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Objective: Graves’ disease (GD) related hyperthyroidism (HT) has profound effects on
metabolic activity and metabolism of macromolecules affecting energy homeostasis. In
this study, we aimed to get a comprehensive understanding of the metabolic changes and
their clinical relevance in GD children.

Methods:We investigated serum substances from 30 newly diagnosed GD children and
30 age- and gender-matched healthy controls. We explored the metabolomics using
ultra-high-performance liquid chromatography–quadrupole time-of-flight mass
spectrometry (UHPLC-QTOF/MS) analysis, and then analyzed the metabolomic data via
multivariate statistical analysis.

Results: By untargeted metabolomic analysis, a total of 730 metabolites were identified in
all participants, among which 48 differential metabolites between GD and control groups
were filtered out, including amino acids, dipeptides, lipids, purines, etc. Among these
metabolites, 33 were detected with higher levels, while 15 with lower levels in GD group
compared to controls. Pathway analysis showed that HT had a significant impact on
aminoacyl-transfer ribonucleic acid (tRNA) biosynthesis, several amino acids metabolism,
purine metabolism, and pyrimidine metabolism.

Conclusion: In this study, via untargeted metabolomics analysis, significant variations of
serum metabolomic patterns were detected in GD children.

Keywords: Graves’ disease, children, serum metabolomics, untargeted metabolomics, metabolic pathway
INTRODUCTION

Graves’ disease (GD) is the most common cause of hyperthyroidism (HT) with an autoimmune
origin in children and adults (1–3). The incidence of GD in children is about 0.9-14.1/100,000,
peaking in adolescent females (4–6). A trend of surging incidence of juvenile thyrotoxicosis was
observed worldwide, with two to three times higher incidence in the Chinese pediatric population
compared to the Caucasians (4–6).

It is well known that thyroid hormone regulates metabolic processes essential for normal growth
and development in children (7). With excessive thyroid hormone, HT facilitates the metabolism
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process via elevated resting energy expenditure, weight loss,
upregulated lipolysis, and gluconeogenesis, as well as decreased
cholesterol levels (8).

Metabolomics is the study of specific small molecule
metabolites or their profiles. Untargeted metabolomics
provides a global fingerprint of information through the
simultaneous identification of as many metabolites as possible
within a tissue, biological fluid, or even cell sample (9, 10).
Different instrumental platforms, including nuclear magnetic
resonance (NMR) spectroscopy, gas chromatography (GC),
and liquid chromatography (LC) coupled with mass
spectrometry (MS), are used to cover different features of the
human metabolome (9, 10). Metabolomics has been used to
explore new biomarkers of disease risk in large-scale studies. In
smaller studies, metabolomics has been designed to investigate
the underlying mechanisms and progression of certain diseases,
or to reveal the potential roles of dietary and environmental
exposures, as well as gut flora activity in chronic diseases (11, 12).
Multiple studies on metabolomic changes in GD adult patients
have been reported, which showed that acylcarnitine and
polyamine profiles were different between GD patients and
healthy controls (13, 14). Metabolic pathways, such as arginine
and proline metabolism and aminoacyl-transfer ribonucleic acid
(tRNA) biosynthesis have also been altered in GD patients (15).
However, the metabolomic alterations of GD in pediatric
population have not been fully explored.

In the present study, we used an ultra-high-performance
liquid chromatography coupled with the quadruple time-of-
fight mass spectrometry (UHPLC-QTOF/MS)-based
untargeted metabolomics approach to explore the perturbation
of metabolic process in GD children compared to age- and
gender- matched healthy normal controls. We aim to extend
the current knowledge beyond previously reported targeted
metabolite changes by examining the global serum
metabolomics profiles of GD, and propose new dietary
suggestions which may improve the treatment of GD.
MATERIALS AND METHODS

Study Design and Participants
Blood samples of 30 newly diagnosed drug-naïve GD patients at
Children’s Hospital of Soochow University from March 2017 to
May 2018 were collected for our study. Meanwhile, 30 age- and
sex-matched healthy controls were enrolled from their annual
physical examination. GD was diagnosed according to guidelines
(16) and as previously described (17).

