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Twin birth changes DNA 
methylation of subsequent siblings
Shuai Li1, Eunae Kim2, Ee Ming Wong3, Ji-Hoon Eric Joo3, Tuong L. Nguyen   1, Jennifer 
Stone4, Yun-Mi Song5, Louisa B. Flander1, Richard Saffery   6,7, Graham G. Giles1,8, Melissa C. 
Southey3, Joohon Sung2,9 & John L. Hopper1,2,9

We asked if twin birth influences the DNA methylation of subsequent siblings. We measured whole 
blood methylation using the HumanMethylation450 array for siblings from two twin and family studies 
in Australia and Korea. We compared the means and correlations in methylation between pairs of 
siblings born before a twin birth (BT siblings), born on either side of a twin birth (B/AT pairs) and born 
after a twin birth (AT siblings). For the genome-wide average DNA methylation, the correlation for AT 
pairs (rAT) was larger than the correlation for BT pairs (rBT) in both studies, and from the meta-analysis, 
rAT = 0.46 (95% CI: 0.26, 0.63) and rBT = −0.003 (95% CI: −0.30, 0.29) (P = 0.02). B/AT pairs were not 
correlated (from the meta-analysis rBAT = 0.08; 95% CI: −0.31, 0.45). Similar results were found for 
the average methylation of several genomic regions, e.g., CpG shelf and gene body. BT and AT pairs 
were differentially correlated in methylation for 15 probes (all P < 10−7), and the top 152 differentially 
correlated probes (at P < 10−4) were enriched in cell signalling and breast cancer regulation pathways. 
Our observations are consistent with a twin birth changing the intrauterine environment such that 
siblings both born after a twin birth are correlated in DNA methylation.

DNA methylation mainly occurs at cytosine-guanine dinucleotides (CpG) sites through the conversion of cyto-
sine to 5-methylcytosine. This is one of several epigenetic modifications known to be involved in transcription 
regulation without changing the DNA sequence. DNA methylation has been proposed to play a critical role in the 
etiology of complex traits and diseases1.

Enlarged by pregnancy and then undergoing involution, the uterus potentially acquires specific changes as a 
consequence of previous births. Multiple pregnancy, an atypical pregnancy, causes even greater changes to the 
intrauterine environment as the uterus is enlarged far more than with a singleton pregnancy. For example, using 
the fundal height of women with normal singleton pregnancy as a measure of uterine distension, 99% women 
with twin pregnancy had fundal height > 2 standard deviations larger than the average of women with singleton 
pregnancy at the same gestation week2. Multiple pregnancy is also known to change maternal physiology3, 4 and 
increase the risks of several maternal complications4, 5, such as gestational diabetes and preeclampsia. In fact, 
many studies have found evidence that prenatal factors or intrauterine environment play a key role in shaping 
the DNA methylation of offspring6–11, with further evidence that some of these effects tend to be long-lasting and 
persist into later life10–13. In light of this we asked whether twin birth can alter the intrauterine environment in 
such a manner that influences the methylation status of subsequent siblings such that persons born after a twin 
birth have different methylation features compared with those born before a twin birth.

To answer this question, we studied the different methylation measures, including the global methylation, the 
average methylation of genomic regions and methylation at individual site, of middle-aged siblings from two twin 
and family studies: the Australian Mammographic Density Twins and Sisters Study (AMDTSS) and the Korean 
Healthy Twin Study (KHTS). We compared the means of different methylation measures between siblings born 
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before a twin birth (denoted as BT siblings) and siblings born after a twin birth (denoted as AT siblings). We also 
compared the correlations across three types of sibling pairs: BT pairs, AT pairs and pairs born either side of a 
twin birth (B/AT pairs).

Results
Characteristics of included subjects.  Table 1 shows the characteristics of included subjects from the 
AMDTSS and KHTS. The mean age (standard deviation) of subjects was 56.6 (8.0) and 44.9 (5.6) years, respec-
tively. BT siblings were on average 7 years older than AT siblings in the AMTDSS (P < 0.01). There was no evi-
dence of the BT and AT siblings differed in any other characteristics.

