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ABSTRACT
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma (L-CTCL) that
arises from malignant clonally derived skin-homing CD4+ T cells. Based on advancements in our under-
standing of the mechanisms underlying L-CTCL, boosting the suppressed immune response emerges as
a promising strategy in SS management. Immune checkpoint inhibitory molecules have already demon-
strated efficacy in a wide spectrum of malignancies. Currently, agents targeting the programmed death-
1 (PD-1) axis are under evaluation in L-CTCL. Here we investigated the expression of PD-1 and its ligands,
PD-L1 and PD-L2 in blood and skin from patients with L-CTCL. We demonstrate that PD-1 expression is
markedly increased on tumor T cells compared to non-tumor CD4+ T cells from SS patients and to CD4+

cells from healthy individuals. In contrast, PD-L1 shows decreased expression on tumor T cells, while PD-
L2 expression is low without significant differences between these groups. Functional PD-1 blockade
in vitro resulted in reduced Th2 phenotype of non-tumor T lymphocytes, but enhanced the proliferation
of tumor T cells from SS patients. Our study sheds some light on the PD-1 axis in both peripheral blood
and skin compartments in SS patients, which may be relevant for the treatment of L-CTCL with immune
checkpoint inhibitor.
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Introduction

Leukemic cutaneous T-cell lymphoma (L-CTCL), comprising
Sézary Syndrome (SS) and mycosis fungoides (MF) with
blood involvement, are common representatives of the hetero-
geneous group of primary cutaneous T-cell lymphomas,1–3

which arise from malignant T cells homing to (SS) or residing
in (MF) the skin.4 In contrast to early stage skin limited MF,
SS and patients with advanced MF with blood and/or organ
involvement are characterized by poorer prognosis.5,6 Apart
from stem cell transplantation, there is no curative treatment
for CTCL.7–9 In the recent years, a major breakthrough in the
field of cancer therapy was the implementation of immune
checkpoint inhibitors.10 Monoclonal antibodies (mAbs) tar-
geting the programmed cell death protein 1 (PD-1), one of its
ligands PD-L1 as well as the cytotoxic T cell antigen 4 (CTLA-
4) have demonstrated efficacy in different types of cancer,
mainly solid tumors and particularly melanoma.11–15 PD-1
acts as immune checkpoint inhibitor and is a key player in
promoting self-tolerance.16,17 Its binding to one of its two
ligands, PD-L1 and PD-L2 lead to cell cycle arrest together
with suppressed activation and function of effector T cells.18

On the other hand, PD-1 axis downstream signaling is known
to prevent apoptosis in regulatory T cells (Tregs).19

Overexpression of PD-1 ligands by malignant cells promotes
immune evasion and acts as a “molecular shield” conferring
resistance to cytotoxic T cell response.20–22 Expression of PD-
1 and its ligands by the tumor milieu contributes also to
acquisition of an exhaustion phenotype by the effector
cells.23 Thus, targeting PD-1 axis aims at abrogating this
inhibitory signaling and eliminating malignant cells by boost-
ing the immune response. Moreover, these agents may act far
beyond direct action on T cells, as it has been demonstrated in
multiple myeloma, where targeting PD-1/PD-L1 improved
skewed NK-cell mediated cytotoxicity.24

In hematooncology, PD-1 and PD-L1 first gained attention
in B-cell malignancies, where antibodies blocking this axis
effectively abrogated inhibitory signaling from the tumor
microenvironment.25 In classical Hodgkin lymphoma, anti-
PD-1 immunotherapy was associated with remarkable overall
response rates (ORR)26 accompanied by prolonged remission
after therapy discontinuation.27 Efficacy of this therapeutic
approach emerged also in non-Hodgkin lymphoma (NHL)
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aggressive subtypes – diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma (FL).28 In T-cell-derived malignan-
cies, the therapeutic potential of anti-PD-1/PD-L1 agents is
still unclear. In peripheral T-cell lymphoma, where PD-1
immunoreactivity was observed in 62% and PD-L1 expression
in 17% of patients, anti-PD-1 mAb nivolumab induced a 40%
ORR in a small subset of heavily pretreated patients.11 In
anaplastic large cell lymphoma (ALCL), PD-1 blockade has
been reported effective for patients with both ALK-negative
and ALK-positive ALCL.29–31

There is an accumulating body of evidence showing the
impact of the expression of PD-1 axis members in predicting
the response to anti-PD-1 directed therapies.32–37 Preliminary
data from clinical trials in solid tumors and Hodgkin lymphoma
suggested PD-L1 expression to be crucial for the response to PD-
1/PD-L1 blockade.26,38 However, reports on successful clinical
outcome in PD-L1 negative cases39 and unsuccessful therapy in
a subset of PD-L1+ patients suggest that using PD-L1 as a single
predictor has serious limitations. Recently, PD-L2 status
emerged as a prediction factor of progression-free survival with
pembrolizumab in a large cohort study of head and neck squa-
mous cell carcinoma (HNSCC) patients.40

Evaluation of PD-1 and its ligands PD-L1 and PD-L2 role
in L-CTCL in large patient cohorts to assess their potential as
prognostic markers is still limited due to the rarity of the
disease and the diverse clinical spectrum determined by the
long duration of the disease.11,41-43 By now, most of the
studies utilized immunohistochemistry, however this method
may not be sensitive enough to detect cell surface expression
of immune checkpoint molecules. In this study, we assessed
the expression profile of PD-1, PD-L1 and PD-L2 on malig-
nant and nonmalignant T cells in peripheral blood and skin
derived from patients with L-CTCL and compared it with the
expression on T cells from healthy individuals.

