
genes
G C A T

T A C G

G C A T

Review

The Oncogenic Potential of the Centromeric Border
Protein FAM84B of the 8q24.21 Gene Desert

Yan Gu 1,2,3, Xiaozeng Lin 1,2,3, Anil Kapoor 1,2,4, Mathilda Jing Chow 1,2,3, Yanzhi Jiang 1,2,3,
Kuncheng Zhao 1,2,3 and Damu Tang 1,2,3,*

1 Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton,
ON L8N 4A6, Canada; yangu0220@gmail.com (Y.G.); linx36@mcmaster.ca (X.L.);
mathildachow1994@gmail.com (M.J.C.); xyz989@126.com (Y.J.); kunchengzhao@icloud.com (K.Z.)

2 Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; akapoor@mcmaster.ca
3 The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
4 Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
* Correspondence: damut@mcmaster.ca; Tel.: +(905)-522-1155 (ext. 35168)

Received: 7 February 2020; Accepted: 13 March 2020; Published: 15 March 2020
����������
�������

Abstract: FAM84B is a risk gene in breast and prostate cancers. Its upregulation is associated with
poor prognosis of prostate cancer, breast cancer, and esophageal squamous cell carcinoma. FAM84B
facilitates cancer cell proliferation and invasion in vitro, and xenograft growth in vivo. The FAM84B
and Myc genes border a 1.2 Mb gene desert at 8q24.21. Co-amplification of both occurs in 20 cancer
types. Mice deficient of a 430 Kb fragment within the 1.2 Mb gene desert have downregulated
FAM84B and Myc expressions concurrent with reduced breast cancer growth. Intriguingly, Myc works
in partnership with other oncogenes, including Ras. FAM84B shares similarities with the H-Ras-like
suppressor (HRASLS) family over their typical LRAT (lecithin:retinal acyltransferase) domain. This
domain contains a catalytic triad, H23, H35, and C113, which constitutes the phospholipase A1/2 and
O-acyltransferase activities of HRASLS1-5. These enzymatic activities underlie their suppression of
Ras. FAM84B conserves H23 and H35 but not C113 with both histidine residues residing within a
highly conserved motif that FAM84B shares with HRASLS1-5. Deletion of this motif abolishes FAM84B
oncogenic activities. These properties suggest a collaboration of FAM84B with Myc, consistent with
the role of the gene desert in strengthening Myc functions. Here, we will discuss recent research on
FAM84B-derived oncogenic potential.
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1. Introduction

Tumorigenesis is a complex pathological process. It is affected by sophisticated genetic networks
and even more complex epigenetic modifications. The multiplex nature of oncogenesis underlies our
continuous effort in the search for cancer etiology. One of the classical genetic events of oncogenesis is
amplification of the Myc (c-Myc) oncogene [1,2]. Myc is the most commonly amplified oncogene across
all cancer types [3]. Despite its powerful oncogenic nature, Myc’s oncogenic potential cannot be fulfilled
without direct contributions from other oncogenes. For instance, BMI1 (B lymphoma Mo-MLV insertion
region 1 homolog) was identified during screenings for potential collaborators for c-Myc-initiated
leukemogenesis [4,5]. c-Myc mediates BMI1 gene transcription to ensure BMI1 availability during
oncogenesis for leukemia, neuroblastoma, and nasopharyngeal carcinoma [6–8]. Among numerous
Myc collaborators, Ras is arguably the most classic one. Their collaboration results in transformation
of primary fibroblasts [9] and the activation of cyclin D- and E-dependent kinases [10,11].

