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Abstract: Crystal facet engineering and nonmetal doping are regarded as effective strategies for
improving the separation of charge carriers and photocatalytic activity of semiconductor photocata-
lysts. In this paper, we developed a facial method for fabricating oxygen-deficient Br-doped BiOCl
nanosheets with dominating {001} facets through a traditional hydrothermal reaction and explored
the impact of the Br doping and specific facets on carrier separation and photocatalytic performance.
The morphologies, structures, and optical and photocatalytic properties of the obtained products were
characterized systematically. The BiOCl samples prepared by the hydrothermal reaction exhibited
square-like shapes with dominating {001} facets. Photodeposition results indicated that photoinduced
electrons preferred to transfer to {001} facets because of the strong internal static electric fields in
BiOCl nanosheets with dominating {001} facets. Br doping not only contributed to the formation
of impurity energy levels that could promote light absorption but introduced a large number of
surface oxygen vacancies (VO) in BiOCl photocatalysts, which was beneficial for photocatalytic
performance. Moreover, the photocatalytic activities of these products under visible light were tested
by degradation of rhodamine B (RhB). Because of the synergistic effect of the dominating {001} facets,
Br doping, and rich VO, oxygen-deficient Br-doped BiOCl nanosheets exhibited improved carrier
separation, visible light absorption, and photocatalytic efficiency.

Keywords: BiOCl nanosheets; Br doping; surface facet; oxygen vacancies; photocatalytic performance

1. Introduction

Water pollution has become a crucial issue as a result of excessive emissions of various
organic pollutants that seriously impede the existence and development of humanity [1–3].
Therefore, to address the issue of water contamination, effective and environmentally
friendly technology must be developed. During the last decades, people have developed
many semiconductor materials (such as ZnO, TiO2, CeO2, and MoS2) as efficient photocat-
alysts to purify wastewater [4–7]. In the midst of these semiconductor materials, BiOCl,
composed of [Bi2O2]2+ layers interleaved with double Cl- layers, has received extensive
attention and fascination owing to its nontoxicity, environmental stability, low cost, open
crystalline structure, and indirect-transition bandgap [8–10].

Nevertheless, because of the large bandgap energy and short lifespan of photoinduced
carriers, BiOCl exhibits inferior visible-light photocatalytic performance, which limits its
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applications in energy conversation [11,12]. To further enhance the photocatalytic efficiency
of BiOCl, numerous methods have been performed to promote the absorption efficiency
of visible light and prolong the lifespan of charge carriers, such as metal or nonmetal
element doping and constructing heterojunctions with narrow-bandgap semiconductors
or carbon materials [13–16]. Crystal facet engineering of semiconductors has received
much attention because photoinduced electrons and holes might be steered to different
crystal facets, and this spatial separation of charge carriers might improve the photocat-
alytic activity of BiOCl [17,18]. Previous research clarified that BiOCl nanosheets with
dominating {001} facets showed superior photocatalytic efficiency owing to the assistance
of internal static electric fields perpendicular along {001} facets, which contributed to spatial
separation of charge carriers [19,20]. Nonetheless, because the spatial separation efficiency
of charge carriers in BiOCl photocatalysts with specific crystal facets is still limited, it is
necessary to promote the separation of photoexcited carriers to further improve photo-
catalysis [21]. Besides crystal facet engineering, other methods have been tried to improve
the photodegradation efficiency of BiOCl, such as element doping (including defects and
metal and nonmetal elements) [22]. It has been proven that doping nonmetal elements into
semiconductor materials generates impurity energy levels above the valence band (VB) to
further promote optical property of semiconductor, which could effectively enhance the
efficiency of carrier separation [23]. Liu et al. [24] prepared iodine-doped BiOCl nanosheets
surrounded by {001} and {110} crystal facets that possessed superior photodegradation
efficiency. Moreover, it is generally accepted that oxygen vacancies (VO) in semiconductors
play a significant role in regulating their optical and photocatalytic properties. Previous
reports showed that introduction of moderate VO could significantly improve the photo-
catalytic efficiency of nanomaterials [25,26]. The VO could not only act as reactive sites in
BiOCl for photocatalytic activity but trap photoexcited electrons and inhibit charge carrier
recombination [27,28]. Several strategies, such as high-energy ball milling and chemical
reduction methods, have been used to promote the generation of VO in semiconductor
materials [29]. Yu et al. [30] prepared BiOCl microflowers with rich VO via a facial one-pot
solvothermal method, and the modified BiOCl exhibited improved photocatalytic efficiency.
Song et al. [31] adopted a facile hydrolysis approach to acquire oxygen-deficient BiOCl
nanosheets in order to achieve improved photocatalytic efficiency.