Discovery analysis.  For the AMDTSS, from the comparison of means there was no evidence of a difference 
in GWAM, or in the average methylation of any genomic region, between BT and AT siblings (all P > 0.1; Table 2). 
From the probe-by-probe analysis, no probe differed between BT and AT siblings at the genome-wide level of 
significance (P = 10−7).

Neither BT nor B/AT pairs were correlated in GWAM (rBT = −0.01, 95% CI: −0.34, 0.31; rBAT = 0.14; 95% 
CI: −0.31, 0.53) (Table 3; Fig. 1). After combining rBT and rBAT, the estimate was 0.04 (95% CI: −0.24, 0.32). The 
correlation for AT pairs, however, was 0.48 (95% CI: 0.23, 0.67), larger than the correlation for BT pairs (P = 0.06). 

AMDTSS KHTS

BT siblings AT siblings P-value† BT siblings AT siblings P-value†

N 112 103 27 15

Age, 
mean ± SD 59.9 ± 7.3 52.9 ± 7.1  < 0.01 46.2 ± 6.1 42.5 ± 5.0 0.05

Sex, N (%) — 0.96

  Females 112 (100.0) 103 (100.0) 16 (59.3) 9 (60.0)

  Males 0 0 11 (40.7) 6 (40.0)

BMI, 
mean ± SD 27.5 ± 5.8 26.6 ± 6.0 0.26 24.8 ± 3.0 22.8 ± 3.4 0.06

Smoking, N 
(%) 0.91 0.73

  Never 65 (58.0) 58 (56.3) 17 (63.0) 11 (73.3)

  Ever 47 (42.0) 45 (43.7) 10 (37.0) 4 (26.7)

Alcohol, N (%) 0.83 1.00

  Never 43 (38.4) 42 (40.8) 5 (0.19) 3 (0.20)

  Ever 69 (61.6) 61 (59.2) 22 (0.81) 12 (0.80)

Table 1.  Characteristics of BT and AT siblings from the AMDTSS and KHTS*. *BT: before twin birth; AT: after 
twin birth; AMDTSS: Australian Mammographic Density Twins and Sisters Study; KHTS: Korean Healthy 
Twin Study; SD: standard deviation. †P-value for compare the characteristic between BT and AT siblings within 
each study.

Genomic regions

Methylation 
in BT siblings† 
(mean ± SD)

Methylation 
in AT siblings† 
(mean ± SD) P-value‡

GWAM 52.97 ± 0.32 52.99 ± 0.31 0.39

CpG island 22.77 ± 0.34 22.66 ± 0.39 0.33

CpG shelf 78.45 ± 0.47 78.58 ± 0.46 0.14

CpG shore 49.23 ± 0.43 49.23 ± 0.41 0.53

non-CGI region 74.28 ± 0.45 74.38 ± 0.44 0.19

Gene body 65.17 ± 0.35 65.22 ± 0.36 0.20

Promoter 30.83 ± 0.29 30.78 ± 0.28 0.81

Intergenic region 63.19 ± 0.40 63.23 ± 0.40 0.33

TSS1500 37.77 ± 0.34 37.76 ± 0.32 0.76

TSS200 19.40 ± 0.24 19.32 ± 0.27 0.21

5′UTR 34.00 ± 0.28 33.96 ± 0.28 0.89

1stExon 22.22 ± 0.28 22.12 ± 0.31 0.21

3′UTR 76.14 ± 0.40 76.25 ± 0.39 0.10

Table 2.  GWAM and the average methylation of genomic regions between BT and AT siblings from the 
AMDTSS* *GWAM: genome-wide average methylation; BT: before twin birth; AT: after twin birth; AMDTSS: 
Australian Mammographic Density Twins and Sisters Study; SD: standard deviation. †Methylation is presented 
as the percentage of methylation, that is, beta-value × 100. ‡P-value for compare the mean of methylation 
between BT and AT siblings.
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We did not find evidence that these correlations depended on the twins’ zygosity (P = 0.18), or any of the exam-
ined factors (all P > 0.1).