Our analysis presents a detailed image of PD-1 axis expres-
sion in L-CTCL and may contribute to a better understanding
of the role of PD-1 and its ligands in L-CTCL and initiation of
novel therapeutic strategies.

Materials and methods

Patients and human samples (skin and blood)

Patients from the Department of Dermatology of the
University Hospital of Zurich, Switzerland, with previously
diagnosed L-CTCL (SS) and with unequivocally identifiable
Vβ clonal T-cell population in their blood and/or skin were
included in the study. Blood samples from healthy individuals
served as control. The diagnosis of CTCL was established in all
patients according to the World Health Organization–
European Organization for Research and Treatment of
Cancer criteria for SS.44 Peripheral blood and skin from the
patients with SS were collected in the context of the University
of Zürich Biobank, funded by the University of Zurich
University Research Priority Program (URPP) in translational
cancer biology. All patients signed an informed consent agree-
ing to the use of samples, including the generation of cell
cultures according to the Biobank project (EK No. 647).
Blood from healthy individuals was obtained from the blood

bank of the University Hospital Zurich. Healthy skin (surgical
remnants and control margins) was obtained as discarded
tissue through the University of Zürich Biobank. The study
was conducted in accordance with the principles of the
Declaration of Helsinki and was approved by the Institutional
Review Board of the University of Zurich (KEK-ZH-Nr.
2015–0209).

Isolation of T cells from human skin

Skin T cells from patients with L-CTCL and healthy donors
were isolated from skin biopsies by short-term explant tech-
nique. Briefly, skin biopsies cut into small pieces were cul-
tured on collagen-coated Cellfoam matrices in Iscove’s
modification of Dulbecco’s media supplemented with 20%
heat-inactivated FBS, 1% antibiotic-antimycotic (Gibco™),
2 mM L-glutamine, 100 IU/mL interleukin IL-2 and 10 ng/
mL IL-15 (Peprotech) as previously reported.45

Flow cytometry

Peripheral blood mononuclear cells (PBMC) were isolated via
Ficoll centrifugation. Vβ clonal T-cell populations were
assessed using IOTest® Beta Mark TCR V beta Repertoire
Kit. (Beckman Coulter) according to the manufacturer’s
instructions. Based on Vβ clonality assessment, patients with
unequivocally identifiable clonal T-cell population in the
blood and/or skin were subjected to further analysis.

For flow cytometry anti-human monoclonal antibodies
were used as listed: anti-CD3 (clone BW264/56 labeled with
PerCP, Miltenyi Biotec #130-096-910), anti-CD4 (clone VIT4
labeled with APC-Vio770, Miltenyi Biotec #130-098-153),
anti-CD26 (clone BA5b labeled with PE-Cy7, BioLegend
#302714), anti-CD279/PD-1 (clone J105 labeled with APC,
ThermoFisher), anti-CD274/PD-L1 (clone MIH1 labeled
with PE-Cy7, ThermoFisher), anti-CD273/PD-L2 (clone
MIH18 labeled with APC, ThermoFisher), anti- KIR3DL2/
CD158 k in Alexa Fluor® 700 (R&D systems, #FAB2878 N),
anti CD160 in APC (Biolegend, #341207), and anti-TCR Vβ
antibodies specific for the malignant clone of each patient
(labeled with PE, Beckman Coulter). Samples were acquired
on Becton Dickinson FACSCanto or BD LSR II Fortessa flow
cytometer. FCS Express 5 Flow Cytometry RUO, FlowJo
V10.0.8, Origin Pro 9.1 G and GraphPad Prism 5.0 Software
were used for data analysis.

Intracellular flow cytometry for IFN-γ and IL-4

Ficoll purified PBMCs were seeded 2 × 106 cells per well in
96-well plates, and cultured in RPMI 1640 medium (Gibco,
#12633-012) supplemented with 10% fetal bovine serum
(Sigma-Aldrich, #F0804), 1 mM sodium pyruvate (Gibco, #
11360070), 2 mM L-glutamine (Gibco, # 25030081), and 100
μg/ml Normocin (Invivogen). The PBMCs were stimulated
with 50 ng/ml PMA (Sigma-Aldrich, #16561-29-8), 750 ng/ml
ionomycin (Sigma-Aldrich, #56092-82-1), 1% PHA (Sigma-
Aldrich, #5662-75-9), and 50 μg/ml poly I:C (Sigma-Aldrich,
#26301-44-0). The same cells were re-stimulated with 50 ng/
ml PMA and 750 ng/ml ionomycin after 24 h of incubation,
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and left for another 12 h in culture with added to the medium
10 µg/ml Brefeldin A (Sigma-Aldrich, #B6542). Two condi-
tions were assessed for each patient: stimulated PBMC with
and without PD-1 blockade (Nivolumab, 10 µg/mL). After the
treatments, the lymphocytes were stained with anti-CD3 in
PerCP (clone BW264/56, Miltenyi Biotec, #130-096-910),
anti-CD4 in APC-Vio770 (clone REA623, Miltenyi Biotec, #
130-113-223), anti-CD8 in PE-Vio770 (clone REA734,
Miltenyi Biotec, # 130-110-680), anti-IL-4 in APC (clone
MP4-25D2, BD Pharmingen, #554486), anti-IFN-γ in FITC
(clone 45–15, Miltenyi Biotec, #130-091-641) and anti-TCR
Vβ antibodies in PE specific for the malignant clone of each
patient (Beckman Coulter). BD LSR II Fortessa flow cyt-
ometer was used for data acquisition. The analysis was done
in FlowJo V10.0.8.

