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2 Instituto de Saúde Coletiva, Federal University of Bahia, Salvador, Brazil
3 Department for Public Health and Policy, London School of Hygiene and Tropical Medicine, UK

(Accepted 5 September 2008; first published online 8 October 2008)

SUMMARY

The measurement and analysis of common recurrent conditions such as diarrhoea, respiratory

infections or fever pose methodological challenges with regard to case definition, disease

surveillance and statistical analysis. In this paper we describe a flexible and robust model that can

generate simulated longitudinal datasets for a range of recurrent infections, reflecting the

stochastic processes that underpin the data collected in the field. It can be used to evaluate and

compare alternative disease definitions, surveillance strategies and statistical methods under

‘controlled conditions’. Parameters in the model include : characterizing the distributions of the

individual disease incidence and the duration of disease episodes ; allowing the average disease

duration to depend on an individual’s number of episodes (simulating a correlation between

incidence and duration) ; making the individual risk of disease depend on the occurrence of

previous episodes (simulating autocorrelation of successive episodes) ; finally, incorporating

seasonal variation of disease.
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INTRODUCTION

Many common infections like gastrointestinal infec-

tions, respiratory infections, malaria and the symp-

toms associated with these diseases (e.g. diarrhoea,

fever, cough, or rapid breathing) occur in recurrent

episodes. Disease recurrence and disease clustering in

individuals, as well as other characteristics of disease

distribution typical for recurrent infections such as

seasonality and autocorrelation of subsequent epi-

sodes within individuals, have implications for sam-

pling strategies [1] and data analysis [2]. Disease

recurrence can also make it difficult to distinguish

between episodes separated by only a few days, es-

pecially in settings with high disease incidence [3].

Mathematical models have been used to gain in-

sight into these methodological issues, e.g. to evaluate

different disease definitions and sampling strategies.

Morris et al. [3] used a simple empirical model to de-

termine the expected distribution of diarrhoea epi-

sodes and gaps between episodes. Schmidt et al. [1]

used a similar model to test different sampling inter-

vals to measure diarrhoea in longitudinal studies.

These empirical models served to generate simu-

lated datasets reflecting the stochastic processes that

give rise to the data collected in field studies. In con-

trast to classic transmission models, such as determi-

nistic compartmental models, these empirical models

rarely aim at exploring disease transmission between

individuals or the effect of interventions. However,
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they can be helpful in improving epidemiological

methods and tools. The models used previously have

been very simple and relied on assumptions that may

not be appropriate in certain situations [1, 3]. For

example, they assumed independence between epi-

sodes of the same individual (absence of autocorrela-

tion), and no correlation between the number of

episodes in an individual and episode duration [1, 3].

This paper proposes a more flexible model which al-

lows a better description of the stochastic processes

that underpin the field data from longitudinal studies

of common recurrent diseases. The model can there-

fore be used to further understanding of the epidemi-

ology of diarrhoea and other episodic diseases, help

with the planning of epidemiological studies and

programme evaluation, and to compare different

statistical methods for data analysis.

BASIC STRUCTURE OF THE MODEL

Our empirical model is based on a concept developed

by Morris et al. [3] and represents the daily experience

of recurrent infections of a large number of in-

dividuals over a specified period of time. The number

of diarrhoea episodes in an individual is drawn from a

gamma distribution, a distribution suitable to rep-

resent skewed random variables [3].

The duration of these episodes (usually also highly

skewed) is drawn from a different gamma distri-

bution. Gamma distributions are commonly specified

by two parameters : a, the shape parameter and b, the

stretch parameter. By varying these two parameters,

the simulated data can be made to fit (in the least-

squares sense) a wide range of empirical distributions

observed in the field.

Similar to previous models, our basic model as-

sumes independence between the number of episodes

in an individual and the duration of episodes, and

between successive episodes in an individual (i.e. no

autocorrelation). The basic model also assumes a con-

stant risk for each individual without seasonal vari-

ation. Thus, disease occurrence is specified by only two

determinants, each depending on the respective a

and b parameters of the specified gamma distri-

butions : (1) the distribution of the number of episodes

per individual in the population and (2) the distri-

bution of the durations of these episodes. In further

model developments we introduced as additional epi-

demiological characteristics the dependence of disease

occurrence on (3) a correlation between the individual

number of episodes and episode duration, (4) previous

episodes in an individual (autocorrelation) and (5)

seasonality. The parameters of the gamma distri-

butions were fitted to the distributions observed in the

field byminimizing the least-squared differences (Excel

Solver tool). An outline of the model structure is

shown in the Appendix. We implemented the model

in Stata version 9.0 (Stata Corp., College Station, TX,

USA). The Stata program for the model can be ob-

tained from the authors.