All patients and control subjects underwent general physical
examination and laboratory evaluation before enrollment. We
excluded subjects with liver dysfunction, cardiovascular
complications, or other endocrine disorders and immune
diseases. Moreover, to avoid the impact of sex hormones on
metabolites, we only included prepubertal children in this study,
which means only boys and girls at Tanner stage I were recruited
in the study.
Frontiers in Endocrinology | www.frontiersin.org 2
Sample Collection
Serum levels of thyroid-related hormones, including total
thyroxine (TT4), total triiodothyronine (TT3), free thyroxine
(FT4), free triiodothyronine (FT3), and thyroid stimulating
hormone (TSH), as well as thyroid autoantibodies, containing
thyroid peroxidase antibody (TPOAb), thyroglobulin antibody
(TGAb), and thyroid stimulating hormone receptor antibodies
(TRAb) were measured by electrochemiluminescence
immunoassay at the laboratories of our hospital. Serum
samples for untargeted metabolomics were taken after 10-12h
night fasting from an antecubital venous catheter. Samples were
placed on ice, separated within 20min, and stored at -80°C
until analysis.

Untargeted Metabolomics Analyzed by
UHPLC-QTOF/MS
Samples were thawed at 4°C on ice. Then a 100mL sample was
extracted by adding 400mL of extraction solvent (V methanol: V
acetonitrile= 1:1, containing internal standard 2 mg/mL), vortexing
for 30s, sonicating for 10min at 4°C, and then incubating for 1h at
-20°C. The precipitated protein was then centrifuged at 4°C and
12000rpm for 15 min. Subsequently, the 425mL supernatant was
dried in a vacuum concentrator without heating, resolved by 100mL
extraction solvent (V acetonitrile: V water= 1:1), vortexed for 30s,
sonicated for 10minat 4°C, and centrifuged for 15minat 12000rpm,
4°C.Then the supernatant (60mL)was transferred into aLC/MSvial
for UHPLC-QTOF/MS analysis. To ensure data quality, 10mL
supernatant from different individual serum samples were pooled
as a quality control sample.

Metabolomics performed were described in a previous study
(14). In brief, LC-MS/MS analyses were performed using a 1290
UHPLC system (Agilent Technologies, Santa Clara, CA,USA)with
aUPLCBEHAmide column (1.7mm,2.1*100mm,Waters) coupled
to Triple time-of-flight 6600 (Q-TOF, AB Sciex, Framingham,MA,
USA). The injection volume for each sample was 1mL. The mass
spectroscopy (MS) data were collected from m/z 50-1200 Da. The
MS spectra acquisition was performed using Analyst TF 1.7
software (AB Sciex) based on the information-dependent basis
(IDA) mode. In each cycle, 12 precursor ions whose intensity
greater than 100 were chosen for fragmentation at collision
energy (CE) of 30 eV (15 MS/MS events per 50 ms of product ion
accumulation time). The electrospray ionization (ESI) source
conditions were set as following: nebulizer pressure, 60 Psi;
auxiliary pressure, 60 Psi; curtain gas, 35 Psi; source temperature
650°C; ion spray voltage floating (ISVF) 5000 V or - 4000 V in
positive or negative modes, respectively.

Statistical Analysis
TheUHPLC-QTOF/MS data analysis was performed as previously
described (18).Briefly,MSrawdata (.wiff)fileswere converted to the
mzXML format using ProteoWizard, and processed by R package
XCMS (version 3.2). The preprocessing results generated a data
matrix that consisted of the retention time (RT), massto-charge
ratio (m/z) values, and peak intensity. R package CAMERA was
used for peak annotation after XCMS data processing. In-house
MS2 database was applied inmetabolite identification. The SIMCA
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14.1 software package (Unetrics, Umea, Sweden) was used to
analyze the metabolites. Both principal component analysis
(PCA) and orthogonal partial least squared-discriminant analysis
(OPLS-DA) were used for the multivariate data analysis (MVDA).
The SPSS 25.0 software (SPSS Inc., Chicago, IL, USA) was used to
determine significant differences between GD and normal control
groups. The metabolic features with both variable importance in
projection (VIP) value > 1.5 and fold change (FC) >1.2 or <0.83 in
the OPLA-DA model and values P<0.05 were considered
significantly different. The correlations between substances and
thyroid function, as well as autoantibodies, were analyzed via
Spearman rank correlation and P<0.05 was considered as
statistically significant.