T cell proliferation assay

Peripheral blood mononuclear cells (PBMC) were isolated via
Ficoll centrifugation. The cells were seeded 2 × 106 per well in
96-well plates, and cultured in RPMI 1640 medium (Gibco,
#12633-012) supplemented with 10% fetal bovine serum
(Sigma-Aldrich, #F0804), 1 mM sodium pyruvate (Gibco, #
11360070), 2 mM L-glutamine (Gibco, # 25030081), and 100
μg/ml Normocin (Invivogen). The PBMCs were initially sti-
mulated with a cocktail of 50 ng/ml PMA (Sigma-Aldrich,
#16561-29-8), 750 ng/ml ionomycin (Sigma-Aldrich, #56092-
82-1), 1% PHA (Sigma-Aldrich, #5662-75-9), and 50 μg/ml
poly I:C (Sigma-Aldrich, #26301-44-0). On day 2 after the
seeding, the PBMCs were re-stimulated with 50 ng/ml PMA
and 750 ng/ml ionomycin, and 10 µM 5-bromo-2̓-
deoxyuridine (BrdU) was added to each sample. After an
overnight incubation, the cells were stained with BrdU stain-
ing kit for flow cytometry (ThermoFisher, #8811-6600-42)
according to the manufacturer’s protocol. Additional staining
with anti-CD3 in PerCP (clone BW264/56, Miltenyi Biotec,
#130-096-910), anti-CD4 in APC-Vio770 (clone REA623,
Miltenyi Biotec, # 130-113-223), anti-CD8 in PE-Vio770
(clone REA734, Miltenyi Biotec, # 130-110-680), and anti-
TCR Vβ antibodies in PE was applied. The T cell proliferation
rate for each individual was investigated in stimulated PBMC
with and without PD-1 blockade (Nivolumab, 10 µg/mL). The
data were acquired on BD LSR II Fortessa flow cytometer, and
subsequently analyzed with FlowJo V10.0.8.

Immunohistochemistry (IHC)

Immunohistochemistry (IHC) was performed on 3–5 μm
thick paraffin sections as previously described. The sections
were deparaffinized and rehydrated in graded series:
X-TRA-Solv 8 (Medite, # 41-5212-00) – 15 min at 68°C;
Xylol – 5 min room temperature (RT), 100% EtOH –
5 min RT; 96% EtOH – 5 min RT; 80% EtOH – 5 min RT;
distilled water – 2 min RT. For antigen retrieval, the slides
were heated in a Dako Cytomation Pascal Pressure Cooker
(115°C; 10 min) and after that endogenous peroxidase activ-
ity was blocked using 3% hydrogen peroxide in distilled
water (RT; 10 min). Normal goat serum was used to block
nonspecific epitopes (30 min) and after that, the sections

were incubated with the following primary antibodies:
mouse anti-human PD-1 (R&D systems, # AF 1086, dilution
1:20; 60 min; RT), PD-L1 (Cell signaling, clone: E1L3 N,
dilution: 1:25; 60 min; RT), PD-L2 (Cell signaling, clone:
D7U8 C, dilution: 1:25, 60 min, RT) as well as the corre-
sponding biotinylated anti-goat IgG secondary antibody
(1:100 dilution, 30 min, RT). Following manufacturer’s pro-
tocol (Dako), visualization was achieved via application of
streptavidin conjugated to alkaline phosphatase. Additional
Mayer’s hematoxylin staining was applied in order to depict
the cell nuclei. The staining rate (percentage of cells showing
positive staining, 0-100%) was determined. PD-1 expression
on >5% of lymphocytes was counted as positive. Expression
was evaluated as negative (-) when the expression was 0-5%,
moderate (+) when 5–50% cells showed positive staining and
high expression (++) when more than 50% cells were positive
per visual field. Graphic visualization of PD-1 expression in
skin evaluated in three visual fields for each immunohisto-
chemistry slide. As a control served discarded healthy sur-
plus skin.

Statistical analysis

Differences in clinicopathological parameter distributions and
PD-1, PD-L1 and PD-L2 expression were assessed with
Fisher’s exact test. Data were tested for normal distribution
with Shapiro–Wilk test. Dependent on the distribution pat-
tern, for comparison among three groups non-parametric
Kruskal-Wallis ANOVA or one-way ANOVA tests were
used. When two groups were compared, a standard two
sample Student’s t test or two sample Kolmogorov–Smirnov
test was utilized. P values ≤0.05 were considered significant.

Results

PD-1 is up – while PD-L1 is downregulated in peripheral
blood T cells of L-CTCL patients

First, we compared PD-1 expression in CD4+ T cells in the
blood of L-CTCL patients and healthy individuals regardless
of the clonal and non-clonal cell populations. Suppl. Table 1
summarizes the patients’ clinical characteristics. In all cases,
we detected a population of CD4+ T cells expressing PD-1 and
the percentage of PD-1 expressing CD4+ T cells was signifi-
cantly upregulated in blood of L-CTCL patients (p = .006;
Figure 1(a)). The percentage of PD-1+ CD4+ T cells in blood
from L-CTCL patients ranged from 25.28% to 83.03%, with
mean value of 63.65%. In healthy individuals, the percentage
of PD-1 expressing CD4+ T cells ranged between 22.59%-
52.67%, with mean value of 37.43% (Figure 1(a–c)).

