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The European woodwasp, Sirex noctilio Fabricius, is a major invasive quarantine pest
that attacks and kills pine trees outside of its native range. Insect gut structure and gut
microbiota play crucial roles in various life activities. Despite a few reports in nutrition
and survival, an extensive study on the S. noctilio larval gut microbiome is lacking.
We studied the gut structure using a stereo microscope and used high throughput
sequencing of the bacterial 16S rRNA genes and fungal internal transcribed spacer
2 (ITS2) regions to investigate gut microbiota in different developmental stages of
S. noctilio, including larvae, adults, and larval frass. We used PICRUSt2 to predict the
functional profiles. The larval gut was thin and thread-like from the oral cavity to the anus,
carrying few xylem particles in the crop. Pseudomonas, Ralstonia, and Burkholderia
s.l were the dominant bacteria in the guts of larvae, adults, and frass, respectively.
Even though Pseudomonas was the most abundant among all bacteria, Zoogloea,
Ruminobacter, and Nitrosospira, which might be involved in degrading organic matter
and fixing nitrogen occurred exclusively in the larval gut indicating their possible role in
the growth and development of larvae in pine tree xylem. Fungal communities did not
change significantly across different developmental stages or the frass. Amylostereum
was dominant in the woodwasp’s larval gut. Functional prediction of bacterial and fungal
communities revealed that they may encod enzymes involved in degrading lignocellulose
and fixing nitrogen. Ours is the first study that compares gut microbial communities
present in S. noctilio larvae, adults, and frass. This study could provide an understanding
of larval nutrient acquisition in nutrient-deficient host xylem to some extent. Our study
may unlock novel strategies for the development of pest management approaches
based on interfering with the gut microbiota and restricting their role in larval survival
and development.
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INTRODUCTION

Insects are the most abundant animals on earth, inhabiting
diverse habitats and feeding on various substrates (Basset
et al., 2012). Insects are colonized by different microorganisms
including bacteria, fungi, protozoa, and archaea, which are
often beneficial to their hosts (Ferrari and Vavre, 2011;
Douglas, 2015). This association is mutually beneficial as
insect guts facilitate the growth of microorganisms, and the
microorganisms in the gut, in turn, provide support to their
hosts in nutrition, digestion, development, reproduction, defense,
behavior, and survival (Hammer and Bowers, 2015; Prasad
et al., 2018). Recent years, with the developing of molecular
biology techniques, research on the gut microbiota and biological
functions of insects have shown potential implication in pest
control (Whitten et al., 2016). To fully understand insects’ life
cycle, it is imperative to consider the role of microorganisms
inhabiting the insects.

The pine xylem, made up of refractory lignocellulosic
bonds, has low nutrient contents and lacks certain amino
acids and sterols essential for protein synthesis (Mattson, 1980;
Geib et al., 2008). Many insects can adapt to a range of
ecological niches, where they often thrive on nutrient-poor or
refractory diets through various morphological and physiological
adaptations (Chiappini and Aldini, 2011; Philipp and Moran,
2013). For example, some ant species have several specialized
gut bacteria and associated morphological modifications of the
gut (Caetano et al., 2009; Russell et al., 2009). In different ant
genera, herbivory is strongly correlated with the prevalence of
Rhizobiales as gut symbionts (Russell et al., 2009). Moreover,
gut bacteria in termites can either utilize nitrogenous waste
products excreted by the host and recycle them into nutrients or
directly fix nitrogen from the atmosphere (Hongoh et al., 2008;
Thong-On et al., 2012).

The European woodwasp, Sirex noctilio Fabricius, is a major
invasive quarantine pest that damages Pinus species in its
invaded areas and impacts the economy (Foelker, 2016). It is
the only known woodwasp species that could kill living trees
by overcoming their self-defenses (Spradbery, 1973). Li et al.
(2015) discover and identify S. noctilio in Heilongjiang Province,
indicating that this invasive pest has invaded China. So far,
22 regions in China have been invaded by S. noctilio, thereby
endangering Mongolian pine plantations (Sun et al., 2016;
Wang et al., 2019). Based on the CLIMEX model, researchers
predict that S. noctilio could colonize most of the areas from
Yunnan Province to Heilongjiang Province in China, where
many susceptible hosts are planted (Ireland et al., 2018). Li et al.
(2019) conclude that there is a high risk that S. noctilio may bring
great damages to China’s pine forests.

Sirex noctilio, which develops in pine trees’ xylem, lives
its larval stage sealed inside the wood (Thompson, 2013).
Some research have been done on how S. noctilio obtains
sufficient nutrients in pine woods to survive, and it has special
organs call “mycangia” and “venom glands” inside its female
abdomen. The female adult infects the host as a complex
damage system with its venom mucus in the body and its

symbiotic fungus Amylostereum areolatum (Coutts, 1969; Ryan
and Hurley, 2012). The venom glands secrete venom mucus
and store them in a mucus reservoir, those organs are all
connected with the female’s ovipositor (Madden, 1974). Hence,
S. noctilio is not only a wood-borer pest, but also injects
its symbiotic fungus A. areolatum and toxins (secreted by
its venom gland) into the host tree when the female lays
eggs (Ryan and Hurley, 2012). It is a cooperative damage
mechanism working together to weak the hosts. What’s more,
the larva cannot produce sufficient lignocellulosic enzymes
or feed directly on the host xylem, so A. areolatum helps
it as “external rumen” for larval absorption (Madden, 1981;
Thompson et al., 2013, 2014). Laccase enzyme activity is
identified from A. areolatum (Bordeaux, 2008). Laccase is a
lignin-degrading enzyme belonging to the AA1 family. Fu
et al. (2020) detect 62 and 25 copies of AA3 and AA1 in
A. areolatum, respectively.

