
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2370  | https://doi.org/10.1038/s41598-021-82008-7

www.nature.com/scientificreports

Delta/Theta band EEG activity 
shapes the rhythmic perceptual 
sampling of auditory scenes
Cora Kubetschek1* & Christoph Kayser2

Many studies speak in favor of a rhythmic mode of listening, by which the encoding of acoustic 
information is structured by rhythmic neural processes at the time scale of about 1 to 4 Hz. Indeed, 
psychophysical data suggest that humans sample acoustic information in extended soundscapes not 
uniformly, but weigh the evidence at different moments for their perceptual decision at the time scale 
of about 2 Hz. We here test the critical prediction that such rhythmic perceptual sampling is directly 
related to the state of ongoing brain activity prior to the stimulus. Human participants judged the 
direction of frequency sweeps in 1.2 s long soundscapes while their EEG was recorded. We computed 
the perceptual weights attributed to different epochs within these soundscapes contingent on the 
phase or power of pre-stimulus EEG activity. This revealed a direct link between 4 Hz EEG phase and 
power prior to the stimulus and the phase of the rhythmic component of these perceptual weights. 
Hence, the temporal pattern by which the acoustic information is sampled over time for behavior is 
directly related to pre-stimulus brain activity in the delta/theta band. These results close a gap in the 
mechanistic picture linking ongoing delta band activity with their role in shaping the segmentation 
and perceptual influence of subsequent acoustic information.

Perception and cognition are controlled by rhythmic activity in the brain1–3. These rhythmic processes can reflect 
directly in behavioral data, such as periodic changes in reaction times or measures of perceptual accuracy relative 
to stimulus onset4–7. More frequently, they are revealed by systematic relations between signatures of rhythmic 
brain activity and measures of performance, such as changes in accuracy or sensitivity with the power or timing 
of pre-stimulus activity8–10. Concerning hearing, several studies have shown that performance varies with pre-
stimulus activity below 10 Hz. For example, participants’ ability to detect brief acoustic targets or to discriminate 
two subsequent tones varied with the power and phase of brain activity below about 4 Hz8,9,11–14. The apparent 
match between the time scales of perceptual sensitivity and those at which neural activity shapes hearing15,16 is 
seen as strong support of a rhythmic mode of hearing. Such a rhythmic mode could facilitate the amplification 
of specific (e.g. expected) stimuli and mediate the alignment of endogenous neural activity to the regularities of 
structured sounds such as speech17–19.

A critical prediction based on these studies, and motivated by a link between rhythmic network activity and 
the functional gain of individual neurons, is that perception should sample acoustic information rhythmically 
rather than continuously over time2,10,17,20,21. Thereby, also information in longer soundscapes that are devoid of 
an explicit temporal structure should be weighted at precisely those timescales at which rhythmic brain activity is 
predictive of behavior (i.e. between the delta and theta bands between about 1 and 4 Hz). Studies on speech have 
provided evidence in favor of this hypothesis18,22–25, e.g. by showing that delta band activity serves the chunking 
or segmentation of speech on a sentence-level time scale15,18,26 while theta band activity reflects the processing 
of syllable-scale information. However, the underlying processes may possibly be specific to speech, which is 
intrinsically predictive on multiple time scales. Other studies have used periodic sounds to entrain rhythmic 
neural processes and have shown the persistent and periodic influence of these on behavior for several cycles 
even after the offset of the entraining sound27,28. However, this does not demonstrate a direct influence of pre-
stimulus and possibly spontaneous brain activity on a subsequent rhythmic mode of listening.

To more broadly address the question of whether listening samples acoustic information based on rhythmic 
processes in the delta or theta time scales, we have previously designed a paradigm allowing the quantification of 
the moment-by-moment influence of acoustic evidence on perceptual judgments29. In that earlier study, we found 
evidence in favor of a rhythmic listening mode in human participants. However, by design that study did not link 
the rhythmic weighting of acoustic evidence to brain activity and made the strong assumption that the temporal 
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weighting profile is idiosyncratic across trials29. That is, it assumed that the relative perceptual sampling phase is 
consistent on a trial by trial basis. However, if the excitability of auditory pathways is controlled by (rhythmic) 
pre-stimulus brain activity30,31, this assumption could be violated: the temporal perceptual weighting profile at 
which momentary acoustic evidence is sampled should change on a trial by trial basis relative to the trial-wise 
pattern of pre-stimulus brain activity.

Here we directly tested this prediction by asking whether the rhythmic behavioral use of acoustic information 
is directly related to pre-stimulus activity. To probe this, we combined psychophysical reverse correlation with 
EEG recordings obtained while human participants judged the direction of frequency sweeps in pseudo-random 
soundscapes of 1.2 s duration. We first reproduced our previous results providing evidence for a rhythmic per-
ceptual sampling of extended soundscapes at a frequency of about 2 Hz. Then, we show that the relative timing of 
these perceptual weights is significantly related to the power and phase of pre-stimulus EEG activity at a similar 
time scale, with the perceptual weights of opposing phase bins differing by about 90 degrees.