Remarkable progress on BiOCl photocatalysts have been made in the past several
years through crystal facet engineering, element doping, and constructing heterojunctions
with narrow-bandgap semiconductors. However, the challenge still exists to enhance
the photodegradation efficiency of BiOCl for achieving practical applications. Recent
reports showed that a BiOCl photocatalyst with rich VO possessed enhanced photocatalytic
activity and a prolonged lifespan of charge carriers. However, they did not consider the
influence of specific facets. Considering previous reports, BiOCl with dominating {001}
facets simultaneously modified with Br and VO would be expected to perform well in
terms of photodegradation efficiency and visible light absorption. However, little work
has focused on the synergistic effect of Br doping and VO in BiOCl with dominating {001}
facets photocatalyst. Moreover, few papers have discussed the changes in the VO in BiOCl
crystals caused by Br doping in detail. The mechanism of facet-dependent photocatalytic
properties is still unclear.

In this paper, oxygen-deficient Br-doped BiOCl nanosheets with dominating {001}
facets were successfully fabricated by a traditional hydrothermal method. The morpholo-
gies, structures, and chemical and photoelectric properties of the products were analyzed
in detail. The degradation efficiency of these products under visible light was tested by
photodegradation of RhB. As for Br-doped BiOCl nanosheets, Br doping not only con-
tributed to the formation of impurity energy levels that could promote the light absorption
but introduced rich VO on the surface of BiOCl photocatalysts, which was beneficial for
photocatalytic performance. In addition, BiOCl nanosheets with dominating {001} facets
could transfer the photoinduced electrons to {001} crystal facets and avoid the fast recombi-
nation of carriers. Square-like shapes with cheap thickness could also decrease the diffusing
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distance over which photoinduced electrons migrate to the surface of the photocatalysts.
As expected, the prepared oxygen-deficient Br-doped BiOCl photocatalysts exhibited im-
proved degradation efficiency under visible light for RhB aqueous solution degradation.

2. Materials and Methods

Materials: Sodium chloride (NaCl) and bismuth nitrate pentahydrate (Bi(NO3)3·5H2O)
were obtained from Tianjin Damao Chemical Reagent Co., Ltd. (Tianjin, China). Mannitol
(CH2(OH)(CHOH)4CH2OH) was received from Tianjin Shenao Chemical Reagent Co., Ltd.
(Tianjin, China). Potassium bromide (KBr) was obtained from Shanghai Aladdin Biochemi-
cal Technology Co., Ltd. (Shanghai, China). Tetracycline hydrochloride (C22H24N2O8·HCl)
was obtained from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Rhodamine
B (C28H31ClN2O3) was received from Tianjin Fuchen Chemical Reagent Co., Ltd. (Tianjin,
China). Methyl orange (C14H14N3NaO3S) was obtained from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China).

Preparation of BiOCl nanosheets: BiOCl nanosheets were synthesized via a facial
hydrothermal reaction. In detail, 0.490 g Bi(NO3)3·5H2O, was put into 25.0 mL of 0.1 M
mannitol aqueous solution with magnetic stirring for 30 min (marked as solution A). Next,
1.762 g of NaCl was put into 6 mL water with magnetic stirring for 30 min (marked as
solution B) and then mixed with solution A. The mixture was loaded into a 50 mL Teflon-
lined autoclave and held at 160 ◦C for 3 h. After that, BiOCl nanosheets were obtained via
centrifugation, washed three times, and dried at 60 ◦C for 6 h.

