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In Vivo Investigation of the 
Effectiveness of a Hyper-
viscoelastic Model in Simulating 
Brain Retraction
Ping Li1,2,3,*, Weiwei Wang1,2,4,*, Chenxi Zhang1,2, Yong An1,2 & Zhijian Song1,2

Intraoperative brain retraction leads to a misalignment between the intraoperative positions of the 
brain structures and their previous positions, as determined from preoperative images. In vitro swine 
brain sample uniaxial tests showed that the mechanical response of brain tissue to compression and 
extension could be described by the hyper-viscoelasticity theory. The brain retraction caused by the 
mechanical process is a combination of brain tissue compression and extension. In this paper, we first 
constructed a hyper-viscoelastic framework based on the extended finite element method (XFEM) to 
simulate intraoperative brain retraction. To explore its effectiveness, we then applied this framework 
to an in vivo brain retraction simulation. The simulation strictly followed the clinical scenario, in which 
seven swine were subjected to brain retraction. Our experimental results showed that the hyper-
viscoelastic XFEM framework is capable of simulating intraoperative brain retraction and improving the 
navigation accuracy of an image-guided neurosurgery system (IGNS).

To minimize their impact on both healthy tissue and brain function, neurosurgical procedures involving tumor 
resection below the cortex require the surgeon to establish a surgical path to the tumor, which also causes brain 
retraction. Deformation, followed by tissue retraction and resection, usually causes severe misalignment in 
image-guided neurosurgery systems (IGNS) and renders their navigation completely unreliable. In addition, 
when correcting for brain resection, a prerequisite is to correct for the brain retraction. Therefore, the primary 
step for improving the accuracy of IGNS is to correct for brain retraction. Brain retraction caused by mechanical 
processes is a combination of brain tissue shear, compression and extension. Correcting for it requires modeling 
not only complex mechanical behaviors but also the brain tissue topological discontinuity. A variety of strate-
gies1–5 have been reported to estimate the displacement caused by brain retraction, but this quantification has 
been proven to be challenging. One possible strategy that has been widely accepted is to simulate brain retraction 
behavior using a biomechanical model that is driven by sparse intraoperative data.

The most commonly used models are the linear elastic model4,5 and the poroelastic model1–3. In general, the 
linear elastic model is suitable for simulating small brain deformations through a quasi-static process with a low 
stress-strain rate6,7. The poroelastic model was used by Kaczmarek et al. in 1997 to model hydrocephalus with a 
larger deformation8. However, this deformation process usually lasts several days and is far slower than the brain 
retraction process. Miga et al. and Platenik et al.1,9 extended this model using mixed boundary conditions (BCs) 
to predict the retraction. Sun et al.3 also employed a linear poroelastic model to predict brain retraction that used 
two cameras to acquire the displacements of the retractors. Kyriacou et al.7 summarized the modeling techniques 
and tested them using a one-dimensional experiment. He suggested that if there was no specific requirement for 
interstitial fluid movement, a viscoelastic solid model, as proposed by Miller et al.10,11, may effectively model brain 
retraction. Miller et al.12,13 developed a step-wise hyper-viscoelastic constitutive model to account for both the 
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tension- and compression-induced brain tissue deformation behaviors. However, to date, this promising biome-
chanical model has not been used to simulate brain retraction.

Sparse intraoperative data are imposed as boundary conditions to the biomechanical model to infer a volu-
metric deformation field. Some groups have used intraoperative Magnetic Resonance (iMR) directly4–6,14,15, which 
could provide high-resolution 3D volumetric images of brain tissue displacement. Others1,2,9 have used intraop-
erative measured pressure or a combination of measured displacement and pressure. In recent years, more and 
more researchers have tended to use measured displacements of the exposed brain surface as BCs because they 
are simple and convenient to acquire2,3,16–20. The exposed surface displacements could be acquired with cameras 
mounted on the operating microscope3,20 with an laser ranged scanner (LRS)16–19, or with a conoprobe21,22.

In our previous work23, we presented a framework for the compensation of brain retraction. In that frame-
work, we used an LRS to track displacements of the brain retractor surfaces, which were used as BCs, and the 
extended finite element method (XFEM) to produce an accurate representation of the tissue discontinuity. The 
results of a brain phantom showed that the framework was a promising approach to handle tissue discontinu-
ity. In this paper, we implemented a hyper-viscoelastic XFEM model to simulate intraoperative brain retrac-
tion. We used nodal displacements of the inner sub-face of retractors inserted into the brain to constrain the 
hyper-viscoelastic XFEM equations. The results were quantitatively and qualitatively assessed using seven live 
swine.