Methods
Participants.  The experiment combined a previously described behavioral task with electroencephalogra-
phy (EEG) recordings in 20 participants (11 females; 19–32 years old). The study was conducted in accordance 
with the Declaration of Helsinki and was approved by the ethics committee of Bielefeld University. Data was 
collected with participants’ written informed consent. Participants reported normal hearing and received mon-
etary compensation of 10 Euro/hour. During the experiment they sat in an electrically and acoustically shielded 
room (Ebox, Desone, Germany).

Stimuli.  The stimuli and task have been described in detail before29. The stimuli were presented via head-
phones (Sennheiser HD200 Pro) at an average intensity of 65  dB SPL. Each stimulus was composed of 30 
simultaneously presented sequences of four tones each, whereby each sequence either increased or decreased 
in frequency over the four tones (Fig. 1A). Each tone had a duration of 30 ms. The starting frequency of each 
sequence was drawn independently between 128 and 16,384 Hz and increased or decreased in steps of 20 cents. 
The starting position within each sequence (1 to 4) of the initial 30 sequences were selected at random to ensure 
that the frequencies and the start/end times of each sequence were independent across the 30 sequences. Also, 
the exact starting times of individual tones within a sequence varied up to 30 ms. To create the impression of 
an overall frequency-sweep over time, the proportion, termed ‘coherence’, of in/decreasing tone sequences was 
systematically varied. This coherence could vary between 0 (indicating that half the tone sequences increased, 
while the other half decreased) and 1 (indicating that all swept in the same direction). Each trial in the experi-
ment, and hence each soundscape, was characterized by the direction of change (increasing or decreasing) and 
the associated coherence. This design allowed us to vary the amount of sensory evidence about the direction of 
sweep between and within a trial around each participant’s threshold (see below). Specifically, each soundscape 
of 1200 ms duration was divided into ten ‘epochs’, each lasting 120 ms (see Fig. 1B). The coherence for each 
epoch was drawn randomly and independently from a Gaussian distribution centered around the participants’ 
threshold and with a standard deviation of 0.2. To obtain the stimulus for a given trial we first determined the 
sweep direction (increasing or decreasing) and then sampled the coherence for each epoch and subsequently 
generated the sequences of pure tones to fit those parameters.

We quantified the temporal modulation spectrum of these soundscapes as done previously29. First, we com-
puted the band-limited Hilbert envelope of each soundscape in 10 logarithmically spaced bands between 100 
and 12 kHz. Then we derived the average temporal modulation spectrum for each band across soundscapes and 
participants.

Task and experimental design.  The participant’s task was to report the perceived direction of frequency 
change (‘sweep’) of the stimulus after each trial as accurately as possible. Each experiment consisted of five 
blocks with 200 trials each, resulting in 1000 trials per participant. The inter-trial intervals had a duration of 
1100–1600 ms (uniform random distribution). Each trial started with a fixation cross after which (800–1100 ms 
uniform distribution) the soundscape started. Participants could take breaks in between blocks. This design 
corresponds to Experiment 3 in Kayser et al. 201929, except that here we obtained 1000 trials (rather than 800).

Before the actual experiment, we determined participants’ perceptual thresholds using three interleaved 
2-down 1-up staircases that each varied the coherence of the presented soundscapes (starting at different ini-
tial coherence values of 0.15, 0.4 and 0.8 respectively, with initial step sizes of 0.1). An average of six reversals 
(excluding the initial four) was calculated from each staircase, and the resulting three coherence thresholds 
were averaged to yield the final participant’s threshold for judging the direction of frequency sweeps in these 
soundscapes. Across participants the obtained thresholds were 0.32 ± 0.05 (mean ± s.e.m.).

The behavioral performance was quantified as the fraction of correct responses and using two measures 
from signal detection theory, sensitivity (d’) and bias (c)32, by dividing the trials according to sweep direction.

Analysis of psychophysical weights.  The soundscapes were designed to allow the application of psy-
chophysical reverse correlation to quantify the influence of the momentary sensory evidence (deviation from 
an ambiguous sweep direction) on participant’s responses33,34. For this analysis, the sensory evidence was opera-
tionally defined as the signed difference between the half the actual coherence value and a value of 0.5: an 
evidence of 0 defined a perfectly coherent decreasing soundscape, a value of 1 a perfectly coherent increasing 
soundscape, and a value of 0.5 an ambiguous soundscape (c.f. Fig. 1).

For each participant we derived a perceptual weighting profile as follows: we split trials according to the 
participants’ response and sweep direction. For each response we calculated the average motion evidence and 
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converted their difference into a within-participant z-score based on a distribution of 4000 weights obtained by 
randomizing the alignment of stimuli and responses35,36. A weight of zero indicates no influence of the stimulus in 
that epoch on participant’s responses, while positive values indicate a positive relation between sensory evidence 
(i.e. the amount of sweep coherence and the direction of sweep) and the participant’s response. Note that this 
calculation assumes that the time course of the perceptual weights is consistent across trials within a participant, 
as the reverse correlation assigns a fixed weight to each epoch. To relieve this assumption, the main analysis in 
this study derived the perceptual weights for subsets of trials that were chosen based on the amplitude or phase 
of EEG signals in a pre-stimulus period, as described below.