For the average methylation of genomic regions, BT pairs were correlated in TSS200 (rBT = 0.36; 95% CI: 
0.04, 0.61) while AT pairs were not correlated (rAT = 0.17; 95% CI: −0.19, 0.49); however, there was no differ-
ence between the two correlations (P = 0.45; Table 3). BT pairs were not correlated in any other regions (all 

Genomic region

Discovery: AMDTSS Replication: KHTS Meta-analysis: AMDTSS + KHTS

rBT (SE) rBAT (SE) rAT (SE)

P‡

rBT (SE) rBAT (SE) rAT (SE)

P‡

rBT (SE) rBAT (SE) rAT (SE)

P‡N = 38† N = 40† N = 34† N = 26† N = 9† N = 16† N = 64† N = 49† N = 50†

GWAM −0.01 (0.17) 0.14 (0.23) 0.48 (0.15) 0.06 0.04 (0.36) −0.14 (0.45) 0.43 (0.21) 0.35 −0.003 (0.16) 0.08 (0.21) 0.46 (0.12) 0.02

CpG island 0.001 (0.27) 0.18 (0.19) 0.23 (0.18) 0.49 −0.02 (0.25) −0.20 (0.59) 0.36 (0.26) 0.33 −0.01 (0.19) 0.15 (0.18) 0.27 (0.15) 0.23

CpG shelf 0.15 (0.21) −0.10 (0.36) 0.64 (0.10) 0.03 0.02 (0.30) −0.33 (0.43) 0.44 (0.20) 0.31 0.11 (0.17) −0.20 (0.28) 0.60 (0.09) 0.01

CpG shore −0.08 (0.14) 0.08 (0.20) 0.29 (0.20) 0.19 0.06 (0.34) 0.01 (0.32) 0.48 (0.23) 0.31 −0.06 (0.13) 0.06 (0.17) 0.38 (0.15) 0.03

non-CGI region 0.08 (0.21) 0.11 (0.35) 0.63 (0.10) 0.02 −0.17 (0.15) −0.39 (0.13) 0.40 (0.20) 0.15 −0.10 (0.12) −0.34 (0.12) 0.59 (0.09) 6.2E-6

Gene body 0.02 (0.18) 0.06 (0.30) 0.56 (0.12) 0.03 0.05 (0.41) −0.29 (0.35) 0.44 (0.20) 0.36 0.02 (0.17) −0.09 (0.23) 0.53 (0.10) 0.01

Promoter 0.05 (0.17) 0.18 (0.16) 0.17 (0.21) 0.66 0.01 (0.27) 0.15 (0.37) 0.52 (0.21) 0.19 0.04 (0.14) 0.18 (0.14) 0.35 (0.15) 0.13

Intergenic region −0.02 (0.20) 0.17 (0.27) 0.53 (0.13) 0.04 −0.12 (0.23) −0.27 (0.31) 0.39 (0.21) 0.25 −0.06 (0.15) −0.02 (0.20) 0.49 (0.11) 0.003

TSS1500 −0.03 (0.16) 0.18 (0.16) 0.21 (0.22) 0.40 0.04 (0.28) 0.15 (0.34) 0.49 (0.22) 0.24 −0.01 (0.14) 0.17 (0.15) 0.36 (0.15) 0.08

TSS200 0.36 (0.17) 0.24 (0.16) 0.17 (0.19) 0.45 −0.20 (0.14) 0.20 (0.32) 0.61 (0.19) 0.03 0.04 (0.11) 0.23 (0.14) 0.41 (0.13) 0.03

5′UTR 0.10 (0.16) 0.17 (0.17) 0.24 (0.20) 0.59 0.07 (0.29) 0.18 (0.45) 0.51 (0.21) 0.24 0.09 (0.14) 0.17 (0.16) 0.37 (0.14) 0.17

1stExon 0.27 (0.21) 0.23 (0.17) 0.13 (0.20) 0.63 −0.18 (0.18) −0.18 (0.36) 0.51 (0.22) 0.10 0.02 (0.14) 0.16 (0.15) 0.31 (0.15) 0.14

3′UTR 0.02 (0.18) 0.05 (0.33) 0.60 (0.11) 0.01 0.20 (0.40) −0.33 (0.50) 0.42 (0.20) 0.58 0.05 (0.16) −0.07 (0.28) 0.56 (0.10) 0.01

Table 3.  Correlations in GWAM and in the average methylation of genomic regions*. *GWAM: genome-
wide average methylation; BT: before twin birth; AT: after twin birth; BAT: born on either side of a twin birth; 
AMDTSS: Australian Mammographic Density Twins and Sisters Study; KHTS: Korean Healthy Twin Study; SE: 
standard error. †Number of quasi-independent pairs. ‡P-value for the comparison between rBT and rAT.