The Myc gene resides on 8q24.21 and is surrounded by regions known as “gene deserts” as they
lack protein coding genes. Downstream (telomeric end) of Myc is the PVT1 gene encoding for a long
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non-coding RNA (lnRNA), and on its upstream or centromeric side sits a 1.2 Mb gene desert with
the centromeric side bordered by the FAM84B or LRATD2 gene (Figure 1). The unique feature of
this gene desert is the existence of multiple (lnRNAs) (PCAT1, PCAT2, POU5F1B, CCAT1, CCAT2,
CASC8, CASC11, CASC19, and CASC21) with FAM84B and Myc being the only protein coding genes
(Figure 1) [12–14]. In view of Myc being the most-well-studied oncogene and the 8q24 gene desert as
a region that is frequently amplified in cancer, FAM84B stands as a promising target for oncogenic
activities; nonetheless, its impact on tumorigenesis remained unknown until recently. As the oncogenic
potential of the non-coding RNAs of PVT1 and those within the gene desert (Figure 1) has been
recently reviewed [13–17], we will focus on the emerging role of FAM84B in tumorigenesis in this
review. We will briefly discuss the 8q24 gene desert with respect to oncogenesis to set the stage for
the following systemic examination of the evidence pertinent to FAM84B-derived tumorigenesis. The
main materials used in this review were chosen based on the PRISMA (preferred reporting items for
systematic reviews and meta-analyses) Guidelines [18,19]. A literature search of the PubMed database
for (1) “8q24 gene desert”, revealed 28 papers with 6 irrelevant to tumorigenesis (Figure 2A) and (2)
“FAM84B”, identified 21 articles, including non-English papers (n = 1) and articles not directly related
to FAM84B and cancer (n = 2) (Figure 2B). After excluding these items, 22 articles on 8q24 gene desert
and 18 papers related to the FAM84B topic have been retrieved and discussed (Figure 2).
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Figure 1. 8q24.21 gene desert. The chromosome 8 image was reproduced from MYC GeneCards.
The location of indicated gene and transcription direction are indicated. The gene location is defined
by the Genome Reference Assembly Human Genome build 38 (GRCh38/hg38), which might be
different from previous publications in which the loci of these genes were based on GRCh37/hg19
(an older version). The precise locations are LRATD2 (FAM84B, 126,552,438–126,558,478bp), PCAT1
(126,552,462–127,419,050), PCAT2 (127,072,694–127,227,541), PRNCR1 (127,079,873–127,092,600), CCAT1
(127,207,382–127,219,268), POU5F1B (127,322,183–127,420,066), CCAT2 (127,400,398–127,402,150),
CASC8 (127,277,048-127,482,140), CASC11 (127,673,883-127,735,897), CASC19 (127,072,694–127,227,541),
CASC21 (127,244,637–127,392,631), Myc (127,735,434–127,742,951), and PVT1 (127,794,523-128,188,211).
Among these genes, only FAM84B and Myc are protein coding genes. The gene desert region is bordered
by FAM84B and Myc.

After reviewing FAM84B’s contributions to oncogenesis, we will propose a model to discuss
FAM84B’s oncogenic roles in the context of Myc-derived tumorigenesis, i.e., a potential mechanistic
pathway for which FAM84B collaborates with Myc during tumor formation.
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2. Function of the 8q24.21 Gene Desert in Cancers

2.1. Association of the 8q24.21 Gene Desert with Oncogenesis

In addition to harboring multiple non-coding transcripts in the gene desert bordered by FAM84B
and Myc (Figure 1), a number of single-nucleotide polymorphisms (SNPs) have been identified in the
region by genome-wide association studies (GWAS). These SNPs are mainly associated with the risk of
prostate cancer [20–23], breast cancer, ovarian cancer, colorectal cancer, and bladder cancer [13,14,24–26].
Besides these SNP variants, amplification of 8q24.21 occurs most frequently in human cancers, including
ovarian [27], colorectal [28–31], breast [32–36], prostate [37–43], and others.