To probe whether these perceptual weights exhibited a systematic temporal structure, we proceeded as 
previously29. We first extracted non-rhythmic structures such as an offset, a linear ramp and u/v-shaped time 
courses fixed to the stimulus duration. The u/v shaped component was modeled as cos(2 * pi * t * fexp), with 
fexp = 1/stimulus duration, and reflects a potential (de-) emphasis of the middle proportion of the stimulus. 
These three components were termed ‘trivial’, as they do not relate to the specific hypothesis of genuine rhythmic 
structure at relevant timescales above 1 Hz. We then quantified whether a rhythmic component at a frequency 
above 1 Hz significantly contributes above these trivial components to the time course of the perceptual weights. 
For this we compared regression models featuring only the trivial components with models additionally including 
a rhythmic component, defined by sine and cosine components of a variable frequency between 1.1 and 4 Hz. 
We tested this specific frequency range, as frequencies above or below were outside the temporal sampling range 
defined by the duration of these soundscapes and the temporal resolution at which perceptual weights were cal-
culated (120 ms). This temporal resolution is defined by the duration of the epochs between which the motion 
coherence was randomized within a trial (see above). To compare regression models we followed two slightly 

Figure 1.   Example soundscape. (A) Time–frequency representation of one soundscape with an overall 
increasing frequency sweep. Black dots indicate the four consecutive tones of three selected sequences. Yellow 
colors indicate higher sound levels. (B) The ’sensory evidence’ for the soundscape in A (black line) and other 
example soundscapes (grey lines). An evidence value of 0.5 indicates ambiguous evidence, a value of 1 that a 
fully coherent soundscape in which all tone sequences increase.
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distinct approaches29,37. First, for each model (with and without rhythmic component) we derived its log-evidence 
obtained from the regression for individual participants. Model comparison was then based on the group-level 
log-evidence (assuming that participants contribute independently)37–39. We additionally computed the exceed-
ance probability of either the trivial model or the trivial plus rhythmic model to better explain the data using a 
bootstrapping procedure, and we computed model frequencies, which indicate the proportion of participants for 
which either model explains the data best40. In a separate analysis we used a Monte-Carlo approach for model 
fitting and compared models based on the Watanabe-Akaike information criterion (WAIC), which also captures 
the out-of-sample predictive power when penalizing each model38. This calculation was implemented using the 
Bayesian regression package for Matlab41, using 10,000 samples, 10,000 burn-in samples and a thinning factor 
of 5. We did not expect clear differences between these two approaches for model comparison, but each offers a 
different tradeoff of capturing in- and out-of-sample predictive power38.

EEG recordings and analysis.  EEG was recorded continuously using a 64-channel ActiveTwo system 
(Biosemi), with reference electrodes located occipital-parietal at a frequency of 1024 Hz. Electrodes to record the 
electro-oculograms (EOG) were put below and next to the lateral canthus of both eyes.

The EEG data were analyzed using Matlab (R2017a; TheMathWorks) and the fieldtrip toolbox, version 
2019090542. The raw data was filtered (between 0.6 and 70 Hz; 3rd-order Butterworth filter) and re-sampled to 
150 Hz. Trials were rejected if the amplitude in central electrodes exceeded ± 175 µV. An average of 21.1 ± 8 (SEM) 
trials per participant were rejected. Few bad channels were interpolated based on all neighboring channels43. 
Furthermore, artefacts were identified and rejected, using the data from the EOG channels, and based on an 
independent component analysis (ICA). Artifacts were identified as in our previous studies44,45 following defini-
tions provided in the literature46,47 and included poor electrode contacts, frontal artifacts induced by blinks or eye 
movements, and temporal muscular artifacts. On average we removed 17 ± 1 (mean ± s.e.m.) components. Our 
main analysis focused on the relation between rhythmic brain activity prior to the stimulus and the perceptual 
weights. To quantify this, we first performed a time–frequency analysis on single trial EEG activity in a time 
window prior to stimulus onset (− 1 to 0 s). To avoid contamination by post-stimulus activity, we time-mirrored 
the epoched data and applied a Hanning window to fade out the stimulus period48. Time–frequency resolved 
activity was obtained using Morlet wavelets (4 cycles width) between 2 and 13 Hz, from which we derived the 
time-varying power and phase of each frequency band. This range was chosen based on the relevant time scales 
revealed by previous work8,9,24,49–54 (or for review see55) and the available pre-stimulus data epoch.

Linking EEG and behavior.  To link pre-stimulus EEG activity and behavior, we first quantified the relation 
between measures of perceptual performance and EEG power and phase in the pre-stimulus period. For this, we 
divided trials into those with high or low pre-stimulus power (based on a median split) for each participant, elec-
trode, frequency and pre-stimulus time point. Then we quantified behavioral performance separately for trials 
with low or high power. To test for a statistical effect, we computed a two-sided t-test across participants between 
trials with low- and high power for each channel, time point and frequency. Because this involved a large num-
ber of dimensions, we reduced this dimensionality as follows: we first used the analysis focusing on the fraction 
of correct responses to define a suitable time point to extract power by determining that time point containing 
the most significant (at an uncorrected p < 0.05) number of channels across frequencies. We then extracted the 
averaged power in a time window around this time point (− 200 ± 100 ms). Subsequently we tested for a signifi-
cant relation between power and behavioral sensitivity or bias using cluster-based permutation statistics (see 
below). To visualize the dependency of behavior on power we also divided the trials according to pre-stimulus 
power into four bins, with each bin containing the same number of trials (c.f. Fig. 3D).

