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ABSTRACT
Objectives Knee osteoarthritis is a major cause of physical 
disability and reduced quality of life, with end- stage disease 
often treated by total knee replacement (TKR). We set out to 
develop and externally validate a machine learning model 
capable of predicting the need for a TKR in 2 and 5 years time 
using routinely collected health data.
Design A prospective study using datasets Osteoarthritis 
Initiative (OAI) and the Multicentre Osteoarthritis Study 
(MOST). OAI data were used to train the models while 
MOST data formed the external test set. The data were 
preprocessed using feature selection to curate 45 
candidate features including demographics, medical 
history, imaging assessments, history of intervention and 
outcome.
Setting The study was conducted using two multicentre USA- 
based datasets of participants with or at high risk of knee OA.
Participants The study excluded participants with at least 
one existing TKR. OAI dataset included participants aged 
45–79 years of which 3234 were used for training and 
809 for internal testing, while MOST involved participants 
aged 50–79 and 2248 were used for external testing.
Main outcome measures The primary outcome of 
this study was prediction of TKR onset at 2 and 5 years. 
Performance was evaluated using area under the curve 
(AUC) and F1- score and key predictors identified.
Results For the best performing model (gradient 
boosting machine), the AUC at 2 years was 0.913 (95% 
CI 0.876 to 0.951), and at 5 years 0.873 (95% CI 0.839 
to 0.907). Radiographic- derived features, questionnaire- 
based assessments alongside the patient’s educational 
attainment were key predictors for these models.
Conclusions Our approach suggests that routinely collected 
patient data are sufficient to drive a predictive model with a 
clinically acceptable level of accuracy (AUC>0.7) and is the 
first such tool to be externally validated. This level of accuracy 
is higher than previously published models utilising MRI data, 
which is not routinely collected.

INTRODUCTION
Osteoarthritis (OA) is the most common 
degenerative joint disease and a major cause 
of physical disability, pain and reduced quality 
of life (QOL) for patients, with increasing 
global prevalence due to ageing populations 
and obesity.1 The resultant global socioeco-
nomic burden of OA is estimated to cost in 
excess of £4.2 billion.2 Total knee replacement 

(TKR) is an effective treatment for end- stage 
knee OA (KOA),1 and in line with increasing 
disease prevalence, its use in the UK alone is 
expected to rise significantly from 70 000 per 
year at present, to at least 119 000 per year by 
2035.3

A tool to evaluate the likelihood of a 
patient requiring a TKR over the next 5 years 
has much appeal. It would allow informed 
decision making by patients, both in terms 
of non- operative treatment such as lifestyle 
modification, and the timing of any surgical 
intervention. For clinicians and health econ-
omists, a better understanding of the likely 
case- load over a period of 2–5 years would 
allow for appropriate planning to meet 
demand.

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The demand for total knee replacement (TKR) has 
increased exponentially in recent years, exerting a 
pressure on patients, surgeons and hospitals to de-
cide on the timing of surgery.

 ⇒ Machine learning has the potential to forecast the 
need for TKR.

WHAT THIS STUDY ADDS
 ⇒ This study is the first to develop machine learning 
models using routinely collected accessible data 
and test these models using an external dataset and 
provides evidence that an externally validated ma-
chine learning model can predict the need for TKR 
with an acceptable level of accuracy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Potential adoption of our tool provides early knee os-
teoarthritis patients with useful information regard-
ing their likelihood of requiring TKR surgery over 
the next 2–5 years thus empowering them to make 
treatment decisions as well as lifestyle changes to 
reduce this risk.

 ⇒ The information would also assist health economists 
to understand and meet the future demand for knee 
replacement surgery.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-2869-5778
http://dx.doi.org/10.1136/bmjsit-2022-000141
http://dx.doi.org/10.1136/bmjsit-2022-000141
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjsit-2022-000141&domain=pdf&date_stamp=2023-02-15
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Predictive modelling of the need for a TKR using 
machine learning (ML) has been explored. Among 
the earliest of TKR prediction tools was a population- 
based study using patient- reported risk factors to predict 
10- year TKR risk.4 The tool, however, was restricted to 
older female patients, limiting generalisability. Further 
studies have since been conducted using more complex 
ML strategies including deep learning. Studies exploring 
this pertain strong dependence on MRI image input and 
have previously predicted TKR risk at 2, 4 and 5 years5 6 
to predictive performances of up to area under the curve 
(AUC) 0.87±0.02.7 Such studies have made strides in 
predicting TKR, however, dependence on MRI imaging is 
both costly and not routinely performed,8 in addition to 
the use of deep learning strategies that are not very well 
understood and require significant computational power 
to analyse.6 7 Additionally, despite promising predictive 
abilities none of the published ML models have been 
externally validated to date, which is a significant limita-
tion to their general applicability.