Accumulative evidence reveal a clear involvement of the individual lnRNAs of the 8q24.21 gene
desert in tumorigenesis (Table 1), a concept that is supported by the emerging roles of lnRNAs in
tumorigenesis via complex mechanisms [44,45]. Upregulations of PRNCR1 (prostate cancer non-coding
RNA1) occurred in prostate cancer (PC), and precancerous lesions PINs (prostatic intraepithelial
neoplasia) and knockdown of PRNCR1 reduced the survival of PC cells and the expression of androgen
receptor (AR), indicating an important role of PRNCR1 in facilitating PC via AR signaling (Table 1) [46].
The pseudogene POU5F1B lies within this gene desert (Figure 1) [25] and its elevated expression was
observed in PCs [47]. POU5F1B promotes gastric cancer [48] and hepatocellular carcinoma (Table 1) [49].
Prostate Cancer-Associated Transcript 1 (PCAT1) and PCAT2 are upregulated in PC [50–52]. PCAT1
also promotes ovarian cancer cell proliferation [53] and is associated with poor prognosis in colorectal
cancer (CRC) (Table 1) [54]. Colorectal Cancer-Associated Transcript 1 (CCAT1), CCAT2, and Cancer
Susceptibility 19 (CASC19) are upregulated in CRC [55,56]. Upregulations of both CCAT1 and
CCAT2 predict CRC recurrence and poor overall survival (OS) (Table 1) [56]. CASC11 promotes CRC
metastasis [57], gastric cancer cell proliferation [58], and esophageal carcinoma (Table 1) [59]. An
upregulation of CASC21 was very recently reported in CRC, in which CASC21 stimulates CRC via the
YAP1 actions (Table 1) [60].

The 8q24.21 gene desert contributes to cervical cancer as a frequent site of viral integration by
human papilloma virus (HPV), and evidence in support of this concept has been briefly reviewed by
Huppi et al. in 2012 [13]. Built on the seminal detection of HPV16 DNA in 61.1% (11/18) of cervical
cancers in 1983 [61], it became clear that infection by HPV is the primary etiology of cervix carcinoma,
particularly with the high-risk HPV types 16 and 18 [62]. Besides HPV infection, alterations in cellular
oncogenic events are also required for cervical cancer [63]. The integration of both HPV16 and HPV18
at the gene desert suggests that HPV coordinately affects oncogene alterations for cervical cancer
formation [13,64–67]. The integration hot spots in the gene desert include CASC8, CASC21, and
POU5F1B [68,69]. Among 3667 breakpoints of HPV integration detected in cervical carcinoma (n = 104),
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cervical intraepithelial neoplasia (n = 26), and 5 cervical cancer cell lines, POU5F1B is the top site of
integration (9.7%) [69].

Table 1. Association of lnRNA of the 8q24.21 gene desert with cancers.

lnRNA PC GC ESC HCC OVC CRC Ref

PRNCR1
Exp +

Cell prolif +
AR sig +

NA NA NA NA [46]

POU5F1B Exp + Prom NA Prom NA NA [47–49]
PCAT1 Exp + NA NA NA Cell prolif + Poor OS [50–54]
PCAT2 Exp + NA NA NA NA NA [50–52]

CCAT1 NA NA NA NA NA Exp +
Poor OS [55,56]

CCAT2 NA NA NA NA NA Exp +
Poor OS [55,56]

CASC11 NA Cell prolif + Prom Met + [59]
CASC19 NA NA NA NA NA Exp + [55,56]
CASC21 NA NA NA NA NA Prom [60]

PC: prostate cancer; GC: gastric cancer; ESC: esophageal cancer; HCC: hepatocellular carcinoma; OVC: ovarian
cancer; CRC: colorectal cancer; NA: not available; Exp +: enhancement of expression; Cell prolif +: enhancement of
cell proliferation; AR sig +: enhancement of androgen receptor signaling; Prom: promotion; OS: overall survival.

2.2. Upregulation of Myc as A Mechanism underlying the Gene Desert-Derived Oncogenic Activities

In light of the well-established and powerful oncogenic functions of Myc, it is expected that
research exploring the oncogenic impact of those non-coding genes within the gene desert (Figure 1) has
been largely focused on the regulation of Myc. HPV integration in the 8q24.21 gene desert upregulates
Myc [69]. CCAT2 expression is upregulated in CRC and lnRNA CCAT2 enhances Myc expression,
which likely contributes to CCAT2-facilitated CRC metastasis [70].