We used a similar two-stage procedure to test for a relation between EEG phase and behavior. First, we split 
trials into correct or incorrect responses and contrasted these using the phase opposition sum (POS)56. The 
POS was computed for each participant individually and these were combined across participants using the 
Stouffer Method using the PhaseOpposition toolbox56. To reduce dimensionality, we calculated the number of 
significant channels (at p < 0.05, uncorrected) for each time point and frequency and determined the time with 
the highest number of significant channels across frequencies. This time point (− 320 ms) was then used for the 
subsequent analysis of EEG phase. For the main analysis we then grouped trials according to the phase at this 
time point, similar to the analysis of power. However, because the division of phase in two bins is arbitrary, we 
repeated this analysis using four different division boundaries to split the circular phase range in two groups 
(dividing trials along boundaries at 0 and π, along boundaries at π/4 and − 3 π/4, etc.). Then we computed the 
absolute difference in sensitivity or bias between opposing phase bins, selected for each participant, electrode 
and frequency the phase division yielding the strongest effect, and used cluster-based permutation statistics to 
determine significant effects.

Linking EEG and perceptual weights.  To test whether and how pre-stimulus power and phase affect 
the sampling of acoustic information, we quantified the relation between these and the perceptual weights. To 
do so, we recomputed these weights and their trivial and rhythmic components obtained using regression sepa-
rately for trials falling into either of the two bins defined based on EEG power or phase. This was done for each 
participant, frequency band and electrode separately, with phase and power extracted at the respective optimal 
time points described above. We then focused on the different trivial and rhythmic components of these weights 
defined above, considering the rhythmic component at the best group-level frequency of 2.2 Hz (as revealed in 
Fig. 2). We asked whether these components differed in amplitude (or for the rhythmic component, additionally 
differed in phase) between trials characterized by the two bins of EEG power or phase.
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Statistics.  Statistical tests for EEG data were based on a two-level procedure and used cluster-based per-
mutation procedures to correct for multiple comparisons across electrodes and frequency bands, and for phase, 
additionally for the inclusion of four potential divisions of phase into two bins. To control for multiple compari-
sons across performance indices (e.g. d’ and bias; or different components of the perceptual weights) we used 
the Benjamini & Hochberg false discovery rate57,58 to threshold significant clusters at a corrected p-value of 0.01.

To test for a significant relation between EEG power and behavior, we first used a paired t-test to contrast 
sensitivity (or bias) between power bins across participants. Then, we entered the respective t-values (thresholded 

Figure 2.   Perceptual weights. (A) Group-averaged perceptual weights (black line), two-sided 95% bootstrap 
confidence interval (grey area) and the best fitting models (group-average; green). (B) Model comparison 
between the trivial model (circle) and rhythmic models at different frequencies (lines) based on the group-level 
negative log-evidence (blue) and the WAIC (red). Dots indicate participant’s individual best frequencies (from 
negLogEv). (C) Exceedance probabilities and model frequencies comparing the trivial and a rhythmic model 
at the best rhythmic group-level frequency (2.2 Hz). (D) Regression betas for each model component (mean, 
s.e.m.): the overall offset, the linear slope, a u- or v-shaped contribution over the full duration and the rhythmic 
component; See Methods for details. For the rhythmic component the root-mean-squared amplitude of the 
combined sine and cosine components at 2.2 Hz is shown. (E) Rhythmic components of the best model for each 
individual participant. (F) Phase of the rhythmic component for each participant.
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at a two-sided level of p < 0.05) into a permutation procedure, relying on 2000 permutations of the effect sign 
across participants, using the max-sum as cluster-forming statistics and considering only clusters exceeding a 
minimal cluster size of two59. The same procedure was used to test the relation between EEG power and param-
eters derived from the behavioral templates (except the phase of the weighting function; see below).

For EEG phase we used a similar statistical procedure. However, as the split of phase into two bins is arbitrary, 
we considered for each electrode, frequency and participant four potential divisions of phase into two bins. 
Because the label of each bin, and hence the sign of the difference of effects between bins is arbitrary, we com-
puted the absolute difference between phase bins of the variable of interest. We then selected, for each electrode, 
frequency and participant the one (of four) phase divisions with the largest effect and computed the average 
across participants. We then compared this true group-level average effect to a distribution of group-level effects 
obtained from a permutation of trial labels and behavioral data and accepted as significant effects exceeding the 
95th percentile of the randomized distribution. We then applied cluster-based permutation procedure as above. 
The effect of EEG power or phase on the phase of the perceptual weights was tested similarly, by using the absolute 
value of the change in phase of the weighting function between the two bins derived from EEG power or phase.

Results
Behavioral results.  Participants were judging the perceived direction of frequency sweep in 1.2  s long 
soundscapes. These soundscapes (Fig.  1A) consisted of 30 simultaneous tone sequences, which varied in 
frequency and the amount of sensory evidence about sweep direction, defined by the coherence of the tone 
sequences. These soundscapes were designed to allow the quantification of the stimulus–response relation using 
psychophysical reverse correlation. The resulting perceptual weights are shown in Fig. 2A and reflect the influ-
ence of the momentary sensory evidence on behavior. The group-level weights were significant for all time 
points (at p < 0.05, group-level bootstrap test).

