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Abstract: Infectious diseases are responsible for an
overwhelming number of deaths worldwide and their
clinical management is often hampered by the emer-
gence of multi-drug-resistant strains. Therefore, preven-
tion through vaccination currently represents the best
course of action to combat them. However, immune
escape and evasion by pathogens often render vaccine
development difficult. Furthermore, most currently avail-
able vaccines were empirically designed. In this review, we
discuss why rational design of vaccines is not only
desirable but also necessary. We introduce recent
developments towards specifically tailored antigens,
adjuvants, and delivery systems, and discuss the meth-
odological gaps and lack of knowledge still hampering
true rational vaccine design. Finally, we address the
potential and limitations of different strategies and
technologies for advancing vaccine development.

Introduction

Scourges of humanity, such as smallpox, polio, and measles,

have been controlled by vaccination. Other epidemics, for instance

tuberculosis, have yet to be sufficiently restrained by immuniza-

tion. Accordingly, policy makers have given a high priority to the

development of novel vaccines to induce protective immunity

against selected pathogens. Most human vaccines contain atten-

uated or killed pathogens and were developed empirically, such as

the yellow fever vaccine [1,2]. Safety concerns were associated

with undefined vaccine preparations based on whole pathogens

(e.g., inactivated or attenuated bacteria or viruses). Thus, novel

subunit vaccines are based on a restricted number of individual

components (i.e., antigens) of the specific pathogen, which are able

to confer protective immunity. Obviously, the chances of finding

effective components of subunit vaccines empirically are low.

Immunogenic parts of pathogens that provide antigens for B cell

receptors (BCRs) and antigenic peptides that are presentable by

MHC molecules to T cell receptors (TCRs) have to be identified.

It is critical to compensate for excluded pathogen-associated

molecular patterns (PAMPs), which activate the innate immune

system to induce an appropriate adaptive immune response.

Finally, vaccine delivery systems may be needed. Hence, the

rational design of vaccines is mandatory.

Rationally designed vaccines are composed of antigens, delivery

systems, and often adjuvants that elicit predictable immune

responses against specific epitopes to protect against a particular

pathogen. In many cases a vaccine cannot be successfully designed

due to insufficient knowledge about the mechanisms of protection.

Although the repertoire of immune clearance mechanisms to fight

pathogens is known, the specific contributions of different effector

mechanisms are well-characterized for only a few pathogens. It is

also largely unclear what determines the immunogenicity and

selection of particular epitopes among all possible antigenic

options offered by a pathogen. Which factors determine dominant

or balanced immune responses? What are the mechanisms leading

to long-term protection? Investigation of immune responses to

known effective and ineffective vaccines and of pathogens’

strategies of immune escape and evasion generates the basis to

tackle these open questions. The approach relies on data from

studies with empirically developed vaccines—for now and in the

near future.

There are no universally accepted strategies and tools to

rationally design vaccines. Vaccine development is still generally a

tedious and costly empiric process. This review focuses on

approaches to overcome empirical vaccine development and

addresses their potential and limitations. It will become clear that

even the latest developments are mostly first steps. Reports may

sometimes sound too optimistic with regard to a prompt

implementation of the introduced methods. Nevertheless, multi-

scale interdisciplinary efforts are strongly needed to reach this goal.

Antigen Selection and Optimization

Selecting the optimal antigen represents the cornerstone in

vaccine design. With the advent of genomics, the traditional

process of selecting candidate antigens one by one has been

replaced by reverse vaccinology approaches. Namely, the coding

potential of a pathogen’s genome is exploited by in silico selection,

high throughput screenings, and profiling technologies (e.g.,

genomics, proteomics) to define promising antigens in relation to

in vivo expressed genes and clonal variation [3–6]. Importantly,

this approach is not suitable for nonproteinaceous antigens.

Depending on the desired response, the antigenic protein should

contain appropriate BCR epitopes and peptides that can be

recognized by the TCR in a complex with MHC molecules.

Synthetic peptides produced at comparably low cost can also be

incorporated in subunit vaccines. This is relevant especially in

epidemic situations when large amounts of vaccine doses need to

be produced in a very limited period of time. A peptide-based
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vaccine meets high safety standards due to the possibility of

excluding allergens, toxins, or other functional molecular domains

of the pathogen. Restricting the immune response to defined

antigenic regions can, furthermore, help avoid effects such as

autoimmune responses, dominant responses against epitopes

prone to antigenic drift, or responses against epitopes with

specificity for a particular strain rather than multiple strains of

the pathogen. However, the identification of immunogenic peptide

sequences requires a considerable amount of experimental effort.