Results
We illustrated a workflow for simulating intraoperative brain retraction using the hyper-viscoelastic XFEM 
model-based framework. We have organized the presentation of our evaluation results into two subsections. In 
the first subsection, we quantified specific comparisons between the calculations from the model and the meas-
ured quantities for a single subject. In the second subsection, we reported the predominant experimental data as 
averages.

Workflow of the hyper-viscoelastic XFEM model-based framework. Figure  1 shows the 
LRS-captured point clouds (black dots) and the reconstructed surface of the postretraction brain (gray surface). 
The point clouds were transformed to the postretraction image space. We can see that the LRS point clouds are 
perfectly aligned with the retractors’ surfaces, as well as with other parts of the surgical field, in the top (Fig. 1a) 
and anterior views (Fig. 1b).

Figure 2 is a pictorial representation of a typical BC distribution (subject 1). It illustrates various zones within 
the model that support different BCs. In the retraction region, the displacements of the surfaces in contact 
with the retractors are calculated by the brain retraction surface-tracking algorithm. In the brain stem region, 
traction-free conditions are prescribed, with no drainage.

Two retractors were inserted into the brain of subject 1 and individually stretched to the right to a maximum 
distance of 5.4 mm and to the left to a maximum distance of 2.8 mm (The mean retraction was 7.1 mm). Figure 3 
illustrates the results of hyper-viscoelastic extended finite element analysis (subject 1). Figure 3a is a pictorial 
representation of the BC distribution based on the volume mesh description. Figure 3b shows that the maxi-
mum displacement is found immediately around the crack. The arrows indicate the direction of brain retraction. 
Figure 3c shows 3D surface renderings of the predicted images.

Evaluation of Simulation Accuracy for an Individual Subject. Table 1 shows the detailed compari-
sons of the landmark displacements using Euclidean distance measurement between the predicted images and 
the postretraction CT images. These comparisons indicate that the hyper-viscoelastic model predicted brain 
deformation displacement ranges between 1.1 and 2.5 mm; the actual measured deformation displacements in 

Figure 1. The LRS-captured point clouds (black dots) are perfectly aligned to the reconstructed surface of 
the postretraction brain (gray surface) when they are transformed into the same image space. (a) Top view. 
(b) Anterior view. The red box shows an amplified view of the retracted area.
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the postretraction CT images are between 0.9 and 2.9 mm. Similarly, the forecast errors of all landmarks varied 
between 0.1 and 0.9 mm (mean 0.4 mm), and the prediction accuracy between the predicted and actual results is 
between 63.8% and 94.8% (mean 80.5%).

Figure 4a–c compares the actual measured displacements (from the postretraction CT images) with the 
predicted landmark displacements (from the hyper-viscoelastic model-based framework) in the X, Y and 
Z directions, respectively. Figure 4d,e show the comparisons of the preretraction and measured or computed 
postretraction landmark locations in different views for subject 1, providing a detailed pictorial analysis of our 
framework’s forecasted performance. Figure 4d shows a comparison of the coronal views (X-Y plane) between 
the preretraction and measured and calculated postretraction landmark locations. Figure 4e compares the pre-
retraction and measured and calculated postretraction landmark displacements in the axial view (X-Z plane). 
Figure 4 indicates that the forecast error is not focused on specific frontal, parietal or occipital lobe regions. Detail 
statistical ANOVA tests were made to show whether the prediction accuracy and forecast error were influenced 
by landmark locations. The ANOVA results and their description can be found in the Appendix File.

Figure 5 shows a comparison of the brain contours between the model-predicted and postretraction CT 
images. Figure 5a,b indicate that the images that were predicted by our framework (shown with a red line) agreed 
with the actual CT images (shown with a blue line). The two sets of contours agreed particularly well in two 
regions: the region in which the retractors were inserted and the region close to the brain stem.

Figure 2. A typical BC distribution (subject 1). Two types of BCs were indicated. The zero-displacement BC is 
located in the brain stem. The other BC is the displacements of certain directly crack-related nodes.