As in our previous study, we investigated the temporal pattern of these perceptual weights by probing their 
temporal structure using regression modeling. In particular, we asked whether these weights feature rhythmic 
temporal structure at a time scale of above 1 Hz. To this end, we modeled weights based on three trivial compo-
nents: a constant offset, a linear slope and a u/v-shaped component time-locked to the soundscape duration. We 
then added a rhythmic component with a variable time scale between 1.1 and 4 Hz to these and asked whether 
addition of this rhythmic component significantly improved the descriptive power for these perceptual weights. 
For each participant, we quantified the contribution of these four components to the participant-specific weights 
using regression models. We then computed the log model evidence for either a regression model comprising 
only the three trivial components and a model additionally including the rhythmic component at varying fre-
quencies (Fig. 2B, blue curve). In a separate analysis, we performed the same model comparison using Monte-
Carlo simulations used to derive the WAIC criterion (Fig. 2B, red curve). Both analyses consistently revealed 
that including a rhythmic component at 2.2 Hz provided the highest explanatory power compared to all other 
frequencies tested. In particular, a group-level model comparison between the trivial model and the rhythmic 
model at the best group-level frequency (2.2 Hz) revealed that the model including the rhythmic component 
explained the data significantly better than a model without: the group-level log-evidence was clearly in favor of 
the rhythmic model (Delta_neglogEv = 147; exceedance probability pex = 1; model frequency across participants 
0.975; Fig. 2C). The same conclusion was supported by a model comparison based on the WAIC (D_WAIC = 148). 
This result confirms our previous data t obtained in a separate group of participants (Experiment 3 in29).

To illustrate these four contributions to the perceptual weights, the green dashed line in Fig. 2A shows the 
best (group-level) model fit to the actual data and Fig. 2D displays the amplitudes (regression beta’s) for the dif-
ferent components: offset (mean = 4.35; SEM = 0.528), linear decrease (mean = − 1.002; SEM = 0.461), u/v-shaped 
component (mean = 0.026; SEM = 0.117), and the rhythmic component (mean = 0.804; SEM = 0.059). Figure 2E 
displays the rhythmic component for each participant individually, illustrating the consistency of the rhythmic 
perceptual weight for most participants. As shown in Fig. 2F these rhythmic components share a common phase 
across most participants.

To confirm whether the behavioral data fit the expectations given the experimental design around participant’s 
thresholds, we used signal detection theory, dividing trials by sweep directions into two classes. Hit rates were 
around 0.72 as expected (median = 0.716), sensitivity was above 1 for most observers (Median = 1.173; max = 1.81; 
min = 0.632) and the response criterion revealed no bias (median = -0.01; max = 0.299; min = -0.619).

Analysis of EEG data.  The analysis of EEG data was designed to probe whether the perceptual weights 
reflecting the influence of acoustic evidence on participants’ behavior were related to the state of brain activity 
prior to the stimulus. That is, we asked whether (statistically) the shape of these weights differed depending on 

Figure 3.   Linking EEG power with behavior and perceptual weights. (A, B) Difference in perceptual sensitivity 
and criterion between trials with high or low pre-stimulus power (group-level t-values; paired t-test). (C) 
Topography of the significant electrodes for sensitivity overlaid on the t-map at 10 Hz EEG. (D, E) Sensitivity 
and criterion across participants and significant channels (from the cluster for sensitivity in panel A; mean and 
s.e.m. across participants) as a function of power (four equi-populated bins). (F–I) Difference in the prominence 
(amplitude) of the different components of the perceptual weights between trials with high and low pre-stimulus 
power (group-level t-values; paired t-test), as a function of EEG frequency and EEG electrode. (J, K) Difference 
in relative phase of the rhythmic perceptual component between trials with high and low power (group-level 
average absolute difference). Electrodes from two significant clusters are marked with black dots (first level 
significance at p < 0.05, cluster significance at p < 0.01 FDR).

◂



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2370  | https://doi.org/10.1038/s41598-021-82008-7

www.nature.com/scientificreports/

the state of brain activity prior to the stimulus. Such a dependency could for example reveal whether the overall 
strength of perceptual sampling (offset), or the strength of the rhythmic contribution differs between trials with 
particularly high or low power. It could also reveal whether the timing of rhythmic sampling (the weight’s phase) 
differs between trials preceded by a particular phase in a specific EEG band.

Addressing these questions using statistics required us to first reduce the complexity of this analysis by 
removing one (least-interesting) dimension: the precise time point prior to the stimulus used to characterize 
brain activity. We hence implemented a first analysis determining the time points that seemed most promising 
to capture any dependency between EEG power (or phase) and behavior. To do so for EEG power we computed 
the difference in the fraction of correct responses between trials with high or low power and quantified how 
many channels exhibited a significant difference in performance (at p < 0.05) at each frequency and time point. 
This revealed a cluster of more than 60% significant channels between 300 and 100 ms before stimulus onset, 
with a peak around 200 ms. We hence used the average over this time window for the subsequent analysis of 
EEG power. For EEG phase, we calculated the phase opposition sum (POS) as an index of whether pre-stimulus 
phase differs between trials with correct and wrong responses56. Calculating the number of channels with a 
significant group-level effect revealed a peak 320 ms before stimulus onset, which was used for the subsequent 
analysis of EEG phase.