To address these limitations, we set out to develop and 
validate a tool that predicts which patients, with or at high 
risk of KOA, will likely require a TKR in 2 and 5 years 
time, using patient information collected during routine 
clinical practice. Six different ML classification models 
were evaluated including multivariable logistic regression 
(LR), LASSO, RIDGE, decision tree (DT), random forest 
(RF) and gradient boosting machine (GBM). A number 
of factors may be considered when selecting ML models 
including understandability and complexity as while a 
complex model can identify more interesting patterns 
in the data, at the same time, it is harder to maintain 
and explain. Six of the simplest ML models that are best 
explained were thus selected.9

METHODS
A summary of the methodology is found in figure 1.

Data
Data source and exclusion criteria
This study used data from two multicentre USA- based 
prospective cohort studies of patients with, or at high 
risk, of KOA; the Osteoarthritis Initiative (OAI) and 
Multicentre Osteoarthritis Study (MOST).10 11 The 
OAI study enrolled 4976 subjects (ages 45–79 years) 
between February 2004 and May 2006 at four clinical 
sites (Baltimore, Maryland; Columbus, Ohio; Pitts-
burgh, Pennsylvania; and Pawtucket, Rhode Island) 
and MOST enrolled 3026 subjects (ages 50–79) from 
April 2003 to April 2005 at two sites (Birmingham, 
Alabama and Iowa City, Iowa). Eligibility for OAI 
included subjects with, or at risk for, symptomatic 
femoral- tibial KOA, a cohort defined by the presence 
of both osteophytes and frequent symptoms in one or 
both knees, or frequent knee symptoms without radio-
graphic changes, in one or both knees. For MOST, 
similar eligibility was used to select subjects but with 

a reliance on MRI rather than radiographs. Subjects 
with unilateral or bilateral TKR at baseline were 
excluded.

Data pre-processing
Feature selection
OAI and MOST databases included 96 and 103 features, 
respectively. Those representing possible risk factors for 
progression of KOA were identified based on literature 
and expert knowledge.12 13 Forty- five relevant features 
present in both datasets were then selected (summarised 
in online supplemental table 1). Of note, the criteria 
for the feature ‘steroid injection history’ was different 
between the datasets, being recorded over the previous 
12 months in OAI, and 6 months in MOST.

Feature extraction
Selected features were categorised into the following 
domains: demographic, medical history, imaging assess-
ments, history of intervention and outcome, with 39 non- 
imaging features and six image- based features. Medical 
history comprised both clinical examination and patient- 
reported outcomes. Image- based variables were quanti-
tative radiographic measures: Kellgren- Lawerence grade 
(KLG) and joint space narrowing (JSN) .

The MOST protocol imputed random numbers for 
missing feature responses, and we applied the same 
approach to any missing features in the OAI dataset 
(online supplemental table 2).

Data split
The dataset was divided into three for the purposes of anal-
ysis (figure 1): 80% of the OAI dataset was used to develop 
and optimise the models (training set) with the remaining 
20% of the dataset used for internal evaluation (internal test 
set). The MOST dataset was used for external validation. 
The OAI training and test datasets were randomly stratified 
in R to contain similar proportions of positive (having had a 
TKR) and negative (no TKR) cases.

Data output
Our study outcome variable of TKR was a binary ‘yes’ or 
‘no’ for each patient case at 2 and 5 years.