Figure 3. Hyper-viscoelastic extended finite element analysis results (subject 1). (a) The uniform 
preretraction hexahedral mesh (2115 nodes, 1663 elements) and the distribution of BCs. (b) Deformed mesh 
with colors corresponding to different magnitudes of displacement (red indicates the maximum and blue 
indicates the minimum). (c) 3D surface renderings of the predicted images by the ray-casting algorithm.
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Evaluation of simulation accuracy for seven subjects. Model segmentation and mesh generation are 
time consuming. A computer (Intel Core i7-2600, 2.94 GB RAM) required 10 to 15 minutes to generate mesh 
models, which contained 2,018 to 4,622 nodes and 1,347 to 3,663 hexahedral elements, for each subject using a 
Windows 7 platform (Microsoft Inc., Redmond, WA). However, this did not delay the experiment because the 
procedure could be completed prior to the operation.

The comparisons of the forecast error and prediction accuracy of our framework for seven subjects are listed 
in Table 2. All subjects underwent retraction. The average prediction accuracy for all landmarks embedded in the 
seven subjects was 79.9 ±  15.2% (mean ±  S.D.), and the average forecast error was 0.4 ±  0.4 mm (mean ±  S.D.). 
The maximum average forecast error was 0.8 ±  0.7 mm (mean ±  S.D.), which was observed in swine 5. The mini-
mal average prediction accuracy was 71.5 ±  15.8% (mean ±  S.D.), which was also observed in swine 5.

Table 3 shows comparisons of the calculation time, average prediction accuracy and forecast error between 
hyper-viscoelastic XFEM model and linear elastic XFEM model for seven swine. The comparisons were based 
on the same data. Solutions to linear elastic XFEM equations cannot be obtained for 5 of 7 subjects. For 2 of 7 
successful subjects, the average prediction accuracy of the linear elastic XFEM model (83.7 ±  1.3% (mean ±  S.D.)) 
is slightly higher than that of a hyper-viscoelastic XFEM model (81.7 ±  1.2% (mean ±  S.D.)), while the aver-
age calculation time of the linear elastic XFEM model (35.5 ±  4.5 s (mean ±  S.D.)) is longer than that of the 
hyper-viscoelastic XFEM model (25.5 ±  4.5 s (mean ±  S.D.)).

Dice similarity coefficients for seven subjects are listed in Table 4. One can see from Table 4 that the aver-
age and maximum Dice similarity coefficients of all subjects were 88.9% and 94.5%, respectively. Table 5 shows 
the target registration error (TRE) for landmarks before and after model-update. The initial TRE is the dis-
tance between the landmarks in postretraction image and preoperative image. The TRE after model-update 
is the distance between the landmarks in postretraction image and model-updated image. The average initial 
TRE for all landmarks was 2.3 mm ±  1.2 mm (mean ±  S.D.), while the average TREs after model-update was 
1.1 mm ±  0.7 mm. The results suggest that the Hyper-viscoelastic XFEM model may decrease the misalignment 
between the intraoperative brain positions and preoperative image.

Discussion
In this paper, a hyper-viscoelastic model-based framework was implemented to simulate brain retraction. The 
XFEM was used to model the crack resulting from brain retraction. An LRS-based retraction surface-tracking 
algorithm was introduced to acquire BCs for the hyper-viscoelastic model. The effectiveness of the framework 
was evaluated in seven swine. Using different evaluation methods, the hyper-viscoelastic XFEM model frame-
work demonstrated sufficient capability to predict brain retraction, thereby improving the navigation accuracy 
of an IGNS.

In our framework, BCs were prescribed as the computed displacements of some specific nodes, and the cal-
culated results of the brain retraction were also described as the displacements of the nodes. This type of problem 
has been described as displacement-zero traction or a pure displacement problem24,25. In this type of problem, 
not all parameters applied in the mechanical model could produce different results. However, the dimensionless 
ratio parameters for linear problems and a particular law for nonlinear problems do make a difference24. The 
linear elastic model, which has only one dimensionless parameter, the Poisson ratio, may be the best choice when 
modeling craniotomy-induced brain shifts due to its simplicity and widely accepted accuracy. However, the linear 
elastic model was not always sufficient for modeling brain retraction, based on our previous observations23 and 
current animal experiments. We have compared the linear elastic XFEM model and the hyper-viscoelastic XFEM 
model for prediction of brain retraction using the same data (Table 3). In all of subjects, solutions to linear elastic 
XFEM equations cannot be obtained for five subjects. For 2 of 7 successful subjects, the prediction accuracies of a 
linear elastic XFEM model were slightly higher than those of a hyper-viscoelastic XFEM model, while the average 
calculation time of the linear elastic XFEM model was longer than that of the hyper-viscoelastic XFEM model. 