The major mechanistic action in enhancing Myc expression is through regulation of chromatin
structure. By examination of chromatin interactions using chromosome conformation capture
(3C)-based technologies, the prostate, breast, and colon cancer risk regions within the 8q24.21 gene
desert display long-range physical interaction with the Myc locus in a tissue-specific manner [71,72].
These non-coding risk regions contain super-enhancer elements and TCF-4 (transcription factor 4)
binding sites that enhance Myc transcription [71,73]. The long-range association of these regions
with the Myc locus thus stimulates Myc transcription, which is facilitated by Wnt/β-catanin signaling
through TCF-4. These enhancers are functionally important. Mice deficient in an enhancer element
Myc-335 that lies 335kb upstream of Myc are protected from APC (Adenomatous polyposis Coli)
mutation-induced intestinal cancer [74]. Mice deficient in multiple Myc enhancers, including Myc-196,
Myc-335, and Myc-540, within 538kb upstream of Myc, exhibit >50% reductions of Myc expression in
colon and prostate. Importantly, these mice are more protected from APC mutation-induced intestinal
cancer compared to mice deficient in only Myc-335 [75]. Both CCAT1 and CCAT2 interact with Myc via
the formation of DNA loops, which strongly enhances Myc expression in CRC [17,70,76]. Interestingly,
long-range physical associations with Myc also facilitate the transcription of lnRNAs. For instance, the
physical association allows the Myc enhancer to upregulate the transcription of CARLo-5, a short form
of CCAT1 [77].

Variants in the 8q24.21 gene desert also display long-range association with the non-coding PVT1
locus that lies downstream of the Myc locus and thus outside of the gene desert bordered by FAM84B
and Myc (Figure 1). A prostate cancer risk variant within the gene desert was reported to facilitate PVT1
transcription through physical association [78]. The lnRNA PVT1 plays a critical role in Myc-driven
CRC. PVT1 is co-amplified with Myc in CRC. High levels of lnRNA PVT1 helps to maintain high
levels of Myc protein expression in CRC, and ablation of PVT1 prevents Myc from inducing HCT116
cell-derived tumorigenesis [79]. In addition to Myc, PVT1 also activates β-catenin and Cyclin D1 [80].
The interplay between PVT1 and Myc has been intensively studied and reviewed [15].
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3. The Contributions of FAM84B to Oncogenesis

FAM84B is the only second protein coding gene bordering the 1.2 Mb gene desert (Figure 1).
It is an interesting disparity considering the relatively unknown status of FAM84B in tumorigenesis
compared to the well-studied oncogenic functions of Myc. Nonetheless, emerging evidence suggest
the need for a closer examination of FAM84B’s involvement in oncogenesis. In this section, we will
review the data related to FAM84B’s roles in cancer.

3.1. FAM84B Facilitates Esophageal Cancer

FAM84B plays a role in esophageal cancer. In a small cohort study (n = 59), increases in FAM84B
expression were observed in 39 (66%) cases [81]. Amplification of the FAM84B gene and increases
in its expression at the protein level occur in both preclinical lesions and esophageal squamous cell
carcinomas (ESCC) [82,83]. Reductions in serum FAM84B protein expression predict pathological
complete response (PCR) in ESCC patients treated with neoadjuvant chemoradiation [83]. Knockdown
of FAM84B in two ESCC cell lines KYSE150 and TE-1 reduced their proliferation, migration, and
invasion in vitro [82], and knockdown of FAM84B in ESCC CE81T/VGH cells significantly delayed
xenograft growth in vivo [83]. Upregulations of FAM84B were also reported in melanoma [84].
However, the role of FAM84B in tumorigenesis may be complex. While downregulation of serum
FAM84B protein is associated with PCR in ESCC treated with neoadjuvant chemoradiation, high levels
of serum FAM84B mRNA were also observed in ESCC with PCR [83]. Downregulation of FAM84B
was observed in gastroesophageal junction cancer cell lines and xenograft tumors [85]. Increases in the
expression of lnRNA FAM84B-AS (antisense) transcribed from the antisense strand of the FAM84B
gene were reported to reduce FAM84B expression in gastric cancer. lnRNA FAM84B-AS facilitates
gastric cancer tumorigenesis and predicts poor prognosis [86].