Models
Model development and training
Model configuration and optimisation
Supervised ML models were used to predict the outcome, 
categorising new probabilistic observations into the 
predefined categories of ‘yes’ or ‘no’ TKR at 2 and 
5 years. ML software packages were used on R V.3.6.3 
(packages used detailed in online supplemental table 
3) for reproducibility). The following ML classification 
models were selected: multivariable LR, LASSO, RIDGE, 
DT, RF and GBM. For each model, a number of tuneable 
knobs (parameters and hyperparameters) were adjusted 
to optimise performance (see online supplemental mate-
rial ‘model optimisation’).

https://dx.doi.org/10.1136/bmjsit-2022-000141
https://dx.doi.org/10.1136/bmjsit-2022-000141
https://dx.doi.org/10.1136/bmjsit-2022-000141
https://dx.doi.org/10.1136/bmjsit-2022-000141
https://dx.doi.org/10.1136/bmjsit-2022-000141
https://dx.doi.org/10.1136/bmjsit-2022-000141
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Evaluation metrics
Model performance on all three data sets was evaluated 
with the area under the receiver operating characteristic 
(ROC) curve (AUC) for discrimination, with focused 
reporting on the internal test and external test sets. We 
considered AUC >0.7 to provide a clinically acceptable 
performance.14 F1- scores were calculated for the best 
performing metrics as a harmonic mean of the preci-
sion and recall (sensitivity)15 16 and a measure of positive 

predictive power. Key predictors in the best- performing 
model, at 2 and 5 years, were identified using variable 
importance evaluation functions of the ML models.

Model calibration
The optimal threshold for calibration, in line with the vari-
ation in numbers of positive and negative cases within data-
sets12 was determined using F1- score, in order to optimise 
positive predictive ability (online supplemental figure 1).

Figure 1 A Summary of the methodology, based on subject and feature disposition. The flow chart demonstrates the initial 
cohort, exclusion, approaches implemented at each stage, and resulting subjects and features included in analysis. The shaded 
section reflects the separation of the external dataset throughout. OAI, Osteoarthritis Initiative; TKR, total knee replacement.

https://dx.doi.org/10.1136/bmjsit-2022-000141
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Table 1 Data were split into training, internal test set and external test set as displayed

Feature domain Training set Internal test External test

Sample size N=3234 N=809 N=2248

Demographic

  Sex=male (%) 1345 (41.6) 344 (42.5) 947 (42.1)

  Age (%)

   ≤60 years 1512 (46.8) 391 (48.3) 929 (41.3)

   60–70 years 1001 (31.0) 239 (29.5) 872 (38.8)

   ≥70 years 721 (22.3) 179 (22.1) 447 (19.9)

  Body mass index (%)

   <18.5 7 (0.2) 3 (0.4) 6 (0.3)

   18.5 to <25 787 (24.3) 204 (25.2) 357 (15.9)

   25–30 1281 (39.6) 316 (39.1) 849 (37.8)

   ≥30 1159 (35.8) 286 (35.4) 1036 (46.1)

  Ethnicity (%)

   White/Caucasian 2636 (81.5) 655 (81.0) 1923 (85.5)

   Black/African 526 (16.3) 131 (16.2) 299 (13.3)

   Hispanic/Latino 16 (0.5) 4 (0.5) 5 (0.2)

   Other 56 (1.7) 19 (2.3) 21 (0.9)

  Educational attainment (%)

   Less than high school graduate 87 (2.7) 27 (3.3) 67 (3.0)

   High school graduate 386 (11.9) 108 (13.3) 505 (22.5)

   College/associate degree/technical school after high school 762 (23.6) 192 (23.7) 601 (26.7)

   College graduate 712 (22.0) 166 (20.5) 459 (20.4)

   Some graduate school 272 (8.4) 63 (7.8) 199 (8.9)

   Graduate degree 1015 (31.4) 253 (31.3) 417 (18.5)

Medical history

  Arthritis medical history (%)

   No arthritis history 1906 (58.9) 480 (59.3) 1103 (49.1)

   At least one OA/degenerative disease 1027 (31.8) 262 (32.4) 758 (33.7)

   Gout/other 140 (4.3) 32 (4.0) 124 (5.5)

   OA/degenerative disease and gout/other 105 (3.2) 21 (2.6) 126 (5.6)

   Unknown 56 (1.7) 14 (1.7) 137 (6.1)

  Short- Form 12 Mental (mean (SD)) 53.72 (7.92) 53.48 (7.98) 53.91 (8.94)