When comparing quantitative variables between 2 groups, for
normally distributed data, Student’s t-test was used and the results
were expressed as means ± standard deviations. For data not
normally distributed, Mann-Whitney U-test was used, and the
results were expressed as medians (25th-75th percentiles).
RESULTS

Demographics of the Study Population
The baseline clinical and biochemical characteristics of 30 GD
patients and 30 age- and gender-matched healthy controls were
shown in Table 1. As expected, girls (83.3%) are more susceptible
to GD than boys (16.7%). Although all in normal ranges, GD
patients had higher alanine aminotransferase (ALT), aspartate
aminotranspherase (AST), gamma-glutamyl transpeptidase
(GGT), alkaline phosphatase (ALP), direct bilirubin (DBIL),
Frontiers in Endocrinology | www.frontiersin.org 3
triglyceride (TG), and lower total cholesterol (TCHOL) levels
than normal controls.

Differential Metabolites Between the GD
and Control Groups
A total of 730 metabolites were identified in all participants. PCA
score plots showed clustering of the control andHTgroupswith the
cumulativefitness (R2 value) of the PCAmodel being 0.52 and0.53,
respectively, for positive and negative ion models (Supplemental
Figure 1). The OPLS-DA analysis indicated clear separations
between the HT and control groups both in positive (R2X=0.178,
R2Y=0.895,Q2= 0.727) andnegative (R2X=0.152, R2Y=0.86, Q2=
0.669) ion models (Supplemental Figure 2).

Based on the selection criteria including VIP > 1.5, P < 0.05,
and FC > 1.2 or FC < 0.83, a total of 48 differential metabolites
between GD and control groups were filtered out. Among these
metabolites, 33 were detected with higher levels, while 15 with
lower levels in GD group compared to controls (Table 2).
Differential Pathways Between the GD and
Control Groups
By comparing with the KEGG PATHWAY database (https://www.
genome.jp/kegg/), the differentially abundant metabolites were
cross-referenced with the related pathways. After enrichment and
topology analysis, the impact values of each pathway were obtained.
Essential pathways with large impacts were labeled in each
comparison, with the detailed results of pathway analyses listed in
Figure 1 and Table 3. In GD group, the most significant changes
were found in aminoacyl-tRNA biosynthesis, nitrogen metabolism,
TABLE 1 | Clinical and biochemical characteristics of the GD and control groups.

Normal range GD group (n = 30) Control group (n = 30) p Value

Age (months)a NA 78.80 ± 20.50 72 ± 20.42 NS
Girls/Boys NA 25/5 25/5 —

Wt (Kg)b NA 24.86 (20.38~28.25) 26.48 (22.73~29.16) NS
FT3 (pg/ml)a 2.71-4.69 11.41 ± 6.0 3.91 ± 0.32 <0.01
FT4 (ng/dl)a 1.04-1.83 4.33 ± 2.41 1.37 ± 0.16 <0.01
TSH(mIU/ml)a 0.91-4.63 0.0067 ± 0.0039 2.61 ± 1.31 <0.01
TT3 (ng/ml)a 0.81-2.43 3.18 ± 1.45 1.12 ± 0.23 <0.01
TT4 (ng/ml)a 55.33-124.22 157.92 ± 71.58 80.12 ± 13.33 <0.01
TPOAb (IU/ml)a 0.00-60.00 172.19 ± 39.16 44.57 ± 9.01 <0.01
TGAb (IU/ml)a 0.00-60.00 760.45 ± 1125.21 23.85 ± 9.72 <0.01
TRAb (IU/L)a 0.00-1.50 20.11 ± 11.06 0.51 ± 0.24 <0.01
ALT (U/L)b 5-35 26.70 (20.30~35.78) 12.70 (11.45~14.40) <0.01
AST (U/L)b 10-67 28.50 (23.10~33.48) 24.50 (21.85~28.25) <0.05
GGT (U/L)b 7-32 20.95 (14.10~33.73) 10.40 (8.80~11.60) <0.01
ALP (U/L)b 0-500 295 (253~333) 209 (180~234) <0.01
TBIL (mmol/l)b 3.40-17.10 8.80 (6.78~13.58) 8.40 (6.40~11.65) NS
DBIL (mmol/l)b 0.00-10.00 3.61 (2.63~5.28) 2.70 (2.40~3.59) <0.05
IBIL (mmol/l)b 0.00-17.00 5.15 (4.02~7.70) 5.90 (3.95~8.44) NS
TP (g/l)a 60.0-83.0 66.03 ± 4.55 70.17 ± 4.02 NS
TG (mmol/l)b 0.00-1.70 0.83 (0.58~1.23) 0.65 (0.49~0.85) <0.05
TCHOL (mmol/l)a 0.00-5.20 3.17 ± 0.52 4.54 ± 0.89 <0.05
November 2021 | Volume 12 | Article
GD, Graves’ disease; Wt, weight; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; TT3, total triiodothyronine;TT4, total thyroxine; TPOAb, thyroid
peroxidase antibody; TGAb, thyroglobulin antibody; TRAb,thyroid stimulating hormone receptor antibodies; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,
gamma-glutamyl transpeptidase; ALP, alkaline phosphatase; TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; TP, total protein; Tg, thyroglobulin; TCHOL, total cholesterol.
aThe data were normally distributed.
bThe data were not normally distributed.
NA, Not available; NS, No significance.
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purine metabolism, alanine, aspartate and glutamate metabolism
and phenylalanine metabolism.
Relationship Between Thyroid Indices and
Metabolites in GD Children
The correlations between thyroid indices anddifferentialmetabolite
levels in GD patients were analyzed via Spearman’s correlation
analysis. Correlations with Spearman rank correlation coefficient >
0.4 and P < 0.05 were filtered out and listed in Table 4. We found
that threemetaboliteswere associatedwithTT3, fourwithTT4, two
with FT3, and three with FT4. Among the differential metabolites,
Frontiers in Endocrinology | www.frontiersin.org 4
three were associated with TPOAb, one with TRAb, two with
TGAb, and one with TSH.
DISCUSSION