MODEL PARAMETERIZATION

The model was parameterized based on parameter

estimates derived from real datasets from field studies

conducted in Guatemala, Brazil (2 datasets) and

Ghana. The Guatemala data [4] (diarrhoea only) came

from a randomized controlled trial of household water

treatment (number of study individuals n=1839). One

diarrhoea dataset from Brazil (subsequently desig-

nated Brazil 1) was collected during a large cohort

study in Salvador de Bahia (n=1880) [5], the other

(Brazil 2) came from a vitamin A trial in rural north-

eastern Brazil in a child population with poor nu-

tritional status (n=1180) [6]. This dataset contains

information on diarrhoea, cough and fever. Finally,

we included data from the VAST trial in Ghana which

was also conducted in a malnourished child popu-

lation and contains among other conditions data

on diarrhoea, rapid breathing (as a sign of lower res-

piratory infections) and cough (n=1918) [7].

We estimated the distribution of the number of epi-

sodes and episode duration from the four real datasets

assuming that a new episode started after at least two

disease-free days. Only study participants with more

than 200 days of observation were included for the

parameter estimation. Due to different follow-up

times between individuals we calculated the number of

episodes as the incidence per 365 days of observation.

In addition, we estimated parameters based on

published data. These were restricted to diarrhoea

and purposively chosen to cover a broad range of

settings. In the following sections we describe the

parameterization of the five key characteristics of

disease distribution in the model outlined above.

Distribution of number of episodes

Episodes of many conditions are usually highly

clustered in individuals. Figure 1 shows examples of

histograms for the distribution of the number of

episodes experienced by individuals over 1 year. Each
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graph contains the observed distribution and the best-

fitted gamma distribution. The data show a broad

range of distributions. While in Guatemala and

Thailand the majority of individuals escaped illness

altogether, <7% did so in Ghana and Peru (Fig. 1).

The shape of the distribution and the mean number of

episodes is likely to be influenced by many factors

such as age, study setting, nutritional status and study

procedures. The parameter estimation based on the

data is summarized in Table 1.

In the model, the number of episodes in an indi-

vidual is drawn from a gamma distribution with

parameters a and b that are estimated from the em-

pirical distributions (Table 1). Previous models have

allowed episodes to overlap [1, 3]. Since overlap in-

creases the duration of episodes and decreases the in-

cidence, it is more appropriate not to allow overlap

between episodes, unless overlap is of particular inter-

est [3]. However, the model can be specified either way.

Distribution of illness duration

There are also large differences in the distribution

of the episode durations. As shown in Figure 2,

0·8

Thailand (diarrhoea)0·7

0·6
Pr

op
or

tio
n 0·5

0·4

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

0·8

Guatemala (diarrhoea)0·7

0·6

0·5

0·4

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

Ghana (rapid breathing)

No. of episodes No. of episodes

0·7

0·6

Pr
op

or
tio

n

0·5

0·4

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

Brazil 2 (cough)

Brazil 2 (fever)

Pr
op

or
tio

n

Brazil 1 (diarrhoea)
0·4

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

Ghana (diarrhoea)
0·4

0·3

0·2

0·1

0
0 2 4 6 8 10 12 14 16 18 �20

Fig. 1.Distribution of the number of episodes per individual in different settings.&, Observed distributions ;%, fitted gamma
distributions.

646 W.-P. Schmidt, B. Genser and Z. Chalabi



Table 1. Characteristics of the distribution of the number per individual and the duration of episodes

Country

Diarrhoea
day
definition

Age range
at baseline

Days
between
episodes

Mean
no. of
episodes

Estimated gamma parameters

for number of episodes

Mean

duration
of episodes
(days)

Estimated gamma parameters

for episode duration

a (shape) b (stretch) a (shape) b (stretch)

Diarrhoea

Brazil 1 WHO* <5 yr 2 3.8 1.29 2.97 2.7 0.79 2.69
Brazil 2 WHO 6–48 mo. 2 7.0 1.18 6.75 2.7 0.62 3.07

Guatemala Mother All ages 2 1.8 0.47 4.57 4.5 1.11 3.39
Ghana Mother <5 yr 2 8.8 1.51 6.88 6.1 0.98 5.98
Peru 1 [3] WHO <1 yr 2 8.3 1.74 5.46 — — —
Thailand [16] WHO+

dysentry

2–5 years 3 0.8 1.34 0.94 — — —

India [17] WHO <5 yr 3 1.1 0.66 2.34 — — —
DRC [8] Mother 3–35 mo. 2 — — — 4.7 2.59 1.25