  Short- Form 12 Physical (mean (SD)) 49.54 (8.65) 49.63 (8.76) 46.43 (10.38)

Imaging—OA severity

  Kellgren and Lawrence Grade Left Knee (%)

   0: Normal 1243 (38.4) 311 (38.4) 1098 (48.8)

   1: Minimal 592 (18.3) 133 (16.4) 379 (16.9)

   2: Radiographic tibiofemoral knee OA 860 (26.6) 234 (28.9) 321 (14.3)

   3: Moderate OA 433 (13.4) 102 (12.6) 320 (14.2)

   4: Severe OA 106 (3.3) 29 (3.6) 130 (5.8)

  Kellgren and Lawrence grade right knee (%)

   0 1289 (39.9) 342 (42.3) 1022 (45.5)

   1 607 (18.8) 118 (14.6) 390 (17.3)

   2 793 (24.5) 216 (26.7) 372 (16.5)

   3 448 (13.9) 105 (13.0) 347 (15.4)

   4 97 (3.0) 28 (3.5) 117 (5.2)

Continued



5Mahmoud K, et al. BMJ Surg Interv Health Technologies 2023;5:e000141. doi:10.1136/bmjsit-2022-000141

Open access

RESULTS
Data distribution
The distribution of key candidate features is displayed 
in table 1. The training set comprised 3234 patients of 
which 41.6% were male, and 43.3% and 41.4% had radio-
graphic, moderate or severe left KOA and right KOA, 
respectively. The internal test set consisted of 809 patients 
of which 42.5% were male, and 45.1% and 43.2% had 
radiographic, moderate or severe left KOA and right 
KOA, respectively. The external test set included 2248 
patients of which 42.1% were male, and 34.3% and 37.1% 
had radiographic, moderate or severe left KOA and right 
KOA, respectively. Correlation between features within 
the primary dataset is visualised as a correlation heatmap 
(online supplemental figure 2).

Training and internal test performance
Optimised predictive abilities for each model applied to the 
training and internal test sets are detailed in table 2. The best 
performing model at 2 years was GBM AT 0.945 (95% CIs 

0.901 to 0.988) and RIDGE at 5 years 0.869 (0.803 to 0.935). 
The worst performing model at 2 years was LR with an AUC 
of 0.730 (95% CI 0.496 to 0.965) and at 5 years DT at an 
AUC of 0.688 (95% CI 0.608 to 0.768). The DT model was 
unable to categorise any cases at 2 years because the uniform 
probability threshold selected for model calibration was not 
optimal. Performances on the external dataset (table 3) 
revealed that GBM models were best for both time points, 
with an AUC of 0.913 (95% CI 0.876 to 0.951) and 0.873 
(95% CI 0.839 to 0.907) for 2 and 5 years, respectively. When 
applied to the external test set, low positive predictive ability 
is evident across both years as denoted by low F1- scores.

Overall, the best performing models, based on perfor-
mance on the internal test set, were GBM, RIDGE and 
LASSO. TKR prediction at 2 years was also consistently more 
accurate than at 5 years for the three best performing models.

External test performance
ROC curves for the three best performing models are 
shown in figure 2A–C when applied to the internal test 

Feature domain Training set Internal test External test

Sample size N=3234 N=809 N=2248

History of intervention

  No analgesics (%) 2478 (76.6) 624 (77.1) 448 (19.9)

  No arthritis medication (%) 3195 (98.8) 799 (98.8) 1549 (68.9)

  No osteoporosis medication (%) 2813 (87.0) 705 (87.1) 1829 (81.4)

  No previous arthroscopy (%) 2690 (83.2) 656 (81.1) 1913 (85.1)

  No previous meniscectomy (%) 2763 (85.4) 678 (83.8) 1920 (85.4)

  No previous ligament repair surgery (%) 3127 (96.7) 781 (96.5) 2152 (95.7)

  No previous other surgery(%) 3143 (97.2) 786 (97.2) 2192 (97.5)

Outcome

  TKR at 5 year (%) 158 (4.9) 33 (4.1) 106 (4.7)

  TKR at 2 year (%) 43 (1.3) 7 (0.9) 28 (1.2)

To prevent data leakage, all entries from any given patient were only allowed to be in one of the three sets.
OA, osteoarthritis; TKR, total knee replacement.