Landmark no.
Predicted 

displacement (mm)
Measured 

displacement (mm)
Forecast error 

(mm)
Prediction 

accuracy (%)

1 2.0 2.9 0.9 66.9

2 1.8 2.0 0.2 91.7

3 1.6 2.2 0.7 70.4

4 1.2 1.5 0.3 82.5

5 2.2 2.3 0.2 92.9

6 1.5 2.2 0.7 68.8

7 1.3 1.0 0.4 63.8

8 2.1 2.2 0.1 94.8

9 2.3 2.5 0.2 92.2

10 2.5 2.8 0.3 88.2

11 1.5 1.8 0.3 84.9

12 2.1 2.9 0.8 72.3

13 1.7 2.2 0.5 78.6

14 1.1 0.9 0.2 79.0

Table 1.  Comparisons of the actual measured displacements and predicted landmark displacements for 
subject1.
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One possible explanation is that brain retraction involving tissue compression and extension showed obviously 
nonlinear mechanical properties. This was not in accordance with the linear elastic theory but did agree with 
the nonlinear hyper-viscoelastic theory. Moreover, the energy function, together with its parameters that were 
systematically modified by Miller et al.10–12, provided a good representation of the mechanical behaviors of com-
pression and extension.

In this paper, we used a portable LRS to track the displacement of the retractor surface points as BCs. The 
LRS was used to track the displacement of the cortical surface when compensating for craniotomy-induced brain 
deformation because it has been shown to be a cost-effective tool16–19,26. This method balanced time, BC quality 

Figure 4. Comparisons of 14 landmark locations for subject 1. Comparisons of the X displacements (a), 
Y displacements (b) and Z displacements (c) between the actual measured displacements and the predicted 
displacements are shown for each landmark location. The coronal view (X-Y plane) (d) and axial view (X-Z 
plane) (e) of the comparisons between the preretraction and the measured and calculated postretraction 
landmark trajectories are shown for each landmark. □ : preretraction, x: measured, o- calculated. The initial 
retractor position is represented by the solid line in each plane, and the direction of retraction is shown in both 
(d) and (e).
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and cost. IMR also can be used to track brain surface displacement. Although this method could obtain volumet-
ric high-quality BCs, it was time consuming and expensive in the OR setting. When the measured pressures2,9 
were used as BCs, some of the measurement settings in the surgical field were required to correct the pressure.

To evaluate our hyper-viscoelastic model, we implanted several stainless beads as landmarks for evaluation 
into the brains of live swine. The evaluation method was similar to that of previous reports2,9,27. However, unlike 
the work of Platenik et al.2,9 we also imbedded beads in the brain tissue, far away from the area of the V-shaped 
retracted brain tissue. The advantage of this modification was that we captured not only the quantitative results 

Figure 5. Comparisons of brain contours between the model-predicted image and the actual 
postretraction CT image (subject 1). (a) One slice of a preretraction image in the nonretraction area was 
overlaid with the corresponding brain contours of the model-predicted image (red) and the actual CT image 
(blue). (b) One slice in the retraction area. The brain contours of the model-predicted image and the brain edge 
of the actual CT image were identified separately and are shown as red lines and blue lines, respectively.

Average Forecast error 
(mm) (mean ± S.D.)

Average Prediction accuracy 
(%) (mean ± S.D.)

Subject #1 0.4 ±  0.3 80.5 ±  10.3

Subject #2 0.3 ±  0.3 73.9 ±  19.9

Subject #3 0.3 ±  0.2 80.0 ±  13.8

Subject #4 0.4 ±  0.2 87.2 ±  27.2

Subject #5 0.8 ±  0.7 71.5 ±  15.8

Subject #6 0.4 ±  0.5 82.9 ±  18.4

Subject #7 0.4 ±  0.2 82.9 ±  10.7

Table 2.  Comparison of the average forecast error and prediction accuracy for seven swine.