The present study showed that serum metabolic patterns were
significantly different between GD children and healthy controls.
A total of 730 metabolites were identified in all participants,
among which 48 differential metabolites between GD and
control groups were filtered out. To our knowledge, this is the
TABLE 2 | Significantly changed metabolites of GD children compared to controls.

Metabolites VIP P FC

Amino acid metabolism Isovalerylglycine 2.08 0 1.65
L-Pipecolic acid 1.63 0 1.52
L-Tyrosine 1.76 0 1.4
L-Tryptophan 2.23 0 1.4
L-Methionine 2.28 0 1.29
L-Phenylalanine 2.48 0 1.3
L-Threonine 1.8 0 1.28
L-Glutamate 1.51 0 1.26
Tyramine 2.46 0 1.24
Creatinine 2.61 0 0.76
Indoxyl sulfate 1.73 0.01 0.61
Guanidinosuccinic acid 2.66 0 0.59

Dipeptides gamma-L-Glutamyl-L-valine 2.8 0 1.73
Gly-Glu 2.77 0 1.54
Val-Met 3.08 0 1.48
Ile-Ala 1.87 0 1.47
Met-Tyr 1.61 0 1.45
Pro-Glu 2.61 0 1.39
His-Glu 1.72 0 1.35
Phe-Glu 1.63 0.04 1.29
Trp-Ile 1.97 0 1.22
Ile-Val 2.41 0 0.57

Lipid metabolism pregnenolone sulfate 2.21 0 2.71
1-Palmitoyl Lysophosphatidic Acid 2.66 0 2.38
Decanoyl-L-carnitine 2.13 0 1.87
5-Oxo-ETE 1.57 0.01 1.45
7-Oxocholesterol 1.73 0.02 1.44
D-erythro-Sphingosine-1-phosphate 2.26 0 1.32
Cortisone 1.32 0.03 1.22
1-Palmitoyllysophosphatidylcholine 1.6 0.01 0.82
Pristanic acid 1.58 0.01 0.81
all cis-(6,9,12)-Linolenic acid 1.69 0.01 0.73
Linoleic acid 2.02 0 0.73
Pentadecanoic Acid 1.8 0 0.73
Tridecanoic acid (Tridecylic acid) 1.55 0.02 0.72
Sphinganine 2.22 0 0.69
Myristic acid 2.12 0 0.64
3b-Hydroxy-5-cholenoic acid 1.58 0.04 0.56

Tricarboxylic acid cycle Isocitrate 1.66 0 1.77
Succinate 1.59 0 1.47

Nucleotide metabolism Hypoxanthine 1.56 0 1.41
Xanthine 2 0 1.34
S-Methyl-5’-thioadenosine 1.96 0 1.35
5,2’-O-dimethyluridine 2.09 0 1.34
2’-Deoxycytidine 5’-monophosphate (dCMP) 2.31 0 1.27
5,10-methylene-THF 1.7 0.04 1.25

Others Phenylacetic acid 1.51 0.04 0.8
Protoporphyrin IX 1.89 0 0.55
November 2021
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first study analyzing the metabolic changes in GD children via an
untargeted metabolomic method.