Table 1 Continued

Table 2 Displaying AUC for all five models predicting TKR at 2 years and 5 years when applied to training and internal test 
sets

Model type

AUC

2 years 5 years

Training set Test set Training set Test set

Logistic regression 0.985 (0.974 to 0.996) 0.730 (0.496 to 0.965) 0.932 (0.915 to 0.950) 0.822 (0.745 to 0.898)

RIDGE 0.954 (0.933 to 0.974) 0.916 (0.865 to 0.967) 0.908 (0.886 to 0.929) 0.869 (0.803 to 0.935)

LASSO 0.966 (0.946 to 0.986) 0.901 (0.840 to 0.962) 0.907 (0.886 to 0.929) 0.864 (0.801 to 0.928)

Decision tree – – 0.696 (0.656 to 0.736) 0.688 (0.608 to 0.768)

Random forest 0.789 (0.713 to 0.864) 0.821 (0.690 to 0.952) 0.831 (0.795 to 0.867) 0.845 (0.799 to 0.910)

Gradient boosting machine 0.942 (0.914 to 0.970) 0.945 (0.901 to 0.988) 0.905 (0.883 to 0.927) 0.855 (0.794 to 0.915)

SEs were used to determine 95% CIs (shown in brackets).
*DT was unable to categorise cases at 2 years (Table 2)
AUC, area under the curve; DT, decision tree; TKR, total knee replacement.

https://dx.doi.org/10.1136/bmjsit-2022-000141
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set as well as figure 2B,C, when applied to the external 
test set at both time points. Performances across models 
are slightly reduced when applied to the external test set 
at both time points but remains within comparison to 
the internal test set, with the exception of GBM which 
exceeds its original performance when applied to the 
external test set at 5 years (AUC 0.855 compared with 
0.873). GBM consistently forms the best performing 
model (AUC- 2years=0.913, AUC- 5years=0.873).

Model predictors
Relative influence is ranked to show order of the most 
important feature in training the model in table 4. For 
instance, 21.54 relative influence means it accounts for 
21.54% of the reduction to the loss function given this 
set of features as opposed to 21.54% of variance. Radio-
graphic features; KLG formed the highest predictor in 
the best performing model (GBM) across both prediction 
years, followed by less important features The Western 

Table 3 Displaying the performance of three models when applied to the external testset (MOST), as evaluated by AUC and 
F1- score

Model type

External validation

2 years 5 years

AUC F1- score AUC F1- score

Gradient boosting machine 0.913 (0.876–0.951) 0.171 0.873 (0.839–0.907) 0.287

LASSO 0.805 (0.716–0.895) 0.118 0.841 (0.804–0.878) 0.267

RIDGE 0.820 (0.748–0.893) 0.0811 0.825 (0.785–0.864) 0.261

AUC, area under the curve; MOST, Multicentre Osteoarthritis Study .

Figure 2 Comparison of the top three performing ml models’ performance as receiver operating characteristic (ROC) curves 
for TKR prediction at 2 and 5 years. (A) and (C) demonstrate ROC curves on internal test set only (B) and (D) on external test 
set (MOST), with additional dashed lines that are the test set overlain to allow direct comparison. In all curves, the black line 
signifies the performance of a random classifier (area under the curve, AUC=0.500). The legends in the subplots indicate the 
AUC of the models with 95% CIs. GBM, gradient boosting machine; MOST, Multicentre Osteoarthritis Study; TKR, total knee 
replacement.



7Mahmoud K, et al. BMJ Surg Interv Health Technologies 2023;5:e000141. doi:10.1136/bmjsit-2022-000141

Open access

Ontario and McMaster Universities Osteoarthritis 
Index (WOMAC), Short- Form- 12 (Physical and mental 
components) and educational attainment (table 4). 
JSN also appeared to have a relatively high influence at 
5 years despite being non- notable at 2 years. A number 
of remaining features or predictors were ‘0’, and thus 
‘unnecessary’ in predicting TKR at 2 and 5 years under 
the GBM model.