Preparation of Br-doped BiOCl nanosheets: Br-doped BiOCl nanosheets were pro-
duced using a similar method as described above. In brief, after solution A was prepared,
stoichiometric amounts of NaCl and KBr with a total concentration of 5.0 M were dissolved
into 6 mL distilled water and then added into solution A with magnetic stirring for 30 min.
The other steps were identical to those of the method for preparing BiOCl nanosheets.
BiOCl nanosheets with Br−doped contents of 0, 0.5, 1, and 2 at. % were denoted as BOC,
Br−BOC−0.5, Br−BOC−1, and Br−BOC−2, respectively.

Characterization: The crystal structures of the as-prepared photocatalysts were stud-
ied by X-ray diffraction (XRD) patterns on a PANalytical X’pert MPD PRO (Cu Kα radiation).
The microstructure and morphologies of the obtained products were explored via trans-
mission electron microscopy (TEM, Tecnai F30 G2, FEI Company, Hillsboro, OR, USA)
and scanning electron microscopy (SEM, JSM-7000F, JEOL, Tokyo, Japan). Electron spin
resonance (ESR) spectra were obtained via a Bruker EMXPLUS EPR spectrometer (Bruker,
Billerica, MA, USA) to analyze the oxygen vacancy defects of the obtained photocatalysts.
X-ray photoelectron spectroscopy (XPS) spectra were obtained via a Kratos AXIS Ultra
DLD spectrometer (Kratos, Manchester, UN) to study the element composition of prod-
ucts. The light absorption abilities of the samples were studied through a PE Lambda
950 spectrophotometer (PerkinElmer, Waltham, MA, USA) by UV–vis diffuse reflectance
spectroscopy (DRS). Photoluminescence (PL) spectra were obtained with a Gangdong
F-320 photoluminescence spectrophotometer (Tianjin Gangdong, Tianjin, China) at an
excitation wavelength of 275 nm.

Photocatalytic activity test: The photocatalytic test was carried out through the
decomposition of RhB with a 500 W Xeon-lamp and a 420 nm cutoff filter. In detail, 10 mg
samples were put into RhB solution (50 mL, 20 mg/L) with stirring for 1 h before light
on to obtain the adsorption/desorption balance between the photocatalysts and the RhB.
At 20 min intervals, 3 mL mixed solution was extracted, and photocatalysts were removed
by centrifugation immediately. By using a UV–vis spectrophotometer to track changes
in dye concentrations, the removal ratio of RhB was determined through the equation
E = C/C0, where C0 and C represented the concentration after adsorption equilibrium and
the corresponding concentration in real time, respectively.

Photodeposition tests: The photodeposition experiment was carried out as follows.
Photocatalyst (50 mg) and H2PtCl6·6H2O solution (20 mg/L, 150 µL) were mixed with
50 mL deionized water. Then, the solution was irradiated under mercury lamp (500 W) with



Nanomaterials 2022, 12, 2423 4 of 14

continuous stirring. After photodeposition for 30 min, the photocatalysts were obtained
after centrifugation and washed before being dried at 60 ◦C for 6 h.

3. Results and Discussion

The phases and crystal structures of the obtained products were studied by XRD.
As displayed in Figure 1, all of the obtained products possessed superior crystallinity,
and the peaks located at 11.98◦, 24.15◦, 26.05◦, 32.56◦, 33.60◦, 40.95◦, 46.72◦, 49.76◦,
and 58.68◦ could be indexed to the tetrahedral BOC (JCPDS 06-0249) [32,33]. There were
no distinctive peaks from other phases or contaminants, suggesting the fine purity of
the products.
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Figure 1. XRD pattern of the as-prepared samples.