On the contrary, the percentage of PD-L1+ cells was sig-
nificantly higher in healthy CD4+ T cells (range 56.33%-
83.75%; mean 70.24%) compared to CD4+ T cells from
L-CTCL patients (range 15.94%-76.82%; mean 47.48%)
(p = .012; Figure 1(d–f)).

The percentage of PD-L2 expressing peripheral blood
CD4+ T cells was low in both L-CTCL (range 2.27%-38.94%;
mean 14.38%) and healthy individuals (range 3.44%-12.82%;

ONCOIMMUNOLOGY e1738797-3



mean 6.68%) and the differences were not statistically signifi-
cant (p = .18; Figure 1(g–i)).

PD-1 is predominantly expressed on tumor T cells in the
blood of L-CTCL patients

In L-CTCL patients, the peripheral CD4+ T cells compart-
ment contains the clonally expanded tumor T cells as well as
the non-clonal bystander CD4+ T cells. To analyze the pattern
distribution and fluorescence intensity of PD-1 and PD-L1
expression on tumor and bystander T cells, we identified
patients with conclusively identifiable specific TCR Vβ malig-
nant T-cell clone. Interestingly, the high percentage of PD-1
expressing cells in L-CTCL blood (Figure 1(a)) was largely
due to increased PD-1 expression within the fraction of the
tumor CD4+ T cells (Figure 2(a)). The PD-1 expression on
CD4+ T cells varied between the different patients, but the
mean value of 72.68% PD-1+ tumor lymphocytes was signifi-
cantly higher than the mean value of 53.73% PD-1+ non-
tumor bystander lymphocytes in CTCL blood (p = .03; Figure
2(a–c)). Interestingly, the percentage of PD-1+ T cells was
higher in clonal tumor lymphocytes than in non-clonal

bystander lymphocytes for every individual patient without
exception (Figure 2(d)) but did not correlate with the total
tumor burden in patients’ blood (r = 0.307; r2 = 0.09) (Figure
2(e)). Moreover, while increased PD-1 expression was strongly
related to tumor lymphocytes (Figure 2(a)), we found no sig-
nificant differences in the percentage of neither PD-L1 nor PD-
L2 expressing tumor or bystander lymphocytes in the blood of
L-CTCL patients (Figure 2(a)). Assessment of the fluorescence
intensity confirmed increased PD-1 expression specifically on
tumor but not bystander or healthy lymphocytes (p = .052),
and general decrease in PD-L1 but not PD-L2 on both tumor
(p = .007) and bystander lymphocytes (p = .003) in blood of
L-CTCL patients (Figure 2(f)). PD-L2 is significantly upregu-
lated in non-clonal T-cells of L-CTCL patients compared to
healthy controls (Figure 2(f)).

PD-1 expressing tumor T cells in the blood of L-CTCL
patients are preferentially skin tropic

The glycoprotein cutaneous lymphocyte-associated antigen
(CLA) is expressed on the cell surface of tumor lymphocytes
and can be used for the identification of skin-homing

Figure 1. PD-1 is up – while PD-L1 is downregulated in peripheral blood T cells of L-CTCL patients. Percentage of PD-1, PDL-1 and PDL-2 positive cells upon staining
with fluorochrome-conjugated monoclonal antibodies was assessed in double CD3- and CD4-positive cells. (a) T helper subset in L-CTCL individuals (n = 8) was
characterized with significantly upregulated PD-1 expression compared to the healthy volunteers (n = 10). Representative dot blot (b) and histogram (c) demonstrate
increased PD-1 expression on CD4+ T cells in blood from patients with L-CTCL, as compared to healthy donors. In contrast to PD-1, PD-L1 (d) showed decreased
expression on CD4+ T cells in blood from patients with L-CTCL in comparison to healthy donors. Representative dot blot (e) and histogram (f) further visualize the
lower PD-L1 expression on CD4+ T cells in L-CTCL. The percentage of peripheral blood CD4+ T cells positive for PD-L2 was low and did not differ significantly between
L-CTCL patients and healthy donors (g). Mean values of percentage PD-L2 positive T lymphocytes (h) and median fluorescent intensity for the same marker (i) were in
similar range for the patient and control cohort. Abbreviations: ns: P > .05; *: P ≤ 0.05; **: P ≤ 0.01; nlm: healthy donors.
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T cells.46 Skin-resident CD4+ T cells express NK receptors,
CD160 and CD158 k (KIR3DL2) being amongst the most
stably observed and relative ones for CTCL.47 In our study
cohort, CLA was expressed on 71.36% of all lymphocytes in
L-CTCL patients and on 42.6% of all lymphocytes in healthy
individuals (p = .00000068, Figure 3(a)). Within the subset of
TCR Vβ clonal tumor cells, 77.26% of the cells expressed
CLA. In particular, PD-1 expressing tumor T cells were pre-
ferentially CLA positive and thus skin tropic (p = .03; Figure 3
(b)). Further, tumor cells showed a tendency for enhanced
CD160 expression (Suppl. Figure 1a), especially within the
fraction of skin-homing (Suppl. Figure 1b) or PD-1+ (Suppl.
Figure 1c) T cells. CD158 k is known to be often expressed on

malignant T-cells.48,49 In the limited number of patients, from
which samples were available for this analysis, expression of
CD158 k did not significantly differ depending on clonality
(Suppl. Figure 1d) or skin-homing capacity (Suppl. Figure 1e)
of the T cells but was strikingly and almost exclusively
restricted to PD-1+ T cells only (Suppl. Figure 1f).