Figure 1.  Correlations in GWAM for different types of sibling pairs in the AMDTSS and KHTS (a) Pairs of BT 
siblings in the AMDTSS. (b) Pairs of B/AT siblings in the AMDTSS. (c) Pairs of AT siblings in the AMDTSS. (d) 
Pairs of BT siblings in the KHTS. (e) Pairs of B/AT siblings in the KHTS. (f) Pairs of AT siblings in the KHTS.
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P > 0.19). AT pairs were correlated in CpG shelf, non-CGI region, gene body, intergenic region and 3′UTR (all 
estimates > 0.5; all P < 6.0 × 10−6). For these five regions, the correlations were also different between BT and AT 
pairs (all P < 0.04). The number of statistically significant (at P < 0.05) comparisons, 5 out of 12, was more than 
the 0.6 that would have been expected by chance (P = 1.8 × 10−4). B/AT pairs were not correlated in any region 
(all P > 0.12).

From the probe analyses, for 306 the algorithm failed to converge, leaving results for 468,100 probes. There 
were more probes with positive correlation estimates for AT pairs compared with BT pairs (45% vs 40%, 
P < 10−15). The mean correlation estimate was −0.03 for BT pairs, smaller than −0.01 for AT pairs (P < 10−15). 
From comparing the correlations, 15 probes were identified to be differentially correlated between BT and AT 
pairs at the genome-wide level of significance (P = 10−7) (Table 4). Among them, two probes were more correlated 
for BT pairs and 13 probes were more correlated for AT pairs. This inconsistency in direction was more extreme 
than a 50:50 split expected under the null hypothesis that the difference is random (P < 0.01).

Replication analysis.  For the KHTS, neither BT nor B/AT pairs were correlated in GWAM (rBT = 0.04, 
95% CI: −0.58, 0.64; rBAT = −0.14; 95% CI: −0.77, 0.64) (Table 3; Fig. 1). The correlation was 0.43 (95% CI: 0.05, 
0.70) for AT pairs, numerically larger than rBT (P = 0.35). We did not find evidence of sex heterogeneity in the 
correlations (P = 0.28).

For the average methylation of genomic regions, we consistently found that the AT pairs were more correlated 
than BT pairs between the discovery and replication analyses (P = 0.04; Table 3). BT pairs were not correlated in 
any region (all P > 0.16). AT pairs were correlated in all regions (all P < 0.05) except CpG island. The correlations 
for AT pairs were all numerically larger than those for BT pairs, and the difference for TSS200 was significant 
(P = 0.03). B/AT siblings were not correlated in any region except being negatively correlated in the non-CGI 
region (rBAT = −0.39; 95% CI: −0.58, −0.17).

Meta-analysis.  From combining the AMDTSS and KHTS results, neither BT nor B/AT pairs were correlated 
in GWAM (rBT = −0.003, 95% CI: −0.30, 0.29; rBAT = 0.08; 95% CI: −0.31, 0.45). The correlation was 0.46 (95% 
CI: 0.26, 0.63) for AT pairs, larger than the correlation for BT pairs (P = 0.02; Table 3).

Neither BT nor B/AT pairs were correlated in any region, except that B/AT pairs were negatively correlated 
in the non-CGI region (rBAT = −0.34; 95% CI: −0.53, −0.12) (Table 3). AT pairs were correlated in all regions 
(P < 0.03), except that the correlation in CpG island was marginally significant (P = 0.06). The correlations were 
different between BT and AT pairs in each of the CpG shelf, CpG shore, non-CGI region, gene body, intergenic 
region, TSS200 and 3′UTR regions (all P < 0.04).