Linking EEG activity and behavior.  To test for a relation between EEG power and behavior, we con-
trasted perceptual sensitivity and bias between trials with particularly high or low EEG power (Fig. 3A–E). For 
sensitivity this revealed a significant positive cluster between 8 and 13 Hz (tclus = 449.016 p = 0.002, 42 channels 
over fronto-central areas), which was also significant after correcting for all comparisons using the False Discov-
ery Rate (p < 0.01). The localization of this cluster is visualized in Fig. 3C by highlighting all significant electrodes 
in one topography. For bias we did not find a significant effect (at p < 0.01 uncorrected, Fig. 3B). To visualize the 
relation between EEG power and behavior in more detail, Fig. 3D, E show sensitivity and bias as a function of 
power, obtained by dividing trials according to power into four bins.

We performed a similar analysis for EEG phase (Fig. 4A,B). This revealed no significant effects (at p < 0.01 
uncorrected).

Linking EEG activity and perceptual weights.  To test whether the perceptual sampling of acoustic 
information is affected by pre-stimulus brain activity, we asked whether the perceptual weights differ between 
trials characterized by high or low EEG power, or by different phase states in a particular frequency band. We 
tested such relations for each of the four model components used to describe the weighting function (offset, 
linear slope, u/v profile, and the rhythmic component). In doing so, we focused on the amplitude of all compo-
nents and for the rhythmic component in addition on the relative phase of this. The latter analysis allowed us to 
directly test whether for example the pre-stimulus phase affects the phase of the rhythmic perceptual sampling. 
Statistical cluster-based permutation tests were corrected for multiple frequencies and considering multiple divi-
sion of phase into two bins using the max-statistics and for multiple contrasts using the FDR.

For pre-stimulus EEG power, we found no significant effects for the trivial model parameters and the ampli-
tude of the rhythmic model (at p < 0.01 uncorrected; Fig. 3F–I). However, we found two significant clusters for 
the phase of the rhythmic model: one at 4 Hz over parieto-occipital electrodes (tclus = 11.787 p = 0.0017, 6 chan-
nels, Fig. 3J,K) and one at 5 Hz over fronto-central electrodes (tclus = 10.473 p = 0.005, 5 channels), which were 
also significant after correcting for all contrasts using the FDR.

For the pre-stimulus EEG phase, these tests revealed no significant effects on the three trivial model param-
eters (offset, linear and u/v-shaped) or the amplitude of the rhythmic model (at p < 0.01 uncorrected) (Fig. 4C–F). 
However, a significant cluster emerged for the influence of the 4 Hz EEG phase on the phase of the rhythmic 
perceptual component over frontal electrodes (Fig. 4G, H; tclust = 11.998, p < 0.001, 5 channels). This indicates 
that the relative phase by which perception samples acoustic information around 2 Hz changes with the 4 Hz 
EEG phase over frontal sites. Given that both EEG phase and EEG power at 4 Hz revealed a significant relation 
to the phase of rhythmic perceptual sampling, we asked whether the strength of both effects was correlated 
across participants. A non-parametric correlation turned out to be not significant (rank- correlation: r = 0.4331, 
p = 0.0565, 95th bootstrap-CI [− 0.0144, 0.7097]).

To visualize the relation between pre-stimulus EEG power or phase and the perceptual weights we recon-
structed the rhythmic component of the perceptual weights for individual participants using the participant-
specific division of trials by EEG power or phase and obtaining the respective regression models on the perceptual 
weights. The four examples shown in Fig. 5A, B, illustrate the rhythmic component of the perceptual weights. 
These illustrate both the change in perceptual sampling phase with EEG power and EEG phase, but also reveal 
the heterogeneity of the effect across participants. On average across participants the absolute phase shift in 
rhythmic perceptual sampling with EEG power was 75.68° (95th CI of the mean [57.19, 94.15]) (Fig. 5C). The 
absolute phase shift in rhythmic perceptual sampling across opposing EEG phase bins was 110.98° (95th CI of 
the mean [92.33, 129.64]) (Fig. 5D).

Absence of rhythmic structure in EEG and acoustic power.  As control analyses we investigated the 
frequency spectra of the EEG signals and of the envelopes of the soundscapes (Fig. 6). The time- and trial aver-
aged EEG spectra for most individual participants were devoid of obvious peaks in the relevant frequencies, both 
when computed for the entire pre-stimulus and stimulus periods and when computed just for the stimulus pres-
entation time (Fig. 6A,B). This suggests that the observed perceptual sampling around 2 Hz and the link of this to 
EEG activity around 4 Hz is not tied to obvious rhythmic neurophysiological signals at these frequencies. Given 
that the temporal structure of acoustic envelopes imprints on auditory cortical activity, we also investigated the 
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temporal modulation spectra of the stimuli used in this experiment (as already done previously29). These modu-
lation spectra (Fig. 6C) were similarly devoid of obvious spectral peaks, suggesting that the rhythmic perceptual 
sampling is not directly driven by a regular structure in the stimulus at the same timescales.