3.2. FAM84B-Mediated Enhancement of Prostate Cancer

Evidence supports FAM84B-mediated promotion of prostate cancer (PC). FAM84B locus lies
within a 2Mb region that is associated with PC risk [87]. We observed a significant upregulation
of FAM84B expression in DU145 PC cell-derived prostate cancer stem cells (PCSCs) [12]. This
observation is in accordance with a report showing that a risk region of prostate and colon cancer
in the 8q24.21 desert was able to direct reporter expression in prostate luminal stem-like cells of
transgenic mice and in prostate cancer stem cells [88]. PCSCs play critical roles in PC initiation
and progression, including metastasis and therapy resistance [89]. PC mainly metastasizes to the
bone [90]. The standard of care for metastatic PC (mPC) is androgen deprivation therapy (ADT). While
the therapy shows remarkable response in more than 80% of cases, castration-resistant metastatic
PCs (mCRPCs) commonly develop [91], to which effective therapy remains challenging. In this
regard, bone metastasis and CRPC are considered major progression with poor prognosis. Of note, in
comparison to prostate (n = 181), FAM84B mRNA was elevated in PC (n = 343) and further increased
in metastasis in two populations (primary PC, n = 131, versus metastatic PC, n = 19; primary PC,
n = 181, versus metastatic PC, n = 37) [12]. In vivo, FAM84B protein was expressed at higher levels
in PCSCs-generated xenografts compared to non-PCSCs-produced xenografts, in lung metastasis
compared to subcutaneous xenografts, and in CPRC produced in castrated prostate-specific PTEN-/-

mice compared to PC generated in intact PTEN-/- mice [12]. Amplification of the FAM84B gene occurs
more frequently in mCRPC (121/467 = 26%) compared to primary PCs (26/546 = 4.8%, p < 0.0001),
and the amplification associates with reductions in disease-free survival (DFS) [12]. Additionally,
increases in FAM84B mRNA expression contribute to the biomarker potential of a multigene panel in
stratification of the risk of PC biochemical recurrence [92]. Collectively, a comprehensive set of evidence
supports the association of FAM84B with PC tumorigenesis, metastasis, and CRPC development.

Functionally, FAM84B overexpression enhances DU145 cell invasion in vitro, subcutaneous
xenograft tumor growth in vivo, and lung metastasis in a tail-vein mouse model [93]. In comparison to
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empty vector (EV) cell-produced xenograft tumors, those generated from FAM84B overexpression
DU145 cells display elevations in AKT activation and reductions in BAD (BCL2 associated agonist of
cell death) expression. Furthermore, RNA sequencing (RNA-seq) analysis revealed a large number of
differentially expressed genes (DEGs) in DU145 FAM84B xenografts compared to DU145 EV tumors.
These DEGs affect cell cycle progression, Golgi to ER (endoplasmic reticulum) process, mitochondrial
events, and translation regulations [93]. A multigene signature (SigFAM) was derived from these
DEGs, which robustly stratifies the risk of PC biochemical recurrence [93].

Structurally, FAM84B shares similarities with the H-Ras-like suppressor (HRASLS) family
HRASLS1-5 within their LRAT (lecithin:retinal acyltransferase) homologous domain (Figure 3).
A sub-region (residues 119–145) within LRAT is highly conserved between FAM84B and the HRASLS
family (Figure 3). Deletion of this region abolished FAM84B’s ability to promote PC cell invasion
in vitro [93]. These observations collectively support FAM84B-mediated promotion of PC.
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and cysteine 113/C113) are numbered based on HRASLS2 and are indicated (red). The highly conserved
residues NCEHFV in HRASLS1-5 are underlined. The FAM84B fragment containing residues 119–145,
which shows high homology with HRASLS1-5, is defined as HRASLS domain (119–145).
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4. Potential Collaboration between FAM84B and MYC during Tumorigenesis

HRASLS1-5 possess enzymatic activities: phospholipase A1/2 (PLA) and O-acyltransferase (AT)
activities [94] with the catalytic site being formed by histidine 23 (H23), H35, and cysteine 113 (C113)
(Figure 3) [94,95]. HRASLS members can suppress H-Ras-derived tumorigenesis, in which the catalytic
activities play a role [94]. HRASLS1/A-C1 inhibits the proliferation of H-Ras-transformed NIH3T3
cells (Table 2) [96]. Ectopic expression of HRASLS2 suppresses the colony formation of HCT116 (colon
cancer) and HeLa (cervical cancer) cells, and reduces the active Ras (Ras-GTP) and Ras expression in
HtTA cervical cancer cells (Table 2) [97]. HRASLS3 (H-rev107) was most thoroughly studied in the
HRASLS family for suppression of Ras activity. H-rev107 was identified for reversal of H-Ras-derived
transformation of rat fibroblasts [98], the PLA/AT activities of HRASLS3 suppress H-Ras signaling [99],
and HRASLS3 inhibits K-Ras signaling via a physical association (Table 2) [100]. HRASLS4 (RIG1, TIG3,
RARRES3) suppresses Ras activation [101] and the lung metastasis of breast cancer (Table 2) [102].