Pathway analysis.  A total of 152 differential correlated probes (at P < 10−4), annotated to 148 unique genes, 
were included. The top pathways in which these probes overrepresented included “GPCR-mediated nutrient 
sensing in enteroendocrine cells” (4 of 85 molecules: ADCY9, CASR, ITPR1 and PRKCZ), “Phospholipase C 
signalling” (6 of 240 molecules: ADCY9, ARHGEF16, ARHGEF17, ITPR1, RAP1A and PRKCZ), “Corticotropin 
releasing hormone signalling” (4 of 111 molecules: ADCY9, ITPR1, RAP1A and PRKCZ), “Clathrin-mediated 
endocytosis signaling” (5 of 197 molecules: CSNK2A1, AP2M1, FGF8, DAB2 and FGF1), “Asparagine biosyn-
thesis I” (1 of 1 molecules: ASNS) and “Breast cancer regulation by stathmin1” (5 of 203 molecules: ADCY9, 
ARHGEF16, ARHGEF17, ITPR1 and PRKCZ; all P < 0.01). The top diseases and disorders included “Connective 
tissue disorders”, “Developmental disorder”, “Gastrointestinal disease”, “Organismal injury and abnormali-
ties” and “Skeletal and muscular disorders” (all P < 10−4). The top molecular and cellular functions included 

Probe CHR Position
UCSC_
RefGene_Name

UCSC_
RefGene_Group

Relation_to_
UCSC_CpG_Island rBT (SE) rAT (SE) P-value†

cg08757148 1 24513722 IL28RA 1stExon Island 0.98 (0.01) 0.15 (0.11)  < 2.2E-16

cg15392109 11 118478329 PHLDB1 5′UTR Island −0.03 (0.18) 0.98 (0.01) 4.4E-16

cg06699489 6 158690902 −0.15 (0.12) 0.90 (0.02) 7.6E-12

cg11671265 4 78722517 CNOT6L Body 0.07 (0.23) 0.95 (0.01) 3.2E-11

cg08410878 8 1733369 CLN8 3′UTR Island −0.14 (0.23) 0.93 (0.02) 3.7E-11

cg21173402 8 610095 −0.15 (0.13) 0.94 (0.02) 3.1E-10

cg05751055 6 33036504 HLA-DPA1 Body 0.93 (0.02) −0.06 (0.11) 6.0E-10

cg19726630 3 32400704 CMTM8 Body 0.08 (0.18) 0.94 (0.02) 8.5E-10

cg14372324 20 30347798 TPX2 Body −0.07 (0.14) 0.93 (0.02) 1.3E-09

cg07570618 1 1992389 PRKCZ Body S_Shore −0.05 (0.09) 0.93 (0.02) 1.4E-09

cg00684178 2 242752080 NEU4 5′UTR N_Shelf −0.08 (0.12) 0.90 (0.03) 1.5E-09

cg18875674 11 73026651 ARHGEF17 Body 0.21 (0.15) 0.93 (0.02) 1.7E-09

cg06776907 1 40714009 TMCO2 Body 0.05 (0.15) 0.90 (0.02) 1.9E-09

cg22491001 13 111142037 RAB20 Body −0.19 (0.13) 0.88 (0.03) 2.9E-09

cg19976628 3 38033516 N_Shelf −0.06 (0.16) 0.90 (0.03) 5.7E-09

Table 4.  Probes identified to be differentially correlated between BT and AT pairs from the AMDTSS*. *BT: 
before twin birth; AT: after twin birth; AMDTSS: Australian Mammographic Density Twins and Sisters Study; 
CHR: chromosomes; SE: standard error. †P-value for the comparison between rBT and rAT.
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“Cellular movement”, “Cellular assembly and organization”, “Cellular function and maintenance”, “Cell death and 
survival” and “Cell-to-cell signalling and interaction” (all P < 5 × 10−4). The top physiological system develop-
ment and function included “Digestive system development and function”, “Organismal development”, “Tissue 
Morphology”, “Nervous system development and function” and “Tissue development” (all P < 5 × 10−4).

Discussion
We have found, from conducting two twin and family studies that compared the blood DNA methylation meas-
ures between middle-aged BT and AT siblings, evidence consistent with twin birth changing the methylation of 
siblings born after a twin birth. This change appears to cause the DNA methylation of sibling pairs born after a 
twin birth to be similar, which is in contrast to the DNA methylation of sibling pairs both before a twin birth, or 
either side of a twin birth, which is not correlated.

To the best of our knowledge, our studies are the first to report on the potential for a twin birth to influence the 
methylation of subsequent siblings. The potential for maternal factors to change the methylation of subsequent 
offspring comes from two studies with similar design that have found that siblings born before and after maternal 
bariatric surgery have different methylation levels at several genes14, 15.