Discussion
We investigated whether brain activity prior to a stimulus influences the manner in which human partici-
pants use the moment by moment acoustic evidence to make a perceptual judgement pertaining to temporally 
extended auditory scenes. Confirming previous results, we found that participants sample acoustic evidence not 

Figure 4.   Linking EEG phase with behavior and perceptual weights. (A, B) Group-level average of participants-
wise differences in perceptual sensitivity and criterion between trials with opposing EEG phase. (C–G) Group-
level average of participants-wise differences in regression betas of each component of the perceptual weights 
between trials with opposing EEG phase, as a function of EEG frequency and EEG electrode. (H) Topographic 
representation of the group-level average of participants-wise differences in the phase of the rhythmic 
contribution to perceptual weights. Electrodes from significant clusters are marked with black dots (first level 
significance at p < 0.05, cluster significance at p < 0.01 FDR).
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uniformly29; rather, the weights characterizing the perceptual sampling of random-tone acoustic soundscapes 
revealed a rhythmic pattern at a frequency of about 2 Hz. Importantly, the phase of this perceptual sampling co-
varied with the state of pre-stimulus brain activity around 4 Hz, suggesting that the rhythmic sampling process 
observed in the behavioral data is directly linked to ongoing (rhythmic) brain activity. These results support the 
notion that the state of delta/theta band brain activity shapes the manner by which subsequent acoustic evidence 
influences auditory perception. In addition, and independent of the time course of perceptual sampling, we also 
found that the overall perceptual performance varied with the strength of pre-stimulus alpha band power over 
frontal electrodes, demonstrating a general influence of pre-stimulus activity on the perception of prolonged 
sounds.

Evidence for the rhythmic sampling of auditory scenes.  The present study capitalized on a previ-
ously developed paradigm and the present data reproduce our previous results29. In particular, we show that the 
perceptual weights attributed to different epochs in temporally extended soundscapes (> 1 s duration) composed 
of multiple simultaneous sequences of random tones exhibit a rich temporal structure. This structure included 
but was not limited to a linear trend and a significant rhythmic component at a group-level frequency of 2.2 Hz. 
Linear trends, in particular a decreasing influence of sensory evidence on participants choice is often seen in 

Figure 5.   Visualization of the change in rhythmic perceptual sampling with EEG power and phase. (A, B) 
Examples of the rhythmic components (at 2.2 Hz perceptual sampling frequency) of the perceptual weights for 
four participants reconstructed using the respective participant’s specific bins for EEG power (A) and phase 
(B). For this analysis we considered the EEG power and phase bins at 4 Hz for each participant yielding the 
largest difference, derived at EEG electrode Pz for power and FC2 for phase. (C, D) Absolute phase differences 
in the rhythmic component of the perceptual weights between the EEG power (C) and phase (D) bins for each 
participant. The group-mean is marked with the red star and 95% confidence intervals (CI) are marked by the 
red lines.
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decision making tasks60. The presence of a rhythmic component is supported by two different approaches to 
determining whether including any rhythmic structure better explains the perceptual weights than models not 
containing such rhythmic structure. For the same soundscape duration (Experiment 3 in Kayser et al.29) the 
previous study revealed a very similar sampling frequency of 2 Hz. Importantly, the acoustic soundscapes used 
in this experiment are devoid of specific rhythmic structure at this time scale, as shown by the analysis of the 
frequency and temporal modulation spectra of these soundscape (Fig. 6). This suggests that the apparent rhyth-
micity in perceptual sampling is driven by endogenous rather than directly stimulus driven mechanisms operat-
ing at the delta band time scale.

However, the analysis of the behavioral data in isolation necessitates the assumption that the perceptual weight 
attributed to each epoch is fixed across trials. This is because the perceptual weight is estimated by combining 
the sensory information and behavioral outcome across trials. However, this assumption may not be valid, in 
particular if the hypothesized link between delta/theta band brain activity and rhythmic modes of perception is 
correct. To overcome this limitation, we here combined single trial estimates of pre-stimulus brain activity with 
the psychophysical reverse correlation estimate.

Pre‑stimulus activity shapes the timing of perceptual sampling.  Our results directly reveal a cor-
relation between the power and phase of pre-stimulus delta/theta band activity around 4 Hz and the relative 
timing of the subsequent perceptual weighting profile. Thereby our results provide a direct link between the pre-

Figure 6.   Power spectra of EEG signals and acoustic envelopes. (A, B) Time-and trial-averaged power 
spectra of the EEG signals, averaged within individual participants over the central electrodes contained in the 
significant clusters in Fig. 3 J/K. Individual lines indicate data for individual participants, in (A) for the entire 
pre-stimulus and stimulus period, in (B) just for the stimulus periods. (C) Temporal modulation spectra of the 
acoustic stimuli, shown for individual carrier bands (color coded). Spectra were averaged across trials for each 
participant. Lines and error bars indicate the mean and s.e.m. across participants.
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stimulus brain state and the subsequent exploitation of acoustic information for active listening over prolonged 
epochs (> 1  s). At the same time, we note that the strength of the phase-shift in perceptual sampling across 
opposing power or phase bins of the EEG activity was variable across participants (ranging from 5° to 138° for 
power, and from 39° to 180° for phase). This suggests that the underlying effect is either highly variable across 
participants or that the effect sizes obtained in the present study are still limited by number of trials collected.