SEM was used to study the surface morphologies of BOC, Br−BOC−0.5, Br−BOC−1,
and Br−BOC−2. BOC displayed square-like shapes with a width of 150–275 nm and a
thickness of 28–47 nm, as shown in Figure 2. The size and shape of BiOCl was maintained
after the introduction of moderate Br, indicating that Br doping did not impede the growth
of BiOCl nanosheets. Energy disperse spectroscopy (EDS) measurement was performed to
study the composition information of the obtained products. As shown in Figure 3, the EDS
results proved the existence of Bi, O, Cl, and Br, which suggested that Br was doped
into the BiOCl nanosheets. The BET surface areas of BOC, Br−BOC−0.5, Br−BOC−1,
and Br−BOC−2 were 11.18 m2g−1, 12.45 m2g−1, 12.85 m2g−1, and 12.67 m2g−1, respec-
tively. The BET special surface area of BiOCl showed a slight increase after Br-doping,
suggesting that the BET special surface area in this work was not a major factor affecting
the degradation efficiency. The BET surface areas for all samples were tabulated in Table 1.

Table 1. Summary of Eg and BET data for all samples.

BOC Br−BOC−0.5 Br−BOC−1 Br−BOC−2

Eg (eV) 3.21 3.06 3.02 2.96
SBET (m2g−1) 11.18 12.45 12.85 12.67
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Figure 3. EDS analyses of Br−BOC−1.

TEM and high-resolution TEM (HRTEM) were performed to study the structural
features and exposed crystal facets of Br−BOC−1. A TEM image, as displayed in Figure 4a,
clearly revealed its square-like patterns once more. Figure 4b shows an HRTEM image
from the top view of a nanosheet. The interplanar spacing was measured as 0.278 nm,
which corresponded to the (110) planes. The HRTEM image of the side view exhibited
clear lattice fringes. The interplanar spacing was measured as 0.746 nm, as displayed in
Figure 4c, which was matched with the (001) planes of the BiOCl crystal. Figure 4d shows
the selected-area electron diffraction (SAED) pattern of the top view, which proved the
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single-crystalline characteristic of Br−BOC−1. The angle of the two marked planes was
45◦, which corresponded to the theoretical value of the angle between the (110) and (200)
planes [34,35]. Based on the above analysis of Br−BOC−1, the top and bottom surfaces of
Br−BOC−1 were surrounded by {001} facets, and the four lateral surfaces were enclosed
by {110} facets.
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The surface chemical compositions of the obtained products were investigated by
XPS. The full-scale XPS patterns of the products, BOC, Br−BOC−0.5, Br−BOC−1 and
Br−BOC−2, are displayed in Figure 5a. Peaks corresponding to Bi 5d, Bi 4f, Cl 2p, C 1s,
Bi 4d, O 1s, and Bi 4p were found in all samples. Peaks corresponding to Br did not appear
in this pattern, which might be attributable to the low doping ratio. Br 3d high-resolution
XPS spectra of all products were obtained to confirm the incorporation of the Br atom
into Br−BOC−0.5, Br−BOC−1, and Br−BOC−2. As exhibited in Figure 5b, compared
with BOC, a new broad peak appeared around 69 eV for Br−BOC−0.5, Br−BOC−1,
and Br−BOC−2, which could have been associated with the Br 3d5/2 and Br 3d3/2
peaks [36]. The intensity of these peaks increased as the doping concentration of the
Br atom increased, which further proved that Br was doped into BiOCl.
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To acquire more information on surface defects in the BOC, Br−BOC−0.5, Br−BOC−1,
and Br−BOC−2, the XPS spectra for O 1s were obtained, as exhibited in Figure 6a–d. The O
1s peak could be divided into three distinct peaks. The highest peak, at 530.1 eV, could be
attributed to the lattice oxygen anions (OL) in the samples. The middle peak, at 531.4 eV,
was related to the surface oxygen vacancies (OV) in the BiOCl nanosheets. The peak at
532.3 eV could be ascribed to the weakly bound oxygen or chemisorbed oxygen (OC) in the
BiOCl [36]. Therefore, the change in the OV peak intensity was related to the concentration
of VO in the products. The relative OV/OT (OT = OL + OV + OC) ratios for all products
were obtained through the ratios of the areas of the peaks. These were used to assess
the changes in VO concentration and are listed in Figure 6e. Compared with the BOC
nanosheets, the Br-doped BOC samples possessed sharply increased concentrations of
VO. When the concentration of Br doping was high, the concentration of intrinsic oxygen
vacancies might have become lower compared with the concentration of extrinsic oxygen
vacancies. This might be the reason why increased concentrations of doped Br did not
increase the ratio of oxygen vacancies. ESR spectroscopy was carried out to confirm the
variation in VO. Figure 6f shows the ESR spectra of BOC and Br−BOC−1. An obvious
signal (g = 2.004) was found that could be ascribed to the oxygen vacancy of the bound
single electron (VO