Computational prediction methods can strongly reduce time and

costs for vaccine development. Nevertheless, clonal variability and

in vivo selection resulting in immune escape could render

ineffective a vaccine based on short peptides encompassing a

limited number of epitopes. Furthermore, there are technological

constraints associated with this approach (e.g., synthesis of long

polypeptides).

To elicit antibody responses, vaccines should include BCR

epitopes. Their prediction is particularly challenging, though, and

most B cell epitopes are discontinuous; that is, they are comprised

of distant parts of the protein’s primary structure. In addition, they

are of variable length (3–30 amino acids) and conformation-

dependent [7]. BCR epitopes do not possess physico-chemical

patterns in their amino acid sequences that can be used for in silico

prediction [8]. Some epitopes change conformation when

interacting with the cognate antibody’s paratope, making even

3-D structure-based prediction difficult [7]. The use of learning

machines that depend on quantitative data on known antibody

epitopes led to the development of prediction tools for linear

epitopes such as BCPREDS [9,10] and IMMUNOPRED [11,12].

In contrast, PEPOP [13,14] is based on 3-D structural data on

antigen–antibody complexes, and it predicts discontinuous epi-

topes, their antigenicity, and immunogenicity, and suggests

peptide constructs for synthesis. However, these methods have

not yet reached sufficient predictive accuracy to be routinely

applied in vaccine design.

The proteins or peptides of a subunit vaccine should also display

sequences that allow T cell epitope formation in a complex with

MHC molecules. MHC class I and II come in hundreds of alleles

that are differentially combined between individuals. Choosing

immunogenic peptides presented by MHC faces the challenge of

not only predicting sequences appropriate for complexing with a

particular MHC allele but also finding peptides that can reliably

build epitopes in the diverse genetic background within a human

population. Drawbacks of in vitro assay-based TCR epitope

identification are (i) time consuming procedures for combinatorial

coverage of relevant MHC alleles and candidate pathogenic

antigens, (ii) high costs for peptide synthesis and reagents, and (iii)

limited sensitivity when using naı̈ve T cell populations. These

efforts can be reduced extremely when combined with computa-

tional TCR epitope prediction [15,16].

In silico prediction of T cell epitopes cannot be based on physico-

chemical properties of presented peptides but depends on the

application of learning machines on data sets of known MHC

allele–peptide pairs. The development and maintenance of

databases is absolutely essential to constantly improve predictions

[17,18]. Examples for such databases are IEDB [19,20] or

SYFPEITHI, which only lists experimentally validated natural

MHC–peptide complexes [21,22]. The tools OptiTope [23,24]

and NetMHCcons [25,26] select for epitope peptides from specific

MHC alleles or sets of MHC alleles as they occur naturally in

individuals of a certain population. This is achieved by choosing

promiscuous peptides that can be presented by several different

MHC alleles of a supertype (i.e., universal peptides presented by

most known alleles or a mixture of peptides binding to the most

prevalent alleles within a population). The final goal is to provide

suitable tools to generate immunogenic peptide sequences from

any input antigen sequences. However, the broad applicability of

these approaches towards rational vaccine design still remains to

be proven.

Diversity also occurs at the level of the antigen. Immune escape

of pathogen variants through mutation of immunogenic sequences

has to be considered when selecting or designing antigens [27]. In

silico generation of mosaic polyvalent antigens tackles this problem

[28]. Immunization experiments with primates demonstrated the

advantage of mosaic constructs over consensus or natural

sequences to elicit T cell responses covering a broad selection of

viral clades as well as antigenic immune escape variants that may

evolve [29,30]. The repertoire of possible immunogens can also be

widened by exploring glycan antigens [31]. Whenever constructs

are designed, one has to ensure their stability and thus

bioavailability. For example, HIV-derived peptides display quite

variable half-lifes in the cytosol of human cells and this has an

impact on their recognition by CD8+ cells [32]. Structural

vaccinology is a powerful emerging approach to optimize

immunogens based on atomic-level structural information on

requirements for conferring protective immunity [33–35]. Upon

identification of immunogenic domains, it is possible to design

constructs that lack decoy or masking portions of the antigen, such

as epitope scaffolds that are able to elicit antibody responses

against otherwise immune-recessive, cryptic, or transient epitopes

[36]. It is also possible to engineer an optimized structure to enable

broadly cross-protective responses. As example, chimeric proteins

to effectively vaccinate against group B streptococci or Neisseria

meningitidis were generated [37,38].