From a previous study that combined data from seven twin and family studies across the lifespan we found 
evidence that GWAM, a measure of global methylation16, is initially determined by intrauterine environmental 
effects which decrease over the life course (Li, et al. Under review). In that study, we did not find evidence that 
middle-aged sibling pairs overall (including BT, B/AT, AT and twin-sibling pairs) were correlated in GWAM. 
Here we have found that, on a closer examination, only the subgroup of AT sibling pairs was correlated. This 
observation indicates that twin birth can influence the covariance in GWAM for sibling pairs born after a twin 
birth, even when they are in middle age. It is likely that these pairs were even more highly correlated in earlier life, 
given that we observed this for twin pairs when we pooled of studies across the life span.

It is unlikely that our observation is explained by factors other than twin birth. Given that both types of sib-
lings are first-degree relatives who share on average 50% of germline genetic information, this observation cannot 
be explained by such genetic factors. Furthermore, we previously did not find evidence of germline genetic factors 
explaining variation in GWAM to a detectable extent at any stage of the lifespan (Li, et al. Under review). We 
applied the ComBat or a mixed-effects model to minimise batch effects, and we observed similar phenomenon in 
two independent studies, therefore the observation is unlikely to be due to batch effects, especially those specific 
to any one study. We did not find evidence that the correlations depended on age, sex or any other factors we 
examined. It is noteworthy that the mean ages of B/AT pairs were 54.1 and 44.4 years in the AMDTSS and KHTS, 
respectively, similar to that of AT pairs, yet B/AT pairs were not correlated. We note that our lack of information 
on maternal age means that we could not examine the influence of this factor on our results. However, given that 
maternal age is typically negatively correlated with offspring’s age, any impact of maternal age would have been 
reduced by adjusting for age before estimating the correlations.

Our observations are also unlikely to be explained by the ‘epigenetic drift’, given that the participants were 
middle-aged. In the seminal paper that first reported this phenomenon, there was little evidence for epigenetic 
drift in middle age or beyond: middle-aged and elderly pairs of monozygotic twins had similar Euclidean squared 
distance in 5-methylcytosine content regardless of age17. We previously found evidence suggesting that the cor-
relation in GWAM for twin pairs remains constant after early adulthood (Li, et al. Under review), which is also 
consistent with epigenetic drift not being manifest in middle age and beyond.

We found evidence that AT pairs were more correlated in the average methylation of several genomic regions, 
as well as in methylation at several methylation sites. This suggests that twin birth’s influence is not only detectable 
at the genome-wide level, but also at specific regions and methylation sites.

Our results are epidemiological observations. Blood methylation has also been observed to be associated with 
risks of complex traits and diseases; for example, GWAM or similar measures in whole blood have been found 
to be associated with risks of breast cancer18, 19, urothelial cell carcinoma16 and mature B-cell neoplasms20. The 
hypothesis of developmental origins of health and disease (DOHaD) considers that epigenome reprogramming 
during the fetal development period is one possible biological mechanism for the prenatal origins of diseases at 
later ages21, 22. Therefore, our study suggests that siblings born after a twin birth potentially have different disease 
(e.g. cancer) risks from those born before a twin birth. To our knowledge, no study has yet reported on different 
disease risks between the two types of siblings defined by a twin birth. Our study also implies that twin birth 
might mostly influence cell signalling and breast cancer regulation pathways. The overrepresentation of these 
pathways is mainly based on molecules including ADCY9, ITPR1 and PRKCZ. We also find evidence that sev-
eral disorders/diseases, such as those in connective tissue, development and digestive system, and such cellular 
functions as cellular movement, assembly and organization involving in tumour cell migration and endocytosis 
of liposome are potentially influenced by twin birth. The links between these pathways/functions and diseases 
remain to be investigated.

We hope that our study will provide new insights on the shaping of human blood methylome, especially on 
the role of intrauterine environment. In addition, our study findings suggest that more research about the features 
of different types of siblings defined by a twin birth are justified, and have the potential for providing a better 
understanding the aetiology of complex diseases.