+) [37]. The signal intensity of Br−BOC−1 was much stronger than that
of BOC, which further demonstrated that the Br-doped BiOCl nanosheets had richer surface
VO than the undoped BiOCl. This difference might give rise to different photodegradation
efficiency in the photocatalytic process.

The absorption properties of the BOC and Br-doped BOC nanosheets were explored
by UV–vis diffuse reflectance spectroscopy (DRS). As exhibited in Figure 7a, the Br-doped
BOC nanosheets displayed improved visible light absorption compared with the undoped
BOC. The bandgap energy (Eg) was calculated through the equation:

αhυ = A(hυ − Eg)n/2

where α means the absorption coefficient of samples, A is a constant, h means the Planck
constant, υ is the light frequency, and Eg is the bandgap energy [38]. Consequently,
it was found that the Egs of these samples were 3.21, 3.06, 3.02, and 2.96 eV for BOC,
Br−BOC−0.5, Br−BOC−1, and Br−BOC−2 respectively. It was clear that as the Br doping
content increased, the bandgap energies of Br-doped BiOCl gradually decreased. Therefore,
because of the reduced bandgap, the visible light absorption efficiency of the Br-doped
BOC was enhanced. We propose that the impurity level caused by Br doping in the
semiconductor was responsible for the photocatalytic activity of the samples, allowing the
absorption of visible photons through a step-by-step mechanism.
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PL spectra were used to study the transformation and recombination of charge carriers.
Figure 8 displays the PL spectra of the BOC and Br-doped BOC. The PL intensity was
deemed to be associated with the lifespan of charge carriers, and higher PL emission peaks
resulted from photoinduced carriers recombining more quickly [39]. The lower emission
peak for the Br-doped BiOCl samples than for the BOC nanosheets indicated that the
Br-doped BOC nanosheets possessed longer lifespans for their charge carriers, which could
be ascribed to the introduction of VO that could trap photoinduced electrons and thereby
prolong the lifespan of the charge carriers.
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The degradation efficiencies of BOC and Br-doped BOC nanosheets under visible light
were explored according to the removal ratio of RhB, as exhibited in Figure 9a, where C0
means the RhB content before light on and C is the corresponding concentration in real
time. An adsorption–desorption balance was carried out before light on. Considering
possible self-photodegradation for RhB, a blank experiment in the absence of photocatalysts
was carried out as a control line, as shown in Figure 9a. The concentration of RhB did
not decline without photocatalysts, which meant that self-photodegradation for RhB was
almost neglectable. All samples displayed enhanced degradation efficiency compared with
the commercial BiOCl (BiOCl−CT), indicating that BiOCl nanomaterials with exposed {001}
facets possessed improved degradation efficiency. After Br element doping, the degradation
efficiency of Br-doped BiOCl obviously improved. The curves of Br−BOC−0.5, Br−BOC−1,
and Br−BOC−2 slightly intermixed, which might have been attributable to the similar Br
doping concentrations. Br−BOC−1 exhibited the highest degradation efficiency, and the
concentration of RhB was reduced to 18% after 120 min under visible light photoirradiation.
The degradation efficiency of the obtained products was evaluated quantitatively through
a pseudo-first-order kinetics equation:

In(C/C0) = −kt

where C0 and C represent the initial RhB content and the content after the different irradia-
tion times, respectively [40]. The corresponding kinetic curves are exhibited in Figure 9b,
and Br−BOC−1 had a much higher apparent rate constant k (k = 0.00656 min−1) than BOC
(k = 0.00445 min−1). To rule out the influence of the sensitization of the dye, the degradation
of tetracycline hydrochloride (colorless compound, 20 mg/L) under visible light irradiation
was performed. As displayed in Figure 9c, Br−BOC−1 presented excellent degradation
efficiency for tetracycline hydrochloride under visible light. Photodegradation experiments
with various scavengers were performed to further analyze the RhB removal mechanism of
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the samples. In order to detect O2, OH, and h+, p-benzoquinone (p-BQ), tert-butyl alcohol
(TBA), and disodium ethylenediaminetetraacetate (EDTA-2Na) were dissolved to the re-
action solution, respectively. As displayed in Figure 9d, there existed obvious decreases
in degradation efficiency in the presence of EDTA-2Na and p-BQ, which meat that h+

and ˙O2
− were the main active species that contributed to the photocatalytic performance.

To explore the adsorption ability of the samples, RhB adsorption experiments were carried
out. The adsorption rates of BOC, Br−BOC−0.5, Br−BOC−1, and Br−BOC−2 were calcu-
lated as 37%, 41%, 46%, and 40%. Br-doped BOC possessed higher adsorption ability for
RhB, which could further promote photocatalytic activity. The dye removal efficiency was
calculated through the following equation:

Dye removal (%) = ((C0 − C)/C0) × 100%

where C0 and C represent the initial RhB content and that after the different irradiation
times, respectively. As shown in Figure S1, Br-doped BiOCl exhibited improved RhB
removal efficiency, and Br−BOC−1 displayed the highest dye removal efficiency of 90%.
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Figure 9. (a) Photocatalytic degradation of RhB by BOC, Br−BOC−0.5, Br−BOC−1, and Br−BOC−2;
(b) the corresponding kinetic curves; (c) photocatalytic degradation of tetracycline hydrochloride by
Br−BOC−1; (d) active species trapping experiments for Br−BOC−1 with different scavengers under
visible light.

To eliminate the influence of improved photoabsorption caused by doping, photo-
catalysis experiments were carried out under UV light to degrade methyl orange (MO,
20 mg/L) to further analyze the utilization rate of photoinduced carriers in the process of
the photocatalytic reaction. Considering the serious self-photodegradation for RhB under
UV light, MO was chosen as a target material. An adsorption–desorption equilibrium was
performed before light on. As displayed in Figure 10, Br−BOC−1 possessed enhanced
degradation efficiency compared with BOC, and the concentration of MO was reduced to
6% in the presence of Br−BOC−1 after 45 min under UV light, which might be ascribed
to the formation of rich VO on the surface of Br−BOC−1. VO could not only capture
photoinduced carriers and prolong their lifespan but serve as active sites to accelerate the
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photodegradation process. These results also demonstrated that Br−BOC−1 photocatalysts
still had superior degradation efficiency under UV light. Figure S2 exhibited the adsorption
and photodegradation curves of BOC and Br−BOC−1 under UV light, where 95% of MO
was removed by Br−BOC−1 after 45 min irradiation.
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For the building of an efficient solar energy conversion system, a deep understanding
of carrier separation and transfer inside semiconductors is crucial. Using H2PtCl6 as a
precursor, a photoreduction deposition experiment on Br−BOC−1 was performed. As ex-
hibited in Figure 11b, a TEM picture revealed that Pt particles tended to photodeposit on the
{001} facets. In other word, the photoexcited electrons preferred to transfer and accumulate
on the {001} facets of Br−BOC−1 to react with Pt+. Moreover, to verify the improved spatial
separation of charge carriers, a photodeposition experiment on BOC was performed under
the same conditions. As displayed in Figure 11a, the reactive sites of photoreduction of
the BOC nanosheets were consistent with those of the doped BOC nanosheets. However,
compared with Br−BOC−1, fewer Pt particles were generated on the {001} facets. These
results unambiguously demonstrated that photoexcited electrons tended to migrate to
the {001} facets of BOC with the help of an internal electric field, which contributed to
carrier separation and transfer, resulting in reduction reactions. Enhanced separation of
photoexcited electrons and holes of BiOCl nanosheets was achieved by comodification with
Br and oxygen vacancies.

Nanomaterials 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 11. TEM images of BOC (a) and Br−BOC−1 (b) with Pt photodeposited under UV light irra-
diation. 