Adjuvants

Subunit vaccines are likely to lack the molecular cues needed for

efficient activation of the innate immune system, thereby failing to

induce vigorous adaptive immunity. PAMPs can act as adjuvants,

however many pathogen-derived products might exhibit toxic

activity [39]. The only globally approved adjuvant for humans is

alum. It facilitates TH2-dependent immune responses but

promotes less effective cytotoxic responses and can cause side

effects. A number of other adjuvants have been recently approved

for use in defined human vaccines, such as MF59 and monopho-

sphoryl lipid A-containing formulations [40,41], and there are

other candidates in the pipeline. Adjuvants are not licensed per se,

but as part of vaccine formulations. This together with stringent

requirements for reagents used on healthy individuals raise the

costs of clinical development [41]. Considerable effort was invested

in the development of adjuvants for mucosal immunization [42].

Vaccination via mucosal routes is known to elicit both mucosal

and systemic immunity [43], fighting pathogens at the site of entry.

However, safety issues were observed following intranasal vacci-

nation with the heat labile toxin of Escherichia coli and its attenuated

derivative [42,44]. This will need to be considered for current

candidate mucosal adjuvants, among them compounds with well-

defined molecular targets, such as PAMPs, cytokines, and cyclic

di-nucleotides [45–47]. For example, the TLR9-agonist CpG

enhanced immune responses after vaccination against hepatitis B,

anthrax, influenza, and malaria [48–51] and proved promising in

vaccination of otherwise nonresponsive immune-compromised

organisms [52]. However, many molecular mechanisms of

adjuvanticity are still elusive. First insights were gained in

receptors and signaling pathways involved in the recognition and

processing of pathogenic factors and adjuvants in cells of the

innate immune system [53–55]. Nevertheless, the discovered
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mechanisms of adjuvanticity do not translate to generally

applicable strategies for rationally designed vaccines (see also

[4]). Hence, to date, adjuvantation requires an additional solid

theoretical background for systematic implementation in rational

vaccine design.

Antigen Delivery Systems

Delivery systems become necessary when antigens are not

efficiently transported to the inductive sites or presented to the

immune system. For example, rapid degradation can result in

weak or virtually absent responses to otherwise immunogenic

antigens. The coding sequence of an antigen can be integrated

into a live virus-vector, which infects antigen-presenting cells

(APCs), preferentially dendritic cells (DCs) [56,57]. The antigen is

then directly presented by MHC molecules and can be recognized

by TCRs. The continuous antigen expression leads to its persistent

exposure to immune cells. Recombinant viral vectors can be

modified with regard to effector cell targeting, expression

promoters, and the type of antigenic transgene. Lentiviral vectors

with improved safety and efficiency parameters have a compar-

atively high capacity for encoding transgenes, high transduction

efficiency, low anti-vector host immunity, low genotoxicity, and

persistent gene expression [58]. They proved promising in

vaccination of mice with HIV-derived antigens and in nonhuman

primates with SIV-derived antigens [59,60]. In spite of the

adenoviral vaccine vector’s known limited efficacy due to

preexisting immunity in large populations [61,62], it still induces

protective immune responses with characteristic induction of

CD8+ T cells in humans [63]. Recombinant adenoviral vectors

derived from uncommon human serotypes, chimpanzee or

human/chimpanzee chimeras can circumvent the problem of

host immunity [64–66]. Human cytomegalovirus (hCMV) vaccine

vectors are based on the ability of hCMV strains to superinfect

individuals with persistent hCMV infection and immunity. Rhesus

macaques developed specific CD4+ and CD8+ responses against

SIV antigens delivered by a recombinant CMV vector [67,68].