Bangladesh [13] WHO 2–5 yr 3 — — — 2.7 1.79 0.81
Kenya [18] WHO 3–37 mo. 2 — — — 3.3 0.71 4.18
Peru 2 [19] WHO 0–35 mo. 2 — — — 2.8 0.79 2.68

Other conditions

Ghana (rapid breathing) <5 yr 2 0.8 0.56 2.05 5.6 1.26 4.57
Ghana (cough) <5 yr 2 8.2 2.01 3.61 7.2 1.04 6.51
Brazil 2 (fever) 6–48 mo. 2 5.7 1.89 3.29 2.6 0.79 2.45

Brazil 2 (cough) 6–48 mo. 2 10.6 4.17 2.89 6.6 0.86 6.75

DRC, Democratic Republic of Congo.
* More than 2 loose stools/24 h.
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episodes lasting for just 1 day predominated in

all settings except in a study on children aged <3

years in the Democratic Republic of Congo (DRC)

[8]. As with incidence, there are likely to be many

factors like age and nutritional status affecting epi-

sode duration. The data for diarrhoea and cough

from Ghana reveal a conspicuous ‘heaping’ of epi-

sodes lasting for 7, 14 or 21 days (Fig. 2). It appears

that field workers or study participants rounded

the episode duration to full weeks. These outliers

compromise the parameter estimation for episode

durations.

In the model, the duration of each diarrhoea epi-

sode is drawn from the gamma distribution fitted to

the real data, in a way similar to the generation of

episode incidence (see Appendix). While we estimated

the distribution of the number of episodes at individ-

ual level, the estimation of the distribution of the

episode durations was episode based, i.e. episodes of

all individuals were pooled and then stratified ac-

cording to their duration regardless of whether some

individuals consistently experience longer or shorter

episodes. Without further assumptions (see next sec-

tion) the model randomly allocates episode durations
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directly to episodes rather than individuals. Thus, the

model at this stage ignores the possibility that some

individuals may be prone to short or long episodes

due to known or unknown risk factors.

Correlation between the individual disease incidence

and individual mean episode duration

While in the basic model the episode duration is allo-

cated to each episode at random, this simplified as-

sumption may not reflect reality. The analysis of the

available data demonstrated that for conditions like

diarrhoea, fever and rapid breathing, individuals

with more episodes also suffer from longer episodes

(Table 2), presumably due to the effect of age (younger

individuals having more and longer episodes) and an

underlying nutrient and immune deficiency.

The correlation between the number and duration

of episodes can be simulated by introducing a linear

association between the number of episodes and

episode duration, while keeping the mean episode

duration as determined by the gamma distribution

constant (more complex associations are also possible,

but are often not needed). However, comparison of the

model simulations and data from the different field

sites showed that the association between incidence

and duration only partially explained the variation in

the mean episode duration between individuals. There

was evidence for considerable within-subject corre-

lation of episode duration, with individuals consist-

ently experiencing longer or shorter episodes due

to some unknown risk factor unrelated to disease

frequency. This intra-subject correlation of episode

duration can be incorporated into themodel by adding

a subject-specific error factor drawn from a normal

distribution with mean 1.0. The variance of the

normal distribution is increased incrementally until

the simulated variance of the mean episode duration

between individuals is close to the observed data

(see Appendix).

For example, the mean episode duration in the data

from Brazil 2 was 2.7 days with a standard deviation

of 1.4 days between individuals. In a simulation model

based on the parameters from Brazil 2 (Table 1), the

mean duration was also 2.7 days. However, without

specifying an error factor to account for within-

subject correlation of episode duration, the standard

deviation of episode durations was only 0.8 days –

much lower than observed in the real data. Specifying

an error term drawn from a normal distribution with

mean 1.0 and variance 0.5 results in a standard devi-

ation of 1.4 between individuals as was observed in the

real data. The same approach applied to the other da-

tasets revealed similar values for the variance of the

error term: for the Ghana data, the error factor with

the best fit had variance of 0.6, in Guatemala of 0.4

(mean 1.0). To illustrate the procedure, Figure 3 shows

the association between the number of episodes and

the mean duration of episodes in individuals in the

Table 2. The correlation between the number of

episodes and episode duration

Dataset

Number of episodes per year

1–2 3–5 6–10 o11

Brazil 1
Diarrhoea 2.4 2.7 2.8 3.1

Brazil 2

Diarrhoea 1.9 2.1 2.3 2.9
Fever 2.1 2.2 2.3 2.7

Guatemala
Diarrhoea 3.3 4.7 5.9 6.1

Ghana

Diarrhoea 4.7 6.4 8.0 7.4
Rapid breathing 5.3 5.6 6.4 9.5

Duration of episodes in days.
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data from Brazil 2 (Fig. 3a), and in the model in-

corporating a linear association between incidence and

duration, as well as within-subject correlation of epi-

sode duration, which increases the scatter around the

regression line (Fig. 3b).