T lymphocytes from L-CTCL skin lesions overexpress PD-1,
have significantly lower PD-L1 and almost negligible
PD-L2 expression

To analyze the expression of PD-1 and its ligands on skin-
derived T cells directly, we isolated T cells from biopsy

Figure 2. PD-1 is upregulated specifically on tumor T cells in the blood of L-CTCL patients. (a) Expression of PD-1, PDL-1 and PDL-2 was analyzed in malignant
(clonal) compared to bystander (non-clonal) CD4+ T cells from peripheral blood of L-CTLC patients (n = 8) vs. T cells from healthy individuals (n = 10) using flow
cytometry. Clonal malignant T cells were identified upon staining with T-cell receptor Vβ antibodies specific for each patient’s malignant clone. (b) and (c)
Representative dot blots and histograms demonstrate the increased PD-1 expression in clonal vs. non-clonal CD4+ T cells from patients with SS. (d) Pair-wise
comparison of the expression of PD-1 on clonal CD4+ T cells compared to non-clonal CD4+ T cells within the same individual patients’ blood with L-CTCL. Each color-
indexed pair represents a data set from an individual patient with L-CTCL. (e) Linear regression and correlation analysis to measure the strength of association
between PD-1 expressing CD4+ T cells and tumor burden, defined by % clonal T cells of all CD4+ T cells. (f) Mean fluorescent intensities (MFIs) of the stainings for PD-
1 and its ligands in malignant vs. bystander and normal peripheral blood CD4+ T cells were assessed. Clonal malignant T cells were definitively identified by staining
with T-cell receptor Vβ antibodies specific for each patient’s malignant clone and showed significant increase of PD-1 expression compared to the control CD4+

T lymphocytes. On the contrary, PD-L1 was downregulated in L-CTCL patients on both clonal and non-clonal CD4+ T cell subsets. Abbreviations: ns: P > .05; *:
P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; nlm: health donors.

Figure 3. PD-1 expressing tumor T cells in the blood of L-CTCL patients are preferentially skin tropic. (a) CLA expression was significantly higher in L-CTCL patients
(n = 8), especially within the subset of TCR Vβ clonal tumor cells compared to healthy individuals (n = 10). (b) PD-1 expressing tumor T cells were preferentially CLA
positive and thus skin tropic. Abbreviations: ns: P > .05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; nlm: healthy donors.

ONCOIMMUNOLOGY e1738797-5



specimens of L-CTCL patients and healthy individuals using
short-term explant technique45,50 and subjected them to flow
cytometry. Interestingly, in flow cytometry, almost all T cells
isolated from patients with L-CTCL homogeneously expressed
high levels of PD-1. The percentage of PD-1 expressing
CD3+CD8− T cells from L-CTCL skin lesions ranged from
80.96% to 98.34%, with mean value of 93.14%, while only less
than one-third of T cells isolated from healthy skin expressed
PD-1 (range 20.34%-33%, medium 27.0%) (p = .005, Figure 4
(a)). Interestingly, and in contrast to the blood, PD-1 expres-
sion on L-CTCL skin T cells was very high and equally upre-
gulated both within the fraction of the tumor (95.78%) and the
non-tumoral (96.46%) T cells (p-value = 0.84, Figure 4(b)). In
parallel, T lymphocytes in L-CTCL skin lesions expressed sig-
nificantly less PD-L1 (mean 10.1%; range 1.66% to 15.06%)
compared to T lymphocytes in healthy skin (mean 48.64%;
range 40.24%- 57.72%) (p = .001, Figure 4(a)).

Expression of PD-L2 was low in all cases and did not differ
significantly between T lymphocytes isolated from L-CTCL
skin lesions (mean 0.94%; range 0.24% to 2.53%) and
T lymphocytes isolated from healthy skin (mean 0.06%;
range 0.04%-2.44%) (p = .62, Figure 4(a)). Finally, the percen-
tage of PD-L1 expressing skin T cells showed a tendency for
higher expression (mean 13.18%) on tumor skin T cells than

on non-tumoral T cells isolated from the same lesion (mean
6.32%); however, the difference did not reach statistical sig-
nificance (p = .31, Figure 4(b)). PD-L2 was low and did not
differ significantly between clonal (mean 1.33%; range 0.17–-
4.53%) and non-tumoral (non-clonal) (mean 1.37%; range
0–3.5%) skin T cells (p = .97, Figure 4(b)).