We hypothesize that twin birth influences the DNA methylation of subsequent siblings through changing the 
intrauterine environment. While our observations suggest that twin birth influences the DNA methylation of 
subsequent siblings we did not have, and our study could not provide, direct evidence that twin birth changes the 
intrauterine environment. The mechanisms underlying these epidemiological observations need to be further 
studied.

A strength of our study is that we have used two independent yet comparable studies for discovery and repli-
cation, and found similar results. The inclusion of two studies minimises the possibility for any bias due to factors 
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specific to one study. A limitation of our study is that we were unable to investigate the influence on our results of 
factors other than those we had measured.

We conclude that twin birth can change the similarity in whole blood DNA methylation of siblings both born 
after a twin birth, without discernibly changing the methylation level of such siblings.

Methods
Subjects.  Subjects were from the Australian Mammographic Density Twins and Sisters Study (AMDTSS)23 
and the Korean Healthy Twin Study (KHTS)24. The AMDTSS was used for discovery and the KHTS was used for 
replication.

The AMDTSS is a twin and family study conducted in Australia originally designed to study mammographic 
density as a risk factor for breast cancer, in which 479 women comprising 132 twin pairs and their 215 sisters from 
130 families were selected for methylation research. The 215 sisters including 112 BT siblings and 103 AT siblings 
were included in this study. Of the 130 families, 28 included at least two BT siblings, 27 included at least two AT 
siblings, and 23 included at least one BT sibling and one AT sibling.

The KHTS is a study of twin families conducted in South Korea designed to examine genetic and environmen-
tal factors underlying complex human diseases and traits24, in which 390 participants comprising monozygotic 
twins and their first-degree relatives from 97 families were selected for methylation research. 42 siblings including 
27 BT siblings and 15 AT siblings were included in this study.

The AMDTSS was approved by the Human Research Ethics Committee of the University of Melbourne. The 
KHTS was approved by the Institutional Review Board of Samsung Medical Centre and Busan Paik Hospital. 
Both studies were conducted in accordance with the Helsinki Declaration. All participants from both studies 
provided written informed consent.

DNA methylation measurement.  Each study measured DNA methylation using the Infinium 
HumanMethylation450 BeadChip (HM450) array and performed data pre-processing independently.

In the AMDTSS, DNA was extracted from dried blood spots stored on Guthrie cards25. DNA was sodium 
bisulfite converted using the EZ DNA Methylation-Gold protocol as per manufacturers’ instructions (Zymo 
Research, Irvine, CA) and eluted in 20 µl elution buffer. DNA samples extracted from the same family were 
assayed on the same chip. Raw intensity data was processed by Bioconductor package minfi26 which included 
normalization of data using Illumina’s reference factor-based normalization methods (preprocessIllumina) and 
subset-quantile within array normalization (SWAN)27 for type I and II probe bias correction. An empirical Bayes 
batch-effects removal method ComBat28 was applied to minimise the technical variation across batches. All sam-
ples passed quality control. Probes with missing value (detection P-value > 0.01) in one or more samples, 65 
control probes and probes mapping to X-chromosome were excluded, leaving 468,406 autosomal probes. See Li 
et al.29 for more details.

In the KHTS, DNA was extracted from peripheral blood lymphocytes. The measurement was conducted in 
two separated experiments (experiment I and II), with individuals from the same family included in the same 
experiment. For each experiment, quality control and data pre-processing were performed separately, while the 
same analytic tools and methods were applied. The R package RnBeads30 was applied to extract methylation 
values. In the quality control, a series of probe and sample filtering steps were followed: probes mapping to sex 
chromosomes, associated with SNPs and/or out of CpG context were removed, and CpG probes and samples 
were filtered at detection P-value of 0.01. The beta mixture quantile dilation (BMIQ) method31 was used for 
normalization.

Statistical methods.  Discovery analysis.  We studied a global methylation measure, genome-wide average 
DNA methylation (GWAM) defined as the average beta-value across autosomal probes. We compared the means 
in GWAM between BT and AT siblings using a linear mixed-effects model, in which GWAM was the outcome 
and sister type was the predictor. The model was adjusted for age and blood cell type composition (fixed effects), 
and for family identification number (random effect). The blood cell type composition was estimated from the 
methylation data using the Houseman method32 from the Bioconductor package minfi.