Despite several nutrition and survival reports, an extensive
study on the S. noctilio larval gut microbiome is lacking. We
hypothesized that the gut microbiota must play an imperative
role in the development and survival of S. noctilio in the
nutrient-deficient host xylem. To test this hypothesis, we studied
the gut structure and explored high throughput sequencing of
the bacterial 16S rRNA genes and fungal internal transcribed
spacer 2 (ITS2) region to investigate gut microbial communities
throughout the ontogeny of S. noctilio, including larvae, female
and male adults, and larval frass.

MATERIALS AND METHODS

Sample Collection and Larval
Identification
The larvae and adults of S. noctilio were collected from
northeastern China, Duerbert Mongolian Autonomous County,
Daqing City, Heilongjiang Province, China, from April to August
2019 (46.88◦N, 124.46◦E). We randomly selected P. sylvestris
var. mongolica (the stem of trees had drilled holes and resin
drops; Madden, 1974), cut sample pines into wood logs, and
brought them back to the quarantine laboratory (Beijing Forestry
University). The larvae and frass collection work were carried
out using a wood splitter (LS7T-520, Baiduan Industry and
Trade Co., Ltd., Shanghai, China) and axe. Each sample was
immediately placed in a clean and sterilized 1.5-mL centrifuge
tube and temporarily stored at −80◦C before use in the
experiments. Since larval instars were unknown, we used the
body size to determine the relative age of the larvae (body
length is about 1.0–1.5 cm), avoiding collecting very young larvae
or older larvae (pre-pupae). The adults were collected in the
quarantine laboratory during the whole emergence period, and
the subsequent collection work was similar to that of larvae.

Since the larval species was difficult to identify based on
morphology, we identified the species by extracting the DNA
from the collected larval heads. The PCR amplicons were
obtained by using LCO1490 and HCO2198 primers (Folmer
et al., 1994) targeting cytochrome c oxidase (COI) subunit I gene
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(Supplementary Table 1). BLAST was performed on the NCBI
website to confirm whether it was S. noctilio.

Gut Dissection and Observation
We prepared 75% (v/v) ethanol, sterile water, and phosphate-
buffered saline (PBS) solution before dissection in PBS solution.
The work area and instruments were surface-sterilized with 75%
(v/v) ethanol. Larvae and adults were fixed on the wax plate and
carefully dissected using a dissection microscope under aseptic
conditions. A pair of micro-scissors was used to cut from the
end of the abdomen to the head. The gut was picked gently and
placed in sterile water to wash any attached fat body or tissue. The
guts were then placed in a pre-sterilized 1.5-mL centrifuge tube
and immediately flash-frozen with liquid nitrogen. The samples
were stored at −80◦C until processed for DNA extraction. The
larval guts were observed by a stereoscopic microscope (Leica
M205FA, United States), and then the parts of the gut were
described in detail.

Total DNA Extraction, PCR Amplification,
and Sequencing
Total DNA was extracted from gut samples (entire digestive
tracts from five individuals; five guts/frass for one sample; 5–
7 replicates of pools per life stage and frass). All samples (five
replicates larvae gut, six replicates female adult gut, six replicates
frass, and seven replicates male adult gut, respectively) were
ground in liquid nitrogen using sterile pestles. The ZR Fecal and
Soil DNA MicroPrep (Epigenetics, United States) was used for
DNA extraction following the manufacturer’s protocol. The total
DNA concentration and quality were estimated with a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, United States) and an Agilent 2,100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States), respectively. Gel
electrophoresis was used to assess the integrity of the total
DNA in the samples.

The PCR reactions were carried out in 20 µL of a solution
containing 10 ng DNA, 5 µM each primer 0.8 µL, BSA 0.2 µL,
2.5 mM dNTPs 2 µL, Fastpfu polymerase 0.4 µL (Transgene,
China), 5× Fastpfu buffer 4 µL, and supplemented ddH2O
to 20 µL. Forward primer 338F and reverse primer 806R
(Xu et al., 2016) were used to amplify V3 to V4 variable
regions of the bacterial 16S rRNA gene; forward primer ITS3F
and reverse primer ITS4R (Toju et al., 2012) were employed
to amplify the fungal ITS2 region (Supplementary Table 1).
The amplification was performed in an ABI GeneAmp 9,700
thermal cycler under the following conditions: 95◦C for 3 min,
followed by 27 cycles consisting of denaturation at 95◦C for
30 s, annealing at 55◦C for 30 s, extension at 72◦C for
45 s, and the final extension step at 72◦C for 10 min. We
included appropriate negative controls at the DNA extraction
and all steps in PCR reactions. The final PCR products were
analyzed by electrophoresis in 2% (w/v) agarose gel followed
by staining with Gelred and visualization under ultraviolet
light. The 16S rRNA and ITS2 region were amplified in
triplicates and mixed with DNA. Equal volumes were pooled for
Illumina MiSeq sequencing (PE300 platform) according to the

standard protocol by