We also applied immunohistochemistry (IHC) on forma-
lin-fixed skin biopsies as a less sensitive but easily applicable
routine method to detect PD-1 expressing lymphocytes in
both MF- and SS-CTCL skin lesions (n = 18, Suppl.
Table 2). IHC confirmed high (++) PD-1 expression on lym-
phocytes in 17% of the lesional CTCL skin biopsies. In 56% of
the cases, PD-1 expression was moderate (+) and in 27% of
the cases IHC-staining for PD-1 remained negative (-) (Figure
4(c,d) and Suppl. Table 2). In IHC, the expression of PD-1
was significantly higher in the L-CTCL patient group com-
pared to the non-leukemic patient group. As L-CTCL, we
considered MF or SS patients with blood involvement B2
(recommendations from the EORTC cutaneous lymphoma
task force51). As non-leukemic, we considered MF patients
without blood involvement (B0) or MF patients with border-
line blood involvement B1. High PD-1 expression was
observed in 27% of the lesional biopsies in L-CTCL in con-
trast to 0% in the non-leukemic patients. No correlation

Figure 4. PD-1 is significantly overexpressed, PD-L1 significantly decreased and PD-L2 is low on T cells in the skin of patients with L-CTCL when compared with T cell
population in healthy individuals. (a) PD-1, PD-L1 and PD-L2 expression analyzed by flow cytometry in skin-derived CD3+CD8− T cells isolated from biopsies of L-CTCL
patients (n = 6) and healthy individuals (n = 4) using short-term explant technique. (b) Expression of PD-1, PD-L1 and PD-L2 in the tumor (clonal) and non-tumoral
bystander (non-clonal) T cells from L-CTLC skin lesions. In at least one of the samples analyzed in a) and b), there was a partial aberrant loss of CD4 on the tumor
cells. For consistency throughout all the samples, a gating strategy on CD3+ CD8-T cells was applied. (c) Representative images of paraffin-embedded CTCL (MF and
SS) skin biopsies with high expression of PD-1 (++/≥50%), with moderate expression of PD-1 (+/5-50%), and negative for PD-1 (-/<5%). (d) Graphic visualization of
PD-1 expression in CTCL skin lesions (n = 18). Evaluation of three visual fields of each slide demonstrates variable positivity for PD-1 in CTCL on immunohistochem-
istry. Abbreviations: ns: P > .05; ***: P ≤ 0.001; nlm: healthy donors.
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between disease duration and PD-1 expression could be
detected (data not shown).

PD-1 blockade reduces Th2 phenotype of non-tumoral
bystander T lymphocytes in Sézary patients

Recently Samimi et al. reported that blockade of PD-1 down-
stream signaling by the use of anti-PD-1 or anti-PD-L1 anti-
bodies increased IFN-γ secretion in vitro in total peripheral
blood lymphocytes in three out of six patients with Sézary
syndrome.43 These data suggest that PD-1 targeting may
abolish suppressive phenotype of SS cells. We evaluated the
impact of PD-1 blockade (nivolumab 10 µg/mL) on the Th1/
Th2 phenotype of separate T cell subpopulation by intracyto-
plasmic flow cytometry for IFN-γ and IL-4. For functional
studies, peripheral blood from five SS patients was available
(suppl. Table 3).

Within the fraction of total blood CD4+ T cells, PD-1
blockade resulted in decreased percentage of IL-4 producers
in five out of five Sézary patients (Figure 5(a)). In contrast, IL-
4 production of CD8+ T cells remained largely unaffected
(Figure 5(b)). Cumulative analysis revealed no statistically
significant differences in the percentage of IL-4 producing
CD3+ and CD8+ T cells and confirmed a significant decrease

by approximately 30% of IL-4-producing total CD4+ T cells
upon PD-1 blockade (p = .0042, Suppl. Figure 2(a-c)). Further
analysis clearly demonstrated that PD-1 blockade reduced the
frequency and intensity of IL-4 production exclusively in the
fraction of non-clonal bystander CD4+ T lymphocytes
(p = .0006), while tumor T cells retained their high levels of
IL-4 (Figure 5(c,d) and Suppl. Figure 2d-g).

As previously reported,50,52-54 we observed a global Th2-bias
also in this cohort of Sézary patients with a frequency of IL-4
producing cells at least two times higher (>30%) than the fre-
quency of IFN-γ producing cells (<15%), regardless of the T cell
subpopulation (Figure 5 and suppl. Figure 2). Upon PD-1 block-
ade, there was a tendency for increased frequency and/or inten-
sity of IFN-γ producers in all T cell fractions, with the highest
consistency (three out of five patients) for the fraction of CD8+

T cells (Figure 5(e–h)). Nevertheless, cumulative analysis failed
to reveal statistically significant impact of PD-blockade on IFN-γ
in our cohort of Sézary patients (suppl. Figure 3).

PD-1 blockade leads to enhanced proliferation of T cells,
but affects also the clonal tumor T cells

PD-1 signaling efficiently inhibits T cell activation and its
blockade results in enhanced T cell proliferation, which is of

Figure 5. PD-1 blockade reduces Th2 phenotype of non-clonal bystander T lymphocytes in Sézary patients. The impact of in vitro PD-1 blockade on the Th1/Th2
phenotype of separate T cell subpopulation was evaluated by intracytoplasmic flow cytometry for IL-4 and IFN-γ. Percentage of IL-4 producing CD4+ T cells (a) and
percentage of IL-4 producing CD8+ T cells (b) stimulated in the absence (blue dots) or presence (red dots) of 10 µg/mL nivolumab. Further gating demonstrates the
change in percentage of IL-4 producers upon PD-1 blockade in non-clonal, bystander CD4+ T cells (c) versus clonal malignant T cells identified upon staining with
T-cell receptor Vβ antibodies, specific for each individual patient, as described in Fig. 2 (d). (e–h) Distribution of IFN- γ producers amongst the same T cell fractions
and stimulating conditions as described in (a-d). Data from five SS patients. Each dot represents data from one individual patient. The data obtained from the same
patient are connected with dotted line.
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advantage in the treatment of solid tumors.55 It is not yet
sufficiently elucidated if in the setting of a tumor arising in
T cells themselves, PD-1 blockade strengthens more anti-
tumor T cell immunity or rather facilitates tumor
progression.50,56-60 We evaluated the impact of PD-1 blockade
(nivolumab 10 µg/mL) on T cell proliferation by measuring
non-radioactive 5-bromo-2ʹ-deoxyuridine (BrdU) incorpora-
tion. PD-1 blockade resulted in enhanced proliferation of
T cells upon stimulation; however, we observed the strongest
enhancement of proliferation within the fraction of the clonal
tumor T cell as compared to their benign non-clonal counter-
parts (Figure 6).