Amino acids are organic compounds that contain amine
(-NH2) and carboxyl (-COOH) functional groups, along with a
side chain (R group) specific to each amino acid (19). Amino acids
are the monomers that make up human proteins and the second
largest component of human muscle and other tissues. Besides,
amino acids also actively participate in numerous biological
processes, including biosynthesis and neurotransmitter transport
(19). In the present study, we found that GD children had more
active protein digestion/absorption and nitrogen metabolism.
Quite a few amino acids, mostly essential amino acids, had
much higher levels in GD children compared with controls.
Interestingly, the amino acid pattern changes in GD children are
quite different from those of adult patients. For example,
significant changes of arginine and proline metabolism pathways
were observed in GD adult patients (20), but not the children. This
may be explained by the different amino acid metabolism among
various age groups (20). Additionally, significantly elevated levels
of phenylalanine and tyrosine were observed in GD children, but
not in GD adults (20). Most phenylalanine is converted to
tyrosine, a key component of thyroxine, through phenylalanine
hydroxylase (21). Thus, reduction of phenylalanine intake in GD
children, but not adults, may be a potential way to decrease their
thyroxine production.

Tryptophan (Trp) is an essential amino acid that serves several
important purposes and a precursor of the neurotransmitter
serotonin. The tri-iodothyronine (T3) and thyroxine (T4) entry
into different cell types depends on the aromatic amino acid
transport system T, and there is a counter transportation between
T3 and Trp. Thus, Trp supplementationmay reduce the T3 uptake
of cells (22, 23).Normal Trpmetabolism has twomain branches: 3-
10% of Trp keeps the indole ring intact while producing chemical
Frontiers in Endocrinology | www.frontiersin.org 5
messengers such as serotonin, while the majority (90%) breaks the
indole ring generating the kynurenine path, kynurenine, nicotinic
acid, and the nicotinamide adenine dinucleotide (NAD+) (24).
Previous studies have reported that thyroxine elevated the
conversion ratio of Trp to nicotinamide, not through the
kynurenine pathway but via aminocarboxymuconate
semialdehyde decarboxylase (25). Our results were consistent
with previous studies since no elevation of substrates in the
kynurenine pathway was observed. Moreover, elevated 5-hydroy-
indoleacetate were detected in the serumofGD children, indicating
an intensified conversion of Trp to serotonin. Similar findings have
been reported in the brain of adultGDpatients, and the elevation of
serotonin may contribute to the mood change of GD patients (26).
Besides, we found that Trp levels in GD children were negatively
correlated with TGAb levels, whichmay suggest a regulation role of
Trp in the autoimmune process of GD. Indeed, previous studies
have points to Trp degradation as a potent immunosuppressive
mechanism involved in the maintenance of immunological
tolerance. Therefore, Trp metabolism is quite important in the
pathogenesis of GD, further studies are needed to explore the
impact of supplementation and/or deprivation of Trp on
GD pathogenesis.

Sphingosine 1-phosphate (S1P), a sphingolipid mediator,
regulates various cellular functions via high-affinity G protein-
coupled receptors, S1P1-5, and plays an important regulatory
role in congenital and adaptive immune responses (27). Sphk1/
S1P/S1PR signaling pathway can be used as a target for the
treatment of autoimmune diseases (28). For example, the
immunosuppressant Fingolimod (FTY720), a sphingosine
analogue, is used as an S1PR antagonist in the treatment of
multiple sclerosis (29). In addition, S1P lyase inhibitors can
alleviate joint inflammation and destruction in rheumatoid
arthritis mice (30). In recent years, Cheng Han et al. found
FIGURE 1 | Pathway analysis of serum metabolite profiles of the hyperthyroidism group compared to the control group.
November 2021 | Volume 12 | Article 752496
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that Sphk1/S1P/S1PR1 signal transduction is involved in the
development of mice autoimmune thyroiditis (AIT). In AIT
mice, the proportions of inflammation-related cell subtypes
(such as Th1, Th17 and Tfh) are elevated, while FTY720
administration can decrease the their levels, suggesting that
suppression of Sphk1/S1P/S1PR1 signaling pathway may be a
potential therapeutic target of AIT (31). In this study, we found
that sphinganine decreased, while S1P levels increased in the GD
group. Besides, S1P levels positively correlate with TT4 levels.
Thus, we suppose that FTY720 is also promising in the treatment
of GD.

We detected much higher levels of pregnenolone sulfate in
GD patients, which is consistent with previous studies (32).
Pregnenolone sulfate is the source of steroid synthesis pathway.
More importantly, pregnenolone sulfate regulates the release of
multiple neurotransmitters and is crucial to multiple brain
Frontiers in Endocrinology | www.frontiersin.org 6
functions (33). The elevated pregnenolone sulfate levels may
exert important effects on the neurodevelopment of GD children,
but further studies are still needed to elucidate the consequences.