Table 2. HRASLS (H-Ras-like suppressor) family suppresses Ras signalling.

Member Function Refs

HRASLS1 Inhibition of NIH3 Ras cell proliferation [96]

HRASLS2

Reduction of Ras-GTP level
Reduction of HCT116 and HeLa cell

colony number
Downregulation of Ras expression in

HtTA cervical cancer cells

[97]

HRASLS3

Inhibition of Ras ability to transform rat
fibroblasts

Inhibition of Ras signalling
Inhibition of K-Ras via binding to K-Ras

[98]
[99]

[100]

HRASLS4
Suppression of Ras activation

Inhibition of breast cancer metastasis to
the lung

[101]
[102]

While the mechanisms responsible for FAM84B-derived oncogenesis remain unclear, its direct
association with the gene desert as the only other protein coding gene suggests that FAM84B contributes
to Myc’s oncogenic actions. This possibility is consistent with the theme of 8q24.21 gene desert in
facilitating Myc actions. This concept is also intriguing considering the similarities shared between
FAM84B and the HRASLS family. Among the catalytic triad, FAM84B conserves H23 and H35 but
not C113 (Figure 3) [93]. Unlike the HRASLS family, FAM84B does not possess PLA/AT enzymatic
activities and will not suppress Ras signaling. To the contrary, FAM84B displays oncogenic activities.
With this knowledge, it is an interesting scenario for FAM84B to facilitate Ras signaling via inhibiting
the actions of the HRASLS family, and thereby in part contributing to its collaboration with Myc.
The collaboration between Myc and Ras was the first demonstration of oncogene collaboration and
is the most widely studied relationship [11]. Mechanisms of this collaboration are complex, and the
FAM84B concept will be a new avenue in this collaboration considering its genome proximity to the
Myc gene locus. Its functional and genetic linkage with Myc would suggest a co-regulatory pattern
with Myc. In support of this possibility, mice deficient in the 430kb region encompassing CCAT1,
POU5F1B, CCAT2, and CASC8 within the 8q24.21 gene desert (Figure 1) downregulate both FAM84B
and Myc expression in mammary gland and prostate [103]. Deletion of this region delays the growth
of luminal, Her2, and basal breast cancer in MMTV-PuVT, MMTV-Neu, and C3(1)-TAg transgenic
mouse models for breast cancer, respectively [103]. Furthermore, among 35 cancer types within the
cBioPortal database, 20 cancer types show co-amplification of FAM84B and Myc with the rate ≥5%.
Ovarian cancer and breast cancer are the first (>40%) and fifth (>20%) cancer type with respect to the
prevalence of FAM84B and Myc co-amplification [103]. This co-amplification associates with poor
overall survival in breast cancer [103].
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The co-amplification has also been detected in acute myeloid leukemia [104], esophageal
cancer [105], colorectal carcinoma [106], and prostate cancer [103]. For prostate cancer (PC), we have
analyzed gene amplification for Myc and FAM84B in all independent published datasets (n = 12)
containing 3546 patients within cBioPortal (http://www.cbioportal.org/) [107,108] (Figure 4A). Among
PCs with Myc amplification, 85% of cases have FAM84B concurrently amplified, and among tumors
with FAM84B amplification, 96.8% of cases show Myc co-amplification (Figure 4A). Neuroendocrine
and metastatic PCs are well-known for having poor prognosis [89]. Of note, 55.5% (152/274) of PCs
with the co-amplification are aggressive PC types (metastatic and neuroendocrine PCs) (Figure 4A).
In line with this evidence, PCs with FAM84B and Myc co-amplification are associated with reductions
in overall survival (Figure 4B). Collectively, evidence supports an intriguing collaboration between
FAM84B and Myc.