In Scheme 1, we propose a possible mechanism for RhB photodegradation under vis-
ible light over Br-doped BiOCl nanosheets based on the aforementioned analysis. In the 
proposed mechanism, because of the irradiation of light, electrons would transfer from 
the valence band (VB) to the conduction band (CB) of BiOCl with the assistance of impu-
rity energy levels between the VB and CB introduced by Br doping, and holes would be 
left on the VB. With the aid of an internal electric field, photoinduced electrons would 
accumulate on the surface of {001} crystal facets and avoid fast recombination. In addition, 
rich VO on the surface of Br-doped BiOCl would not only capture photoinduced electrons 
but act as reactive sites that further promote the efficiency enhancement of photocatalysis. 
In summary, the synergistic effect of the surface facets and comodification with Br and VO 
would enhance the photodegradation efficiency of Br-doped BiOCl. 

 
Scheme 1. Band structure of the Br−doped BOC and schematic of the separation and transfer of 
charge charges in Br−doped BOC nanosheets. 

4. Conclusions 
Oxygen-deficient Br-doped BiOCl nanosheets with dominating {001} facets were suc-

cessfully fabricated by a hydrothermal reaction. In the process of synthesis, because of the 
larger ionic radius of Br− than Cl−, introduction of Br led to lattice distortion in the BOC, 
which contributed to the formation of rich VO. BiOCl nanosheets with dominating {001} 
facets promoted the transfer of photoexcited electrons to {001} crystal facets with the help 
of an internal electric field and prevented fast recombination of photoinduced carriers. Br 
doping introduced impurity energy levels above the VB and promoted visible light ab-
sorption. Moreover, VO on the surface of the BOC could not only capture photoinduced 

Figure 11. TEM images of BOC (a) and Br−BOC−1 (b) with Pt photodeposited under UV light irradiation.



Nanomaterials 2022, 12, 2423 12 of 14

In Scheme 1, we propose a possible mechanism for RhB photodegradation under
visible light over Br-doped BiOCl nanosheets based on the aforementioned analysis. In the
proposed mechanism, because of the irradiation of light, electrons would transfer from the
valence band (VB) to the conduction band (CB) of BiOCl with the assistance of impurity
energy levels between the VB and CB introduced by Br doping, and holes would be left on
the VB. With the aid of an internal electric field, photoinduced electrons would accumulate
on the surface of {001} crystal facets and avoid fast recombination. In addition, rich VO
on the surface of Br-doped BiOCl would not only capture photoinduced electrons but
act as reactive sites that further promote the efficiency enhancement of photocatalysis.
In summary, the synergistic effect of the surface facets and comodification with Br and VO
would enhance the photodegradation efficiency of Br-doped BiOCl.
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4. Conclusions

Oxygen-deficient Br-doped BiOCl nanosheets with dominating {001} facets were
successfully fabricated by a hydrothermal reaction. In the process of synthesis, because of
the larger ionic radius of Br− than Cl−, introduction of Br led to lattice distortion in the
BOC, which contributed to the formation of rich VO. BiOCl nanosheets with dominating
{001} facets promoted the transfer of photoexcited electrons to {001} crystal facets with the
help of an internal electric field and prevented fast recombination of photoinduced carriers.
Br doping introduced impurity energy levels above the VB and promoted visible light
absorption. Moreover, VO on the surface of the BOC could not only capture photoinduced
electrons but serve as the sites for redox reactions. Because of the synergistic effect of surface
facets and comodification with Br and VO, Br-doped BiOCl nanosheets showed improved
photocatalytic activity. Br−BOC−1 exhibited the highest degradation efficiency, and the
concentration of RhB was reduced to 18% after 120 min under visible light photoirradiation.
In addition, 95% of MO was removed after 45 min in the presence of Br−BOC−1, which
proved that Br−BOC−1 also possessed excellent degradation efficiency under UV light.
This work may provide a promising opportunity to construct new photocatalysts with
efficient carrier separation and superior photoabsorption.
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photodegradation curves of MO versus time under dark and UV light illumination.
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