Calculation time(s) Average prediction accuracy (%) Average forecast error (mm)

the Hyper-viscoelastic 
XFEM model

the Linear Elastic 
XFEM model

the Hyper-viscoelastic 
XFEM model

the Linear Elastic 
XFEM model

the Hyper-
viscoelastic 

XFEM model

the Linear 
Elastic XFEM 

model

Subject #1 21 31 80.5 82.4 0.4 0.4

Subject #2 53 Fail 73.9 – 0.3 –

Subject #3 21 Fail 80.0 – 0.3 –

Subject #4 19 Fail 87.2 – 0.4 –

Subject #5 26 Fail 71.5 – 0.8 –

Subject #6 33 Fail 82.9 – 0.4 –

Subject #7 30 40 82.9 84.9 0.4 0.3

Table 3.  Comparisons of the calculation time, average prediction accuracy and forecast error between two 
models.
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of the retracted brain tissue but also those of the brain far away from the retracted area. This could make our 
results more objective. However, as the retracted surface was far away from the retraction-free brain tissue, the 
displacements of the beads implanted in the retraction-free tissue were very small, making it difficult to obtain 
high-prediction accuracy in these positions. System errors, such as image resampling, image registration errors, 
and CT resolution, could have a significant impact on the evaluation of these landmarks. These results imply that 
the prediction accuracy would improve if only the landmarks in the retraction area were used for the evaluation. 
For example, for subject 5, the prediction accuracy would increase from 71.5% to 73.3%.

Two time point images were required for our framework: when the dura was removed and the brain shift 
had completed and when the brain retractors were positioned. Based on these two time point images, we used a 
single-step brain retraction model to simulate for the brain retraction, which was similar to the method used by 
Vigneron et al.4,5. In our framework, the process of obtaining BCs required several space transformations. If mul-
tiple errors in the transformations accumulated, this would possibly decrease the performance of the framework. 
Therefore, similar to Vigneron et al.’s claims28, we would ideally select the single-step brain retraction model to 
simulate brain retraction. Platenik et al.9 proposed an incremental model to compensate for brain retraction. In 
their framework, they used measured mixed BCs. Each single measurement was independent of the others. If 
even one measurement was mixed with noise, it is likely that the next step could decrease or even eliminate the 
noise.

The main limitation of our framework is that CT images were used as the gold standard, and we could not 
clearly distinguish the brain structures in these images, which degraded the performance of our brain segmenta-
tion. In future studies, we plan to use iMR to acquire the images, which will improve the brain segmentation. In 
addition, although we evaluated our hyper-viscoelastic framework in swine experiments, there are some differ-
ences between animal cases and human brain retraction cases. To make the experiment more convincing, we plan 
to use clinical cases to further test our framework. Furthermore, we will also try to identify a better evaluation 
method to enable evaluation in three or more dimensions.

The entire brain includes many other tissues, including the ventricles, falx, and brain-skull gap. In the future, 
we intend to investigate the framework of these tissues. Because the biomechanical features of these tissues differ, 
they should move in different ways upon retraction. By studying them, we can better understand how retraction 
in one region contributes to regional or even cross-hemispheric motion.

Methods
The current study has been approved by the Animal Ethics Committees of Shanghai Medical College Fudan 
University. The methods were approved and supervised by the Institutional Animal Care and Use Committee 
at Fudan University. All procedures were carried out in accordance with the approved guidelines, including any 
relevant details.

Brain retraction simulation framework. As shown in Fig. 6, the entire brain retraction simulation 
framework consisted of four steps. Each number represents one procedure. In step one, brain shift, which was 
caused by gravity or a craniotomy, was assumed to have been estimated accurately29,30. These updated images 
were regarded as the baseline preretraction images from which the brain was segmented. After segmentation, 
geometrical models of the brain tissue were acquired. Step two was designed to acquire BCs. One BC was the 
displacement of the crack-related nodes, which were determined by a brain retraction surface-tracking algorithm. 

Dice Coefficient (%)

Subject #1 90.2

Subject #2 85.3

Subject #3 92.6

Subject #4 94.5

Subject #5 82.8

Subject #6 88.5

Subject #7 88.5

Table 4.  Dice similarity coefficient for seven swine.