Dependence of disease risk on the occurrence of

previous episodes (autocorrelation)

As outlined above, specifying a gamma distribution

for the individual number of episodes without further

assumptions leads to episodes being randomly dis-

tributed over time. However, two different popu-

lations with the same gamma distribution of the

number of episodes may well differ with regard to

how these episodes are spread over time, e.g. due to

seasonal variation (see next section) or autocorre-

lation. There is evidence that the risk of a new diar-

rhoea episode depends on the occurrence of previous

episodes [9, 10]. The analysis of the available datasets

suggests that diarrhoea risk decreased by 50% 4–6

weeks after a previous episode in Brazil 1 (Fig. 4). The

diarrhoea data from Ghana and Brazil 2 showed a

very similar pattern (results not shown). A depen-

dence of the risk on the time since the last episode was

also found for the rapid breathing data from Ghana,

and to a lesser extent also for fever in Brazil 2 (Fig. 4).

In contrast, the diarrhoea data from Guatemala re-

vealed no clear autocorrelation (results not shown).

Overall, the risk of some recurrent infections and

conditions appears to level off beyond 4 weeks after

the last episode. However, the estimated association

also depends on the number of disease-free days

assumed to define a new episode. Some episodes

occurring in the week after a first episode may belong

to the previous one. It is therefore possible that the

true association between disease risk and the time

since last episode has been overestimated but is un-

likely to have been underestimated.

There are many ways to incorporate into the model

a dependency of disease risk on previous episodes.

The available data suggest that a negative exponential

association between risk and time since last episode

may be appropriate. Alternatively, one can simulate

discrete steps, e.g. by assuming that the risk of disease

is uniformly increased for a defined period after an

episode, after which the risk drops to the original risk.

As with all models there are trade-offs between using

simple assumptions that may not fit the data as well

and increasing the complexity of the model.

Seasonality

Diarrhoea and many other recurrent infectious dis-

eases and conditions like malaria-associated fever or

respiratory infections are known to strongly depend

on season. In most settings, diarrhoea and malaria

increase over the wet season, whereas respiratory

infections often peak during the cold or dry season.

In some regions there is a second peak of diarrhoea

in the cold season (as shown in Fig. 5 for Ghana). In
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contrast to Brazil 2 the peak of respiratory infections

seems to coincide with the peak of diarrhoea during

summer (Fig. 5). Whereas in the data from Brazil 2

diarrhoea and cough follow a gradual rise and

decline, the seasonality in the Ghana study is charac-

terized by a relatively constant baseline risk, inter-

rupted by sudden epidemics.

The model can be adapted to generate seasonality

with distinct levels (epidemic type) as well as other

seasonal patterns, e.g. two peaks of different heights

generated by a sinusoidal function to reflect the

gradual rise and decline of disease prevalence as ob-

served in Brazil 2.

MODEL APPLICATION

The model may be used for a variety of purposes.

It may be particularly helpful to explore different

methods of disease surveillance in epidemiological

studies or programme evaluation [1, 3]. For example,

many investigators measure the incidence of recurrent

infections and conditions by collecting weekly period

prevalence data assuming that a new episode starts if

there was no disease in the previous week. Models

allow the exploration of the extent to which this data

collection approach yields imprecise or biased esti-

mates compared to daily data collection. A related

modelling approach has been used by Morris et al.

[11] and Yoon et al. [12] to evaluate different surveil-

lance methods for measuring diarrhoea in popu-

lations, but instead of simulating the data they only

simulated different surveillance schemes directly ap-

plied to real data. However, the use of simulated data

allows sensitivity analyses to identify key determi-

nants of the simulation results by varying one model

parameter at a time while leaving others constant.

The model can also be used to explore the effect of

recall error on disease estimates. Recall error can occur

in different ways, e.g. by simply forgetting disease oc-

currence more then a few days ago, or by remembering

disease to have occurred closer to the date of a sur-

veillance visit ; finally, by field workers rounding dis-

ease days to full weeks, which obviously happened in

Ghana (Fig. 2).