Previous work has linked auditory delta band activity with changes in both spontaneous and stimulus driven 
neural activity21,30,61. The engagement of delta band activity has been implied in the attentional filtering of sound-
scapes and the task-relevant chunking of speech sounds into sentence or word-level structures62–64, and plays a 
central role in theories of rhythmic modes of listening2,17,20. However, a critical hypothesis emerging from these 
studies had not been tested: that rhythmic pre-stimulus activity is directly linked to the subsequent perceptual 
use of acoustic information over prolonged time scales. While some studies have shown the persistent fluctua-
tions of behavioral performance at similar time scales subsequent to a brief stimulus, no study has shown that 
pre-stimulus activity shapes how temporally extended soundscapes are sampled to make a perceptual decision. 
Rather, most studies linking pre-stimulus state and qualities of perception were restricted to short (mostly 
100–300 ms) stimuli8,12,14,65,66. We here close this gap by directly linking pre-stimulus activity and the subsequent 
perceptual influence of this.

We can only speculate as to why the precise time scales differed at which pre-stimulus brain state (4–5 Hz) 
and the perceptual sampling (2.2 Hz) were related. Spectral peaks in EEG derived brain signals are effectively 
blurred, both by the superposition of multiple neurophysiological sources giving rise to a particular extracranial 
signal and by methodological constraints in the spectral estimation processes67. Similarly, the spectral resolution 
of the perceptual weights is effectively limited by the number of trials used to estimate these and their specific 
parameters, such as the duration of the epochs used to randomize the sensory evidence within a trial. One pos-
sibility is hence that the underlying processes effectively operate at very much the same time scales, which simply 
emerge differently given experimental constraints. Alternatively, it could be that the relevant neurophysiological 
pre-stimulus processes and the perceptual sampling are directly linked and share a common time scale, but this 
time scale is slowed down during stimulus presentation, and hence appears distinct in the present analysis. Future 
studies are required to investigate these questions in more detail.

A number of studies have linked delta and theta band activity to processes mediating the prediction of 
upcoming stimuli68,69. Given that the stimuli in the present paradigm were presented following a fixation cue, 
it is possible that the pre-stimulus EEG signatures related to the perceptual sampling of the acoustic evidence 
are shared with those implied in predictive processes. In fact, such a link would not be surprising, as delta/theta 
band activity has also been implied in mediating predictions in speech sounds based on acoustic, prosodic or 
phonetic features15,70, and hence the sampling of acoustic scenes may be tightly related to the search or explora-
tion of temporally predictive structures. We did not observe systematic peaks in the EEG spectra in the delta/
theta band across participants, which would be indicative of an obvious process specifically represented at these 
frequencies. However, few studies so far have directly linked the observed relation of delta/theta band phase to 
specific spectral peaks in M/EEG signals, a future work is required to understand the precise neurophysiological 
processes giving rise to the perceptual sampling investigated here.

Pre‑stimulus power shapes behavior.  We also found a significant relation between pre-stimulus alpha 
(8–13 Hz) power and participants’ sensitivity to the direction of acoustic sweep. Generally, such a relation of 
pre-stimulus power and perceptual performance has been observed in a wide range of perceptual studies across 
sensory modalities8,14,71–76. However, most studies in the auditory domain reported effects predominantly at 
lower delta or theta band frequencies8,9,11–14,77, while a role for alpha band activity is typically discussed for vision 
and spatial attention paradigms. Though, some studies have linked alpha power to auditory perception78–80.

Previous work on the entrainment of brain activity to speech has shown that frontal alpha band power cor-
relates with the strength of delta band speech-tracking21. Frontal alpha could reflect a mechanism that shapes 
the alignment of rhythmic activity in auditory regions to the acoustic stimulus in a top-down manner81,82. Given 
that stronger speech-to-brain alignment is also predictive of improved speech reception83,84 these results suggest 
that frontal alpha power may be generally predictive of the correct identification of complex sounds. The positive 
relation of pre-stimulus alpha and improved sensitivity observed here further supports for this notion, although 
we did not find a significant relation between alpha power and the perceptual weights themselves.

Alternatively, these discrepancies in perceptually-relevant EEG frequencies in the present and previous work 
could be explained by the rather long duration of the soundscapes used here. While the soundscapes used here 
lasted more than a second, previous studies reporting a correlation of pre-stimulus power and behavioral outcome 
mostly used brief stimuli (e.g. < 200 ms)8,14. Hence, one cannot rule out that the previously observed effects in 
delta/theta bands and the alpha effect shown here reflect two distinct neurophysiological mechanisms that each 
shape perception for shorter and longer stimuli, respectively.

Conclusion
We systematically investigated the relation between pre-stimulus brain activity and rhythmic perceptual sampling 
of long and non-rhythmic stimuli. Our data show that strength and the timing of delta/theta band pre-stimulus 
EEG activity relates to the rhythmic perceptual sampling of auditory scenes. These results directly point to a 
lasting influence of spontaneous rhythmic brain activity for the perception of subsequent stimuli and close a 
critical gap in the conceptual picture proposing a fundamental role of rhythmic auditory cortical activity for 
active listening.
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