DISCUSSION
We set- out to predict the need for TKR at 2 and 5 years, 
using predictive variables that represent routinely 
collected data. With the exception of the DTs, the ML 
models produced were able to predict the need for a TKR 
with a clinically acceptable performance, using an inde-
pendent external test set for validation. The GBM model 
achieved the highest predictive power at two (AUC 0.913 
(95% CI 0.876 to 0.951)) and 5 years (0.873 (95% CI 
0.839 to 0.907)). The key features driving the predictions 
of this best performing model were KLG, JSN, physical 
score features; WOMAC, SF- 12 scores and educational 
attainment. This is the first study to validate predictive 
models externally, and the lack of reliance on MRI, with 
its associated costs and limited accessibility, facilitates the 
wider application of our tools through ease of interpret-
ability, implementation and scalability to various clinical 
settings.

In terms of other non- imaging- reliant models, Wang et 
al7 used OAI data to develop an LR model using selected 
demographic and clinical information, with an AUC of 
0.77±0.02, which is lower than the internal and external 
dataset performance of all our top- performing models. 
Another study shared our novelty in using non- MRI- based 

features to predict TKR within 4 years17 although their 
evaluation metrics did not include AUC but reported 
the total percentage of correctly predicted knees as 80% 
(69%–89%). However, this was not externally validated 
and conducted only on a sample of subjects as only the 
165 patients receiving TKR were analysed. This study also 
used an artificial neural network, which carries advan-
tages in terms of information processing, fault and noise 
tolerance compared with our ML models,17 but they 
function as a ‘black- box’ and this lack of transparency 
may limit doctor and patient confidence in the model’s 
predictions.18 19

In terms of imaging- dependent models, Tolpadi et al 
used direct imaging to predict TKR at 5 years for OAI 
subjects with varying OA severity.5 The paper evaluated 
six models: raw imaging- based, non- imaging- based and 
integrated (both), for radiographic and MRI imaging, 
concluding that the model integrating MRI and non- 
imaging features outperformed the others. Interestingly, 
our AUC (GBM, internal test; 0.945 at 5 years) exceeded 
all six of their models performed on their internal test 
data: 0.868 (non- imaging), 0.848 (radiographic images 
only), 0.890 (integrated radiographic model), 0.886 
(MRI images only) and 0.834 (integrated MRI model). 
Jamshidi et al,6 a study that predicted TKR and time to 
TKR, also used MRI quantitative imaging data from OAI, 
developing a model with an AUC of 0.86, although this 
did not outperform our model. It should be noted that 
none of these previous studies validated their results 
using an external dataset, and so the real- world perfor-
mance of their models remains uncertain.

Of note, Tolpadi et al’s model sensitivities exceeded that 
suggested by our F1- scores. This is important to consider as 
while the AUC considers the models’ ability to assess both 
negative and positive cases, the F1- score considers preci-
sion; a measure of positive predictive power; the model’s 
ability to predict TKR cases. Prediction of positive cases at 
both timepoints was <0.3 reflective of a lower sensitivity 
than Tolpadi et al’s. This suggests a bias of the AUC evalu-
ation towards the majority class (negative cases), revealing 
that our models were better able to predict negative cases 
than positive. Explanation of our lower positive predica-
tive abilities in comparison to Tolpadi et al’s potentially lie 
in their use of deep learning such as convolutional neural 
networks which use more advanced feature extraction 
to better manage the complex prognostic features that 
determine TKR risk,5 20 21 thus, strengthening their posi-
tive predictive power. A distinct advantage of our models, 
however, was their simplicity and thus transparency as 
well as reliance on more obtainable data, particularly 
considering the higher costs and reduced availability 
of MRI.8 Recent statistics estimate a single MRI scan to 
cost as much as US$1430 and £450 in the USA and UK, 
respectively.22

The transparency of our ML models also allowed us to 
examine the key predictors used by our most accurate 
model (GBM), and reassuringly they mostly align with 
previous literature findings.12 23 A study which used RF 

Table 4 Denotes the largest predictors for the best- 
performing model (GBM) alongside their relative influence 
at 2 years and 5 years. *The Western Ontario and McMaster 
Universities Osteoarthritis Index (WOMAC) .