The model can also provide insights into the epi-

demiology of diarrhoea and other recurrent diseases

by comparing the expected distribution of episodes

(or intervals between episodes) under certain as-

sumptions, with the distribution observed in the field

[3]. In addition, by making simple assumptions about

the dependence of disease risk on a previous episode,

one can explore different approaches to estimate the

autocorrelation between episodes within individuals.

For example, autocorrelation may depend on disease

definition (see above) and may also be overestimated

unless the analysis is adjusted for confounding fac-

tors like the individual number of episodes and

seasonality. Unlike real data, autocorrelation can be

pre-specified in the model so that one knows what to

expect in the analysis.

MODEL LIMITATIONS

Despite introducing additional parameters, the struc-

ture of our simulation model is still relatively simple

and – as any model – relies on a number of assump-

tions. For example, the assumed autocorrelation struc-

ture is a simplification as the risk of a new episode only

depends on the time since the last episode, but not its

severity, nor the occurrence of disease prior to this. As

with most mathematical models it often pays to start

with simple assumptions. In some circumstances it

may, however, be necessary to extend the model, e.g.

to allow for a more complex autocorrelation pattern,

missing data or disease severity. In contrast, some re-

search questions may not require the specification of

all parameters described in this paper.

Assuming a gamma distribution for episode inci-

dence and durations does not always result in a good

model fit. For example, the gamma distribution un-

derestimated the proportion of individuals with o20

episodes in Brazil 1 (Fig. 1), and also did not fit well

the distribution of episode durations observed in

DRC (Fig. 2). More complex assumptions would be

needed to achieve a better fit in these cases, which may

compromise model interpretation. In most cases it

may be more appropriate to conduct a sensitivity

analysis by simulating a group of outliers to explore

whether the conclusions are affected by the lack of fit.

Probability distribution functions other than the

gamma distribution may also be appropriate to rep-

resent skewed data. Since the gamma distribution has

been used before in this context and showed a good fit

[1, 3], we used it again for pragmatic reasons.

In conclusion, our simulation model may be pri-

marily useful to improve the methods of measuring

recurrent infections and conditions in epidemiological

studies, and to explore which statistical approaches

are the adequate for data analysis. This paper focuses

on diarrhoeal diseases, since many of the parameters

like illness duration and autocorrelation of diarrhoeal

episodes are of particular public health interest and
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have therefore been the focus of many studies [9, 14,

15]. However, applying the model to other recurrent

infections and conditions should be straightforward,

as shown by the included examples for other con-

ditions. It is important to note that the use of models

does not diminish the need for a sound theoretical

basis of a particular research question. Often, appro-

priate use of statistical theory will allow the prediction

of model results. Simulations can then be used to

confirm the predictions and provide results applicable

to the field.

APPENDIX

Figure A1 is an example of a model structure as-

suming no seasonality and no overlap between epi-

sodes, and a twofold risk of disease during the first 2

weeks after an episode (i.e. two discrete risk levels).

The first step in the model generation is the determi-

nation of the number of episodes of each simulated

individual. This is done (using the method of the in-

verse cumulative distribution function) [20] by draw-

ing a uniformly distributed random number between 0

and 1, and applying this number to the inversed cumu-

lative gamma distribution (Fig. A1a). In this example,

the random number results in a value of 5.0, indicating

that this individual will have a daily risk of disease of

5.0 episodes per 365 days. Whether this individual will

experience an episode on a particular day is decided by

drawing another uniformly distributed random num-

ber between 0 and 1. If this number is below 5/365,

then this day marks the start day of an episode. For

every episode, the duration is drawn in a similar

manner from the inverse cumulative gamma distri-

bution for episode durations (Fig. A1b). The allocated

duration is then multiplied by the subject-specific

error factor to simulate intra-subject correlation, and

by a linear function (y=a+bx) to simulate correlation

between incidence and duration. The subject-specific

error factor is drawn from a normal distribution with

mean 1.0. The variance of the normal distribution is

incrementally fitted so that the simulated standard

deviation of the mean episode durations in individuals

is close to that in the observed data.With regard to the

linear function, intercept a is the mean duration of

episodes in subjects with one episode and slope b the

change in episode duration for each additional epi-

sode. As there are no episodes lasting for 0 days, the

episode durations resulting from this procedure are

rounded up to the next whole number. In this case the

first episode is allocated a duration of 3 days. The risk

of disease is 0 for the duration of the episode, after

which the risk rises to 10/365 to simulate the doubled

risk after an episode. In this example the individual

experiences another episode 3 days after the first

episode. The new episode duration (2 days) is again

drawn at random from the gamma distribution

(Fig. A1b). During the 14 days after the second epi-

sode no further episode occurs. The risk therefore

drops to the baseline daily risk of 5/365.
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