We estimated correlations in GWAM for BT pairs (rBT), B/AT pairs (rBAT) and AT pairs (rAT). The correlation 
was estimated based on computationally maximizing the likelihood of a multivariate normal model for pedigree 
analysis33–35. The correlation in GWAM was the covariance in GWAM between relatives divided by the variance 
of GWAM. GWAM was firstly adjusted for age and the blood cell type composition using a linear regression. 
Residuals from the regression were used to estimate correlations. Correlations between BT and AT pairs were 
compared using the likelihood ratio test (LRT), that is, a nested model in which the two correlations set to equal 
was fitted, and a P-value was calculated according to that twice the difference in the log likelihoods between the 
full and nested model approximately follows the chi-squared distribution with one degree of freedom.

To investigate if the correlations depend on the twins’ zygosity, we stratified each type of sibling pairs by the 
twins’ zygosity and estimated the correlation in each stratum. The model fit was compared with that of the model 
above using the LRT. To investigate if the correlations depend on other factors, we modelled the correlations as 
α + β *factor where the factor was a characteristic of the sibling pair: (1) the average age; (2) the absolute value 
of age difference; (3) the average birth order; (4) the absolute value of birth order difference; (5) the average year 
between the sibling’s birth and the twins’ birth; (6) the absolute value of the difference in year between the sibling’s 
birth and the twins’ birth; and (7) the twins’ age. The model fit was compared with that of the model above using 
the LRT.

We studied the average methylation of genomic regions. According to Illumina’s annotation file, probes were 
grouped according to their genomic positions (gene body, intergenic region, promoter, TSS1500, TSS200, 5′UTR, 
1stExon or 3′UTR) or to their positions relative to a CpG island (CGI) (CpG island, CpG shelf, CpG shore or 
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non-CGI region). For each region, the average beta-value across autosomal probes was calculated. The means and 
correlations of these genomic regions were compared using the same methods as those for GWAM. The binomial 
test was used to test whether the observed number of statistically significant (at P < 0.05) comparisons was more 
than would be expected by chance.

We studied the methylation measured by each autosomal probe, comparing the means and correlations in the 
methylation (beta-value) measured by each probe using the same methods as those for GWAM. P-values were 
corrected for the genomic control inflation factor. Genome-wide level of significance was 10−7. The McNemar’s 
test was used to compare the proportions of positive correlation estimates, and the paired t-test was used to com-
pare the means in correlation estimates. The binomial test was used to test whether the observed direction of the 
genome-wide significant associations was more extreme than would have been expected by chance.

Replication analysis.  For GWAM and the average methylation of genomic regions, we estimated their cor-
relations in the KHTS. The methylation measure was firstly adjusted for age, sex, experiment, the estimated blood 
cell type composition (fixed effects), array and position on the array (random effects) using a linear mixed-effects 
model in the whole dataset. Residuals from the model were used for correlation estimation. Sex heterogeneity in 
correlations was examined using the LRT. The binomial test was used to test the consistency of results between 
discovery and replication analyses.

Meta-analysis.  Results from discovery and replication analyses were pooled using a fixed-effect 
meta-analysis under inverse-variance weighting. The correlations were compared between BT and AT pairs based 
on asymptotic theory.

Pathway analysis.  We performed pathway analysis for the probes differentially correlated at P < 10−4 
between BT and AT pairs. These probes were annotated to genes according to the closest transcription start site 
(TSS)36. The gene list was uploaded to QIAGEN Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity) for assessing overrepresentation relative to all human gene functions37.

Correlation estimation and modelling were performed using the Sequential Oligogenic Linkage Analysis 
Routines (SOLAR) program version 8.1.1 (http://solar-eclipse-genetics.org/). Regression analyses were per-
formed using R version 3.2.4 (http://www.r-project.org). The mixed-effects model was fitted using the lmer func-
tion from the R package lme4. The linear regression was fitted using the lm function in R. The meta-analysis was 
performed using the metagen function from the R package meta. The McNemar’s test, t-test, binomial test were 
performed using the mcnemar. test, t. test and binom. test function in R, respectively.

Data availability.  The discovery data are available at the Gene Expression Omnibus under accession number 
GSE100227. The replication data are available on the request to the authors. The SOLAR code could be found in 
the Supplementary Text.
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