In
modern societies, people often try to compensate adverse nutritional habits with exercise,
but the efficacy of this approach is not well documented. Our results show that such an
approach does produce a different outcome than exercise alone. Specifically, RTL was lower
in PBMCs, liver and kidney of exercising animals on HFD, but higher in aorta and large
intestine. Despite a comparable pattern of RTL in the different organs of exercising animals
on normal diet and HFD, incongruent results were registered for the mRNA expression of
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tert, terf-1 and terf-2. For example, terf-1 and terf-2 were both increased in skeletal muscle
of exercising animals on ND but decreased in exercising animals on HFD. However, both
groups showed comparable RTL in this tissue. In line with this argument, also correlation
analyses that included all 72 animals did not show consistent correlations between RTL
and the expression level of telomerase or shelterins. For example, an inverse correlation
between RTL and tert was seen in spleen and large intestine, whereas kidney and visceral
fat showed the opposite. In all other tissues both parameters were not correlated.

This present animal study does not support the results from human studies showing
a reduced LTL in obese people [39,40] and a preservation of TL upon regular endurance
exercise [17]. Although some studies do not support an inverse relationship between TL
and obesity [41–43], a recent meta-analysis calculated a significantly lower LTL in obese
individuals than in normal-weight individuals [49]. Moreover, LTL was inversely correlated
with BMI, body fat content, waist circumference, waist-to-hip ratio, and nuchal fat thickness.
However, the observational character of the studies included impedes any conclusion
towards causality. Additional insights can be gained from longitudinal observation studies
that assessed LTL in obese patients before and after bariatric surgery [66]. Available
results indicate an improvement in LTL after >2 years, probably due to an improvement in
inflammation and oxidative stress. However, only a small number such studies has been
published, with rather heterogenous design and outcome. Human studies that investigated
LTL in exercising and sedentary individuals are also inconsistent. Several observational
studies have shown higher LTL in exercising individuals of different age groups and activity
levels [15,17,18,57,58]. Additional support from prospective observation and intervention
studies is strongly limited. Soares-Miranda L et al. performed serial blood collections
over a 5-year period in 582 older US adults and found no significant association between
physical activity, physical performance, and LTL [59]. In contrast, Werner et al. reported an
increase in LTL, TA, and TERF-2 expression after 6 months of aerobic endurance training or
high intensity training, which was not seen in controls [17,18].

A general downside of existing human studies is the limitation of TL analyses to
blood leucocytes, which impedes conclusions about TL in solid tissues of obese and lean
individuals. However, previous results from our group have shown that LTL does not
provide reliable information on TL in other tissues [67]. While RTL in some tissues, exhibit
a positive correlation with LTL, others show the opposite. Additionally, RTL in young and
aged SD rats did not systematically change.

The present results should be interpreted with caution keeping in mind the strengths
and limitation of this study. A rather large number of animals per group and a strictly
standardized exercise intervention provide robustness to the results. In addition, the
intervention period was quite long. However, results from Werner et al. suggest, that
up to 18 months may be needed to observe a significant reduction in TL [16]. SD rats
have an average life expectancy of 2 years so that our animals were sacrificed at advanced
adult age, but they cannot be regarded old. The exercise protocol applied was rather
moderate and a more intensive regimen might have produced different results. However,
with this protocol we aimed to mimic a common recreational activity pattern in adults.
Energy intake and energy expenditure may have varied between individual animals and
different groups. The lacking information on both factors adds some uncertainty to the
interpretation of our results. Another important limitation is the RT-qPCR method that has
been used for the measurement of RTL. This method gives an average TL across all cells and
chromosomes but does not provide information on the percentage of very short and long
telomeres. There is some evidence that the percentage of very short telomeres rather than
average TL is associated with aging and age-related disease [68]. However, determination
of the shortest telomeres requires highly sophisticated and cumbersome methods, such as
Telomere Shortest Length Assay (TeSLA) [69]. In addition, these methods are difficult to
standardize and not suitable for high throughput analysis. As we had planned to analyze
more than 1000 samples, these assays were deemed not feasible for our purpose. Lastly,
telomere-regulating genes were only analysed by mRNA expression, but not at protein
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level. Although mRNA expression and protein analyses may give discordant results, we do
not feel that this limits the overall meaning of our results. The absence of systemic effects
on RTL in PBMCs and solid tissues and the highly inconsistent mRNA expression pattern
of telomerase and shelterins limit the potential scope of these factors as relevant mediators
of telomere effects induced by exercise and diet.

5. Conclusions

In summary, the present in vivo study does not provide evidence that modifiable
lifestyle factors, such as obesity and exercise, have significant systemic effects on telomere
shortening and the expression of telomere-regulating genes. Additionally, exercise and
HFD do not show significant interaction. Any lifestyle-related effect on RTL and telomere-
regulating genes in one tissue type does not allow conclusions on other tissues or cell types.
Future research should address the impact of exercise and diet on the shortest telomeres
and explore their role for aging and degenerative disease. Moreover, future studies on
the effects of lifestyle factors on telomere length and telomere function should focus on
advanced adult age, where degenerative disease most frequently occurs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11101605/s1, Figure S1: Effects matrix that visualizes the effects
of exercise, HFD, and the interaction of both lifestyle factors on RTL and the mRNA expression of
telomere-regulating genes.
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