2 years 5 years

Predictor
Relative 
influence Predictor

Relative 
influence

KLG left 21.54 KLG left 31.65

WOMAC* score 
right (total)

9.36 JSN right 18.56

Short Form- 12 
Mental

6.48 KLG right 15.50

Short Form- 12 
Physical

6.39 WOMAC* score 
right (total)

5.91

KLG right 6.18 Short Form- 12 
Mental

4.56

Educational 
attainment

4.36 Educational 
attainment

4.29

Note: WOMAC score was assessed per leg, providing a separate total 
score for the right and left.
GBM, gradient boosting machine; JSN, joint space narrowing; KLG, 
Kellgren- Lawerence grade .
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modelling of the OAI dataset to explore TKR incidence 
over 2 years, selected the predictive variables used by 
our model that is, KLG, WOMAC and SF- 12.23 While this 
study was performed on OAI and thus, similarities with 
our findings are expected, the external validation of our 
study confirms the importance of these variables across 
different datasets. Elsewhere in the literature, a prospec-
tive Canadian population- based study identified WOMAC 
summary scores as key predictors for TKR risk, supporting 
our findings.12 The other advantage of knowing which 
variables are most important is that data collection can be 
targeted, thus reducing the paperwork burden for both 
patients and physicians.

Interestingly, our models also identified education as 
a key predictor. While low socioeconomic status is well 
recognised as one of the strongest predictors of morbidity 
and mortality from many chronic diseases, there are little 
data regarding its impact within KOA.24 One paper’s anal-
ysis of the socioeconomic effect on KOA found educa-
tional attainment was associated with decreased KOA 
prevalence in their initial analyses, however, this associa-
tion was lost after confounder adjustments.24 Our finding 
may be a function of a correlation between higher rates 
of manual work, which are associated with increased risk 
of OA, among lower educational groups. Indeed, a study 
of pain disparities in underserved populations, within 
OAI, identified more severe OA in lower socioeconomic 
groups (inclusive of education) in addition to disparities 
in pain, and this was not accounted for by objective OA 
measures.25 Alternatively, it may reflect the US insurance- 
based healthcare, with education serving as proxy for 
income and access to early healthcare intervention in a 
timely manner. Further exploration of educational attain-
ment, in relation to OA and TKR may be merited.

The clinical relevance of our tool is dictated by its 
ability to use routinely collected data and transparent ML 
techniques to predict TKR with a clinically acceptable 
accuracy which surpasses previous models. Our model’s 
independence from MRI scanning is important, because 
it resolves many of the issues of cost and accessibility and 
in doing so increases its potential for use in both the 
developed and developing countries. Our tool has the 
potential to facilitate targeted non- operative manage-
ment efforts to modify risks for patients, particularly 
those predicted to require a TKR in 5 years time, with the 
aim of improving their QOL and potentially delaying the 
need for TKR. For patients predicted to require a TKR 
in 2 years, as well as modifying risk factors, this may assist 
with planning of care to closely monitor these patients 
and identify the ideal time to intervene surgically. Knowl-
edge regarding the likelihood of requiring a TKR will 
empower and motivate patients, and facilitate informed 
shared decision making with their clinicians. It also has 
clear potential benefits for health economists tasked with 
planning future resource allocation.

A limitation of our study is the class imbalance in 
the dataset with the majority of patients included not 
progressing to have a TKR during the studied period. 

This is reflected in the low F1- scores, which suggest that 
our models were better at predicting negative cases, that 
is, patients not requiring a TKR at 2 or 5 years. Another 
limitation is the demographic imbalance in the OAI 
primary data, which has a bias towards older patients, as 
well as a higher proportion of female and white patients. 
Additionally, both datasets used were USA based, and 
further studies are required to confirm that the models 
are applicable outside of the USA.

This study presents the first externally validated ML 
model using simple and routinely available patient data, 
while delivering clinically acceptable levels of predic-
tive power, to forecast a patient’s need for TKR at 2 and 
5 years. The simplicity and transparency of our models 
in terms of design and input, with no reliance on MRI, 
increases the likelihood of its adoption as a treatment 
decision aid, identifying patients who are more likely to 
benefit from non- operative management and risk factor 
modification. Sharing this information with patients 
would also be expected to facilitate shared decision 
making and empower them to play an active role in their 
KOA management. Future research will explore the accu-
racy of our models in non- US populations and the use of 
advanced sampling techniques to address the class distri-
bution balance.
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