Protoporphyrin IX levels were significantly lower in GD children
compared to those of controls. This canbe easily explained by the fact
that protoporphyrin IX is a crucial constituent of thyroid peroxidase
(TPO), and more protoporphyrin IX is transported into the thyroid
gland in GD patients. Interestingly, exacerbation of erythropoietic
protoporphyria and acute intermittent porphyria has been reported
in a few patients with HT patients (34, 35). Since these situations are
quite rare and a decrease of protoporphyrin IX is observed in
otherwise normal GD children, the correlation of HT and
porphyria needs further investigation.

Our study has several limitations. Firstly, the sample size was
relatively small, and further studies with larger sample size are
needed to confirm our findings. Secondly, the main findings need
TABLE 3 | Differential pathways between the GD and control groups.

Pathway Hits -ln(p) FDR Impact

Aminoacyl-tRNA biosynthesis 10 12.68 0.00 0.11
Nitrogen metabolism 5 6.58 0.06 0.00
Purine metabolism 6 4.25 0.18 0.07
Alanine, aspartate and glutamate metabolism 3 4.22 0.18 0.38
Phenylalanine metabolism 4 4.13 0.18 0.17
Glycine, serine and threonine metabolism 4 3.92 0.18 0.25
Glyoxylate and dicarboxylate metabolism 4 3.78 0.18 0.02
D-Glutamine and D-glutamate metabolism 2 3.77 0.18 0.14
Tyrosine metabolism 5 3.72 0.18 0.08
Cysteine and methionine metabolism 4 3.41 0.22 0.10
Pyrimidine metabolism 4 3.19 0.25 0.06
Butanoate metabolism 3 2.88 0.32 0.04
Citrate cycle (TCA cycle) 2 2.66 0.37 0.07
Arginine and proline metabolism 4 2.44 0.44 0.14
Tryptophan metabolism 4 2.37 0.44 0.14
Sphingolipid metabolism 2 2.27 0.46 0.14
Linoleic acid metabolism 1 1.26 0.89 0.66
Novembe
r 2021 | Volume 12 | Article
FDR, P value adjusted by false discovery rate; Hits, the matched number of metabolites in a pathway; Impact value, value calculated from pathway topography analysis.
TABLE 4 | Relationship between thyroid indices and metabolites levels in GD children.

Metabolites Thyroid indices Spearman rank correlation coefficient P Value

L-Tryptophan TGAb (IU/ml) -0.770 0.009
L-Glutamate FT4 (ng/dl) 0.424 0.027
S-Methyl-5’-thioadenosine TSH (uIU/ml) -0.464 0.046
S-Methyl-5’-thioadenosine TPOAb (IU/ml) -0.720 0.006
Guanidinosuccinic acid TPOAb (IU/ml) -0.687 0.01
Creatinine TT4 (ng/ml) -0.576 0.008
Creatinine TT3 (ng/ml) -0.596 0.006
Succinate TPOAb (IU/ml) -0.593 0.033
Succinate TT3 (ng/ml) -0.449 0.047
Succinate FT4 (ng/dl) 0.434 0.024
D-erythro-Sphingosine-1-phosphate TT4 (ng/ml) 0.544 0.013
Decanoyl-L-carnitine TT4 (ng/ml) 0.484 0.031
Acetylvalerenolic acid FT3 (pg/ml) -0.578 0.015
3b-Hydroxy-5-cholenoic acid FT3 (pg/ml) 0.502 0.04
1-Palmitoyl Lysophosphatidic Acid FT4 (ng/dl) 0.522 0.005
Phe-Glu TRAb (IU/L) 0.405 0.049
Met-Tyr TGAb (IU/ml) 0.721 0.019
Indoxyl sulfate TT3 (ng/ml) -0.547 0.013
Indoxyl sulfate TT4 (ng/ml) -0.469 0.037
752496
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to be validated by a second method. Thirdly, because this study
included only local Chinese children, our results may not apply
to other populations.

In conclusion, GD children have highly different serum
metabolomic patterns compared to healthy controls, which
may be induced either by HT or by autoimmunity. Our study
is the first study addressing metabolic changes in GD children via
untargeted metabolomic analysis. More importantly, our study
provides comprehensive insights into the changes of metabolic
processes, which is beneficial in improving the understanding
and treatment of GD children.
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