Initial TRE (mm)
Model-updated TRE 

(mm)

Subject #1 2.1 1.8

Subject #2 1.4 0.8

Subject #3 1.7 0.8

Subject #4 3.1 0.8

Subject #5 2.0 1.4

Subject #6 3.1 0.9

Subject #7 2.7 1.0

Table 5.  Comparisons of Average TREs for landmarks.
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The other BC was the zero-displacement area of the brain tissue. In step three, a uniform hexahedral mesh was 
first generated from a segmented brain using the octree algorithm29. A hyper-viscoelastic biomechanical model 
was then solved with XFEM equations to obtain the deformed mesh with available BCs. Finally, in step four, the 
deformed mesh was used to update the preretraction brain images with a modified back-interpolation algorithm, 
in which two-level sets are used to represent the crack31,32.

Acquisition of BCs. Two types of BCs were required to achieve a unique solution to the XFEM equations. 
One was the zero-displacement BC. The displacements of the nodes at the brain stem were designated as zero. 
These nodes were manually selected by experienced surgeons. The other type of BC was the displacements of 
directly crack-related nodes in the operating field. This BC was calculated by a brain retraction surface-tracking 
algorithm23. These two types of BCs were imposed onto the hyper-viscoelastic model to achieve a unique solution 
and update the mesh, and the displacements of all nodes and crack-related information were obtained.

Figure 7 illustrates the steps for calculating the BCs using the surface-tracking algorithm. First, after retraction, 
the V-shaped surfaces of the retractors, was scanned using the LRS. Second, if the LRS failed to capture all point 
clouds of the inserted retractors, a previously prepared point cloud model of the retractors was registered to pro-
vide the missing part. The registered point cloud model was extended to a distance equal to the thickness of the 
retractor (2.9 mm) in the direction of the retractor surface norm (the green plane) to acquire postretraction sur-
faces. Third, the point clouds of the pre and postretraction surfaces were transformed into the same image space 
and registered using the CPD algorithm33 to obtain the displacements of the retractors. Therefore, the displace-
ments of certain directly crack-related nodes were obtained as one type of BC. The time required to determine 
BCs depends on the manipulator’s skill. Generally, boundary conditions can be determined within 3 to 4 minutes.

Hyper-viscoelastic model and XFEM equation solution. We used an Ogden hyper-elastic model12 to 
model brain retraction. To date, this promising biomechanical model has not been used to correct brain retrac-
tion. The energy function is as follows:

∫ ∑
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µ τ
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λ λ λ τ µ µ=
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where W is a potential function, the λi variables are the principal stretches, μ0 is the instantaneous shear modulus 
in the undeformed state, τk is the characteristic time, and gk is the relaxation coefficient. α is the material coeffi-
cient, which can assume any real value without restrictions. The material properties obtained from the eight swine 
brain experiments12 are listed in Table 6. In our experiments, a uniform hexahedral mesh with a mesh size of less 
than 5.0 mm was generated using the acquired geometric model of the brain tissue. The elements of the mesh were 
assigned hyper-viscoelastic properties.

The computation became complicated when the FEM was used to handle the discontinuity because the nodal 
shape functions (NSFs) were continuous functions34. The XFEM improved the FEM by adding extra degree of 
freedoms (DOFs) to the nodes that were related to discontinuity. This improvement made mesh adaptations35–37 
or remeshing31,38 unnecessary. The XFEM displacement field is described as follows:

∑ ∑ ∑ ∑φ φ φ= + +
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where uXFEM is the XFEM displacement field. The first term on the right side represents the FEM displacement in 
which I is the set of FEM nodes, φi is the FEM NSFs, Fl combines the radial and angular behavior of the asymp-
totic linear-elastic crack-tip displacement, and ui is the FEM DOFs. To define the discontinuity for the XFEM, 

Figure 6. The hyper-viscoelastic model-based framework to simulate for brain retraction. 
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additional DOFs, namely aj and Cm
l , were added to sets J and M, which are subsets of set I. Hj(x) is the Heaviside 

step function.

In vivo experiment procedures. The swine experiments were similar to those performed by Paulsen’s and 
Miga’s groups2,9,27 and were conducted to quantify the fidelity of our framework. Seven 3-month-old subjects 
weighing approximately 15 kg were used. During the experiments, the subjects were fixed in a Plexiglas box to 
which 5 to 6 fiducial markers were affixed, as shown in Fig. 8.