Elucidation of the molecular mechanisms leading to memory

inflation during chronic hCMV infections might even lead to

hCMV-based strategies to trigger life-long responses. Attenuated

recombinant poxviruses are also intrinsically immunogenic, and

insights in the promoted innate immune responses have accumu-

lated [69]. The above-described vectors have considerable

potential in human vaccination, especially in prime-boost

regimens aimed at fine-tuning responses [70]. Different attenuated

or commensal bacteria have also been successfully exploited for

delivering vaccine antigens and biologicals [71–75].

The delivery to DCs can be achieved by coupling antigens to

antibodies specific for surface molecules, such as Clec9A. This

method leads to antigen uptake and activation of T and B cells

[76]. Similarly, fusion proteins of HIV antigens and antibody

fragments targeting the DC surface molecule DEC205 elicited

potent cellular immunity in nonhuman primates [77]. The risks

related to live vectors in immune-compromised individuals can be

eliminated by the application of virus-like particles (VLPs) that are

reduced to the structures and antigenic components necessary for

delivery and immunogenicity. VLPs are able to elicit efficient

humoral immune responses [78–80], contributing to the control of

infection [78,81]. Plasmid DNA vectors can be delivered to cells

and elicit humoral responses [82], as proven by DNA vaccines

against seasonal influenza in phase I trials [83]. Synthetic delivery

Table 1. Needs and challenges for the rational design of vaccines.

Subunit Vaccine
Component Focus of Future Developments Benefit Toward Rational Design

Antigens Knowledge on the most effective immune response
against a particular pathogen

Selection of antigens and formulations evoking those responses

Antibody epitope database Basis for development of computational prediction tools

Prediction of sequences that should be excluded due
to (i) risk of autoimmune responses, (ii) immune escape
by antigenic drift, and (iii) responses to only selected
strains or clades of the pathogen

Design of antigens capable of eliciting potent cross-reactive
immune responses with minimal risk for side effects

Continuous survey and registration of evolving
pathogenic strains and clades

Improved coverage for selected antigens

Investigation of protein/peptide degradation rules
for different vaccination routes

Improved stability of designed antigens

Extension of MHC allele–peptide complex databases,
especially for MHC class II

Increased reliability of epitope prediction with already
available tools

Delivery systems Advancement of nanotechnologies Improved synthetic delivery systems

Investigation of mechanisms to overcome preexisting
immunity or persistent virus superinfection

Maximizes potential of live vectors derived from pathogens
causing common human chronic infections

Understanding the basis for eliciting memory responses Design of vaccines triggering long-lasting protection

Investigation of the interface between innate and
adaptive immunity

Exploitation of optimal APC targets and intrinsic adjuvant
properties of the delivery system

Adjuvants Knowledge on the most effective immune response
against a particular pathogen

Selection of adjuvants facilitating those responses

Investigation of vaccination route-dependent adjuvant effects Optimized use of adjuvants and vaccine design

Elucidation of molecular mechanisms of adjuvanticity Optimizes adjuvant use and forecasts potential side effects

Investigation of the basis of immune stimulation in
different population groups

Development of personalized vaccines

doi:10.1371/journal.ppat.1003001.t001
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systems, such as nanoparticles, block-copolymers, DNA nanos-

tructures, and nanogels [84–86], can be loaded or coated with

specific antigens and adjuvants. In addition, they can be tailored

and functionalized according to specific needs (e.g., transcutaneous

or mucosal delivery) [87,88]. Trials with nanoparticle vaccines for

hepatitis B, leishmaniasis, and malaria demonstrated that they

enhance immune responses [87,89,90]. Although often developed

on an empirical base, the given examples are a proof-of-principle

essential to rationally design such delivery vehicles in the future.

Immune Response Prediction

Understanding what is needed to confer protection without side

effects is a prerequisite to develop a tailored intervention. To date,

characterization of human responses to vaccination relies mainly

on measuring antibody titers or cellular responses from peripheral

blood samples. This does not allow a comprehensive analysis of

responses with regard to the effector cells or mechanisms

stimulated and the status in all relevant compartments for

acquired immunity. Efforts to tackle this problem link the

regulation of transcription or protein activity to the prediction of

vaccination outcomes [91]. Recent reports suggest the potential of

systems vaccinology for the analysis of gene expression profiling

experiments to identify patterns or signatures linked to a desired

outcome of vaccination [92–94]. Human studies showed correla-

tions of gene expression profiles or protein expression patterns

with immune system activation upon vaccination against yellow

fever and influenza in responders and nonresponders [95–97].