Genes 2020, 11, x FOR PEER REVIEW 9 of 16 
associated with reductions in overall survival (Figure 4B). Collectively, evidence supports an 
intriguing collaboration between FAM84B and Myc. 

Figure 4. Co-amplification of FAM84B and Myc associates with poor prognosis in prostate cancer. (A) 
The 12 published studies within cBioPortal with a total number of patients n = 3546 were analyzed for 
amplification of the Myc and FAM84B genes. Individual tumors with amplification of either genes are 
shown, and only tumors with the indicated gene amplification are included. MPC: metastatic prostate 
cancer; NEPC: neuroendocrine prostate cancer. (B) PCs with co-amplification of FAM84B and Myc are 
associated with reductions in overall survival. Kaplan–Meier curve and log-rank test were performed 
using the program provided by cBioPortal. MMS: median months survival. 

5. Conclusions

Along with Myc being the most commonly amplified gene in human cancers, the 8q24.21 gene 
desert bordered by both Myc and FAM84B is also frequently amplified [3]. While the oncogenic 
functions of the gene desert likely involve complex networks, it promotes tumorigenesis at least in 
part via facilitating Myc’s actions. In this regard, we proposed a collaboration between FAM84B and 
Myc which may involve Ras. Demonstration of this possibility is straightforward owning to the rich 
knowledge on the collaboration between Ras and Myc. However, the interaction between FAM84B 
and Myc is likely not limited to the potential connection of FAM84B and Ras. For instance, FAM84B 
and Myc may interact via lnRNAs within the 8q24.21 gene desert. This possibility is in accordance 
with the co-downregulation of both genes in mice with knockout of a 430Kb fragment within the 
gene desert [103]. Direct interactions between FAM84B and Myc at both the protein and 
transcriptional levels are also possible, and the latter is intriguing in view of Myc being a 
transcriptional factor [109]. Regardless of what major routes FAM84B may employ in its interaction 
with Myc, this interaction is certainly an appealing avenue of investigation. This proposition is based 
both on the accumulating evidence for an oncogenic role of FAM84B as well as the association of 
FAM84B and Myc with the 8q24.21 gene desert. While the impact of FAM84B on tumorigenesis has 

Figure 4. Co-amplification of FAM84B and Myc associates with poor prognosis in prostate cancer.
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for amplification of the Myc and FAM84B genes. Individual tumors with amplification of either genes
are shown, and only tumors with the indicated gene amplification are included. MPC: metastatic
prostate cancer; NEPC: neuroendocrine prostate cancer. (B) PCs with co-amplification of FAM84B and
Myc are associated with reductions in overall survival. Kaplan–Meier curve and log-rank test were
performed using the program provided by cBioPortal. MMS: median months survival.

5. Conclusions

Along with Myc being the most commonly amplified gene in human cancers, the 8q24.21 gene
desert bordered by both Myc and FAM84B is also frequently amplified [3]. While the oncogenic
functions of the gene desert likely involve complex networks, it promotes tumorigenesis at least in
part via facilitating Myc’s actions. In this regard, we proposed a collaboration between FAM84B and
Myc which may involve Ras. Demonstration of this possibility is straightforward owning to the rich

http://www.cbioportal.org/
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knowledge on the collaboration between Ras and Myc. However, the interaction between FAM84B
and Myc is likely not limited to the potential connection of FAM84B and Ras. For instance, FAM84B
and Myc may interact via lnRNAs within the 8q24.21 gene desert. This possibility is in accordance
with the co-downregulation of both genes in mice with knockout of a 430Kb fragment within the gene
desert [103]. Direct interactions between FAM84B and Myc at both the protein and transcriptional
levels are also possible, and the latter is intriguing in view of Myc being a transcriptional factor [109].
Regardless of what major routes FAM84B may employ in its interaction with Myc, this interaction is
certainly an appealing avenue of investigation. This proposition is based both on the accumulating
evidence for an oncogenic role of FAM84B as well as the association of FAM84B and Myc with the
8q24.21 gene desert. While the impact of FAM84B on tumorigenesis has been relatively well-studied
in prostate cancer, its oncogenic functions in general and its potential relationship with the HRASLS
family should be explored in the future.
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