Discussion

Agents targeting the PD-1 axis are established in the treat-
ment of solid tumors and are emerging as novel options in the
management of hematological malignancies. In general, their
action relies on boosting the impaired immune response by
abrogating immunosuppressive mechanisms. The particular-
ity of CTCL in the context of implementation of immune
checkpoint inhibitors is based on the fact that the tumor itself
arises from CD4+ T cells, a population of lymphocytes respon-
sible for the priming of cytotoxic response. In CTCL both
malignant and bystander T helper cells are characterized with
Th2 bias (that results in skewed anti-tumor and anti-pathogen
response) and have an exhausted phenotype.50

Studies in solid tumors suggest that blocking PD-1 may be
effective in abrogating Th2 bias.61–66 However, the exact role
of PD-1 and its two known ligands, PD-L1 and PD-L2, in the
tumor microenvironment of patients with CTCL is not fully
understood and may differ from those in tumors arising from
non-T cells.36,37,42,43,61-68

A recent single-arm, multicenter phase II study showed an
overall response of 38% to pembrolizumab in patients with

relapsed/refractory MF and SS (stages IB-IV; n = 24). Six out
of nine responders had ≥90% improvement in skin disease as
determined by mSWAT score. In this study, IHC expression
of PD-1, PD-L1, or PD-L2 could not predict response to
treatment, but increased PD-L1 expression by both IHC and
nanoString analysis upon administration of pembrolizumab
was observed.69

To our knowledge, our study provides the first analysis that
consecutively addresses the expression of PD-1 and its ligands
in CD4+ malignant and bystander cells in peripheral blood
and skin lesions in L-CTCL. Our results demonstrate high
heterogeneity in the expression of immune checkpoint mole-
cules, PD-1, PD-L1 and PD-L2, on malignant and nonmalig-
nant CD4+ T cells in the blood and skin of patients with
L-CTCL. Despite this heterogeneity, we show a particular
immune checkpoint pathway signature in patients with
L-CTCL.

Our study indicates that PD-1 is significantly overex-
pressed on malignant T cells in the peripheral blood and
skin of patients with L-CTCL when compared with the non-
malignant bystander T cells in L-CTCL patients and healthy
CD4+ T cells, which is in line with previous studies.43,70 We
observed also a significantly increased expression of PD-1 in
skin-homing CD4+ cells in L-CTCL patients that again was
more pronounced in clonal malignant cells. Our data further
support the assumption suggested by other authors42,43,67 that
PD-1 is a contributor to the immunosuppression and dysre-
gulated immune response, characteristic for L-CTCL patients.

Several reports reveal diverse expression of PD-1 axis in
CTCL subtypes.20,42 A study by Wilcox et al. demonstrated that
PD-L1 was expressed in peripheral blood CD4+ T cells in the
majority of patients with L-CTCL; however, only 27% of the
patients’ biopsies were evaluated with immunohistochemistry.20

Its expression, however, was high in the tumor environment,
particularly in monocyte-derived compartment, where PD-L1

Figure 6. In vitro PD-1 blockade leads to enhanced proliferation of T cells, but affects most strongly the clonal tumor T cells in blood from SS patients.
In vitro treatment with nivolumab 10 µg/mL and subsequent detection of cell proliferation upon stimulation with PMA/ionomycin in total CD4+ T cells (a), non-clonal
bystander T cells (b), clonal tumor T cells (c) or CD8+ T cells (d). Cell proliferation was assessed by flow cytometry via measurement of the incorporation of non-
radioactive 5-bromo-2ʹ-deoxyuridine (BrdU) in newly synthesized DNA. (e-f) Representative histograms depicting how PD-1 blocked affects BrdU incorporation in the
different T cell fractions, as described in (a-d). Data are from five individual SS patients. Abbreviations: ns: P > .05; *: P ≤ 0.05; **: P ≤ 0.01
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was expressed by 73% of cells. A study byWada et al., where PD-
1 expression was assessed in a cohort of 15 MF and 11 SS
patients, showed high positivity in PD-1 and thus proposed
PD-1 as a factor responsible for drug resistance in SS.70

