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The study of human T cell development is hampered by the lack of
genetic tools that have been successfully used in mice. In both mice
and humans, T lymphocytes develop in the thymus from progenitors
that originate in the bone marrow. In mice, targeted mutations
(“knockout” mice) and transgenics have provided a better under-
standing of T cell development [1,2]. Mostly descriptive studies exist
for human T cell development, although patients with rare genetic
defects, such as SCID patients have been instrumental in obtaining
insight into this intricate process.

A healthy human immune repertoire includes billions of T cells
with different T cell receptors (TCRs) to help recognize and respond
to virtually any pathogenic invasion. During T cell development, this
diverse repertoire is generated by gene recombination of V, (D), and J
TCR segments. Progenitors from hematopoietic stem cells (HSCs) in
the bone marrow migrate to the thymus where they proliferate and
differentiate into mature T cells. Surprisingly, only a subset of these
progenitors is needed to reconstitute a diverse repertoire of human T
cells in immune-deficient mice [3]. Partially due to data from mouse
studies, it is generally assumed that an early thymocyte progenitor
has lost the long-term self-renewal potential, but whether a self-
renewing T cell progenitor exists in humans is not known.

In the last issue, Kury et al describe an intriguing X-linked SCID
case [4], reporting a somatic reversion of the IL2RG mutation in all T
cells but not in other immune cells. As such an event is extremely
rare, the authors hypothesise that this reversion did not happen in
more than one progenitor cell. The rescue of T cell development is
illustrated by the presence of a functioning, albeit limited T cell
repertoire, and thus far has kept the 18-year old patient healthy and
without needing an allogeneic HSC transplantation.

How diverse is the T cell repertoire that stems from one progeni-
tor? The authors discuss this but rightfully conclude that this is very
hard to measure. Using CDR3b sequencing, they found 87562 unique
sequences in 10 samples from the patient and compared this with a
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healthy donor. Because the sequencing never captures all clones in a
given sample, the number is always an underrepresentation. For a
healthy individual, the repertoire diversity is estimated to be in the
range of 106 to 1012. Despite improvements in sequencing and associ-
ated bioinformatic analysis, it remains difficult to objectively deter-
mine the degree of limitation of this patient’s T cell repertoire.
Regardless, the repertoire is severely limited, yet sufficient, and
impressive considering it is generated from one progenitor.

Conceptually, this case study generates some interesting biologi-
cal questions regarding the nature and origin of this T cell progenitor
with long-term self-renewal ability (Fig. 1). While the somatic rever-
sion in a T cell progenitor resulted in T cell restoration, NK cells that
also depend on IL2RG were absent, indicating the ‘reverted’ progeni-
tor had already committed to the T cell lineage. On the other hand,
IL2RG-SCID HSC xenografts in mice revealed that the T cell develop-
ment arrest of this SCID is one of the earliest because it is almost
immediately after reaching the thymus before the thymocytes
acquire CD7 (and CD5) expression [5]. If NK cells can arise from a T
cell progenitor in the thymus [6], why did NK cells not develop from
this very early ‘reverted’ T cell progenitor? One explanation could be
that NK cell development in the thymus branches off before the point
of the IL2RG reversion, suggesting the presence of one or more even
earlier, very rare, and yet unidentified cell populations in the thymus.
Another could be that the ‘reverted’ progenitor is not solely T cell
committed and in principle still has NK potential, but selective pres-
sure in the thymus directs the generation of T cells over NK cells in
an environment of severely reduced T cell output. Both options place
the unidentified T cell progenitor in the thymus and assume a yet-to-
be-proven long-term self-renewal capacity in the thymus. Data from
gene therapy studies in X-linked SCID also indicate that despite a
lack of gene marking in HSCs, long term T cell reconstitution with
ongoing thymic output can occur [7]. Kury and colleagues [4] specu-
late that the T cell progenitor is a multipotent cell with T cell bias
from the bone marrow. Indeed, functional studies at the single- cell
level have revealed that HSPC subsets can be lineage-biased without
losing their self-renewal or multipotency [8,9]. An argument against
this is that despite the lineage bias, one would expect multipotent
cells to occasionally yield B cells and NK cells with the reverted geno-
type. This was not observed, but B cells could have easily been missed
in the sequencing of a pool of cells.

Thus far, the origin and identity of the T cell progenitor remain
unknown. Identifying this progenitor is clinically important as it
would help future research to boost T cell immunity in immunocom-
promised patients or patients who are recovering after a stem cell
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Fig. 1. Potential origin of the T cell progenitor (in red) with long-term self-renewal
ability.
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transplantation. The T cell progenitor will likely not be identified
solely by the existing surface markers since they have been used
extensively and not led to early novel progenitor subsets. Instead,
epigenetic studies or single-cell sequencing in combination with sin-
gle-cell functional studies may provide a better chance at identifying
the subtle differences between various lineage-biased multipotent
progenitors that appear similar on the surface. A potential alternative
is the in vitro generation of T cell progenitors using the Notch ligand
DLL4, as has been proposed [10] and is now tried in clinical studies.

Collectively, the careful analysis of unique patients such as the one
reported by Kury and colleagues remains invaluable for a better
understanding of human lymphopoiesis.
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