(1) Preoperative CT Acquisition: Following anesthesia, a square region of the skull centered above the frontal-pa-
rietal lobes was removed, leaving the dura temporarily intact. Using a 14-gauge needle, 11 to 20 stainless-steel 
beads (1.5-mm in diameter) were implanted into the parenchyma, which were used as landmarks for evalua-
tion. As determined by fluoroscopic imaging, two to six beads were separately embedded in the frontal, occip-
ital and parietal lobes where retraction initially occurred. These embedded beads moved together with the 

Figure 7. Surface tracking by LRS for subject 1. (a) The point cloud scanning procedure for the V-shaped 
surfaces of the retractors. (b) The point cloud model was registered to augmented retracted surface and 
extended a distance of 2.9 mm. (c) The point clouds of pre-retraction and post-retraction surface were 
transformed into the same image space and registered using CPD algorithm to obtain the displacements of 
retractors.

Instantaneous response k = 1 k = 2

μ0 =  842 Pa τ1 =  0.5 s τ2 =  50 s

α =  − 4.7 g1 =  0.450 g2 =  0.365

Table 6.  Material properties of the hyper-viscoelastic model used to model the mechanical response of the 
brain parenchyma.

Figure 8. The swine experiment. (a) The swine was fixed in a Plexiglas box surrounded by 5 to 6 fiducial 
landmarks. (b) The swine experiment set-up with an LRS scanner in the CT room.
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brain tissue and worked as surrogates of the brain tissue movement. After this operation, CT images (Siemens 
SOMATOM Definition AS, Siemens Healthcare, Shanghai, China) were acquired with a spatial resolution of 
512 ×  512 ×  421 mm3 and a voxel size of 1 ×  1 ×  1 mm3. These CT images, i.e., the preoperative CT images, 
were used to generate the mesh and construct the hyper-viscoelastic model.

(2) Intraoperative BC Acquisition: The exposed dura on the hemisphere designated for retraction was carefully 
removed. Two 14-mm wide and 2.9-mm thick Plexiglass retractor blades simulating NA20010 (JZ Surgical 
Instruments, Shanghai, China) were inserted into the hemispheric fissure to allow for bidirectional retrac-
tions laterally and away from the midline. The brain was deformed with a uniform force distributed along the 
retractors. An LRS and a brain surface-tracking algorithm were then applied to capture the displacements 
of some directly crack-related nodes. The postretraction brain images were predicted by our framework by 
constraining BCs in the retraction and zero-displacement areas.

Method for evaluation of simulation accuracy. The postretraction CT images using the same CT scan-
ner and scanning parameters served as a basis of comparison for the model-predicted images acquired from our 
framework. The evaluation methods were also divided into two types, which was similar to the method used by 
Li, et al.23. One type was the comparison of the displacements of the embedded landmarks, which was used to 
quantitatively evaluate the effectiveness of our framework. We compared the actual measured displacements 
(from the pre to postretraction CT images) and predicted landmark displacements (from the preretraction CT 
images to the model-predicted images). The forecast error is defined in formula (3). The simulation accuracy for 
every landmark is defined in equation (4).

= − − −− )(Forecast Error ABS C C C C
(3)model predicted preretraction 2 postretraction preretraction 2

= − − − ×−( )Simulation Accuracy 1 C C C C 100% (4)model predicted preretraction 2 postretraction preretraction 2

where Cpreretraction, −Cmodel predicted and Cpostretraction represent the landmarks’ coordinates in the preretraction, 
model-predicted, and postretraction CT images, respectively.

The other evaluation method compared the brain contours that had been segmented from the preoperative 
CT, aligned postretraction CT, and predicted images and was used to assess the morphological performance of 
our framework. In addition, in order to quantify the alignment degree between the contours obtained postretrac-
tion and those predicted by the hyper-viscoelastic XFEM model, dice similarity coefficient (DSC)39 was calculated 
for all subjects. The DSC measures the spatial overlap between two contours, A and B, and defined as DSC (%) =  2 
(A ∩  B)/(A +  B) where ∩  is the intersection. Moreover, we calculated target registration error (TRE) at the land-
marks before and after model-update for quantitative assessment of the accuracy improvement of IGNS with the 
hyper-elastic XFEM model.

Statement of approval. The current study has been approved by the Ethics Committees of Fudan 
University. All procedures were approved and supervised by the Institutional Animal Care and Use Committee 
at Fudan University.
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