Others characterized transcription profiles after treatment of mice

or murine DCs with adjuvant molecules [98,99]. Correlations

between successful immunization or toxic events and cellular

expression profiles can be predictive for a particular vaccine.

However, no general unambiguous markers were identified that

would allow accurate prediction of efficacy or safety for vaccines in

trials (introduced, for example, in [5]).

A quite different approach to predict immune responses upon

exposure to potential immunogens is realized by the in silico

immune system simulator C-ImmSim [100–102]. This model

features simulation of different classes of B and T lymphocytes,

innate immune cells (e.g., DCs and macrophages), and different

immune compartments (e.g., bone marrow, thymus and tertiary

lymphoid organs). In silico experiments simulate primary immune

responses as well as challenge with a particular antigen in different

definable MHC allele backgrounds. The proof-of-principle was

performed with antigens of HIV or influenza virus that simulate

immunization. The simulations could indeed predict observations

in humans, for example that affinity maturation and antigenic

dominance evolve, and that MHC diversity can have an impact on

immune defense [100]. C-ImmSim can be updated whenever

improved versions of the incorporated BCR and TCR epitope

prediction methods become available. Though currently not

successfully applied, the simulator has potential in vaccine

Figure 1. Optimizing the design for more efficient vaccines. Modern vaccinology focuses on the development of subunit vaccines to
maximize efficacy and minimize risks in healthy and immune-compromised individuals. Different enabling technologies and knowledge contribute
towards the rational design of formulations that would not only exhibit improved performance but also reduce the time and costs associated with
preclinical and clinical development. Promising approaches/enabling factors and roadblocks are highlighted in green and pink, respectively.
doi:10.1371/journal.ppat.1003001.g001
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development by testing the immunogenicity of antigens and the

potency to induce a robust immune response upon challenge with

the antigen. It can be also used as a research tool to elucidate

mechanisms of immune responses to fill gaps in knowledge that

slow down rational design efforts.

A prevalent problem in vaccine translation is the delayed and

costly transition from preclinical to clinical development due to

difficulties in predicting human immune responses. Although

closer to humans, primate models are associated with ethical,

logistic, and financial constraints. An emerging alternative is the

use of mice humanized for the immune system. Although they still

need to be improved, they can be foreseen as powerful tools to

predict human-specific immune responses to vaccines, as well as to

investigate vaccine efficacy against pathogens with human tropism

[103–105].

Concluding Remarks

In this review we elaborate on recent achievements that

facilitate rational vaccine design. There are many visions on the

expected impact of reverse vaccinology, epitope prediction,

structural vaccinology, systems vaccinology, and personalized

medicine on the rational design of effective vaccines [3,5,6,106].
However, the implementation of these concepts towards the
development of new and more potent vaccines requires time and
considerable financial investment. Rational vaccine design will rely
strongly on the availability of clinical data on individuals with
different clinical forms of disease or response to vaccination to
learn what is needed for protection [107]. The gaps in knowledge

on the immune system’s specific clearance mechanisms against

many pathogens slow down the identification of the immune

response that should be evoked by tailored vaccines in different

population groups (Table 1). Many aspects of the host pathogen

interaction and host immune status during persistent infection are

also poorly understood, thereby hindering the development of

therapeutic vaccines [108]. Further data from trials with empiric

formulations are required to identify patterns or biomarkers that

can reliably guide prediction of vaccine efficacy and safety at

reasonable success rates (Figure 1). A widely accepted goal in

vaccine development is the applicability to huge populations, if not

all humankind. Nevertheless, there are reasons for more person-

alized approaches that consider specific preconditions in recipi-

ents, such as genetic background, pre-exposure to pathogens or

vaccines, unique physiological background related to local

culture/habits, age, and immunodeficiency.

Implementation of rational development concepts in vaccinol-

ogy demands patience, and advances will be incremental.

Realization will depend on the application of flanking logistic

and regulatory measures and the awareness of the strong impact of

vaccine development to solve global health problems. Funding is

also required for the basic research needed to provide the basis for

rationally developed vaccines. However, we expect to see the

advent of new and more efficient vaccines in the coming years as a

result of the implementation of this emerging knowledge and

enabling technologies.
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