In fact, PD-1 expression is linked to T cell exhaustion and
hypoproliferation and Sézary cells have documented resis-
tance to conventional mitogens and apoptotic stimuli.71,72 In
an analysis by Kantekure et al. PD-1 was frequently
expressed in the early stages – patch and plaque of mycosis
fungoides, but diminished in the tumor stage and in cases of
large cell transformation.73 On the other hand, more
advanced stages were characterized by high expression of
PD-L1.73 Reports by others suggest that PD-1 expression
correlates with disease progression. Samimi et al. showed
significantly increased expression of PD-1 in CD4+ T cells
in the blood of SS patients when compared to MF patients
and healthy volunteers.43 Increased expression of PD-1+ cells
was observed both in CD26- and CD26+ (a surrogate marker
for malignant cells) cells.43 Blockade of PD-1 downstream
signaling by the use of anti-PD-1 and anti-PD-L1 antibodies
increased IFN-γ secretion in a subset of patients, suggesting
that PD-1 targeting may abolish suppressive phenotype of SS
cells. Another study analyzed expression of PD-1 in skin
biopsies in a large cohort of 27 SS and 60 MF patients by
immunocytochemistry and showed strong expression in 89%
of SS, but only 13% of MF.42 Recently an elegant study by
Querfeld et al. assessing the expression profile of immune
checkpoints by flow cytometry in CTCL skin samples has
been published; however, no clear distinction between their
expression in MF and SS has been made.63 The study showed
that CD4+ cells in MF and SS population had higher percen-
tage of PD-1+ cells, compared to healthy skin. However,
most of the T cells did not express PD-L1. Analysis of PD-
L1 on DC revealed that they harbored high PD-L1 expres-
sion regardless of disease status.

Importantly, it has been observed that therapies blocking
the PD-1 axis are also effective in low immunogenic tumors,
especially in cases where those molecules are expressed also
by tumor cells due to an activation of the mTOR
pathway.43,74,75 Activation of mTOR has been recently
demonstrated as characteristic for mycosis fungoides74-77

and may possibly explain the increased PD-1 expression
also in our subset of patients. However, given that both
malignant clonal and benign non-clonal T cells express
PD-1, further studies exploring the mechanisms that lead
to PD-1 overexpression in patients with L-CTCL are needed.
In our study, the percentage of PD-1+ T cells was higher in
clonal tumor lymphocytes than in non-clonal bystander
lymphocytes for every individual patient, but did not corre-
late with the total tumor burden in patients’ blood, in con-
trast to other studies, which reported on higher numbers of
PD-1 positive cells in L-CTCL patients with a low or med-
ium tumor burden and decreased expression of PD-1 in
those with a high tumor burden.43

In the current study, the percentage of PD-L1+ cells was
decreased on malignant T cells in blood when compared with
nonmalignant T cells in patients with L-CTCL. Although indi-
vidual variability of the expression in this group was high, PD-
L1 expression was detected in all patients with L-CTCL, which

is in contrast to previously reported negative expression of PD-
1 ligands.43 Generally, a correlation between high PD-L1
expression and clinical response to therapies targeting the PD-
1 pathway has been observed in patients with a broad spectrum
of malignancies.78,79 Although PD-L1 is not an unequivocal
biomarker to predict clinical responses, the expression profile
of T-cell checkpoint molecules seems to be valuable not only for
confirming the presence or absence of the therapeutic target but
also for providing characteristics of tumor-directed T-cell
responses in individual patients.80 The expression levels of PD-
L1 on CD4+ T cells in blood and skin from L-CTCL patients
were markedly lower compared to healthy individuals, but
generally higher on clonal CD4+ T cells in individuals with
higher percentage of clonal cells. Thus, we suggest that targeting
PD-L1 may be a rational strategy in the management of patients
with high tumor burden. This is especially interesting, as an
anti-PD-L1 agent (atezolizumab) is currently being tested in
CTCL and trials with durvalumab are actively recruiting
patients. Given the fact that PD-1 has been recently demon-
strated to act as a tumor suppressor in T-cell malignancies81

and taking into consideration a case report on a patient devel-
oping an epidermotropic peripheral T cell lymphoma when
treated with pembrolizumab for melanoma,82 targeting PD-1
ligands may potentially offer safer option in CTCL. It has been
suggested by some authors that high PD-L1 expression in
tumors reflects a preexisting anti-tumor immunity in patients
when compared to patients with tumors that lack PD-L1
expression.78 Therefore, the observed low levels of PD-L1
expression in the patients that we examined could indicate an
attenuated, preexisting antitumor immunity, that may benefit
from immune checkpoint inhibition.

We observed low levels of PD-L2 in L-CTCL CD4+ cells
both in skin and blood, that did not differ significantly
from the levels observed in healthy individuals. By now,
the role of PD-L2 expression both as a tumor-promoting
factor as well as a prognostic marker has not been suffi-
ciently clarified.83–85 Novel studies suggest that it may also
serve as a marker of clinical response to pembrolizumab, as
demonstrated in patients with head and neck squamous cell
carcinoma, where PD-L2 positivity correlated with greater
objective response rate and longer median progression-free
survival time.85 This study showed 37% objective response
rate in MF patients treated with nivolumab, however little
is known about the role of PD-L2 in CTCL and whether it
correlates with the clinical outcome of anti-PD-1/PD-L1
therapies. Further studies on a molecular level as well as
clinical trials are needed to fully elucidate its relevance as
a biomarker.

Altogether, our study offers a complex image of PD-1 axis
signature in L-CTLC patients. However, studies investigating
the expression of these negative checkpoint regulators on
other populations of immune cells, e.g., dendritic cells are
also needed to provide even better understanding of the
clinical outcome of anti-PD-1 targeting therapies. Moreover,
as reports on the development of resistance to PD-1/PD-L1
blocking antibodies arise, e.g., by upregulation of CD38,86

expression and regulation of other molecules contributing to
the success of immune checkpoint inhibitors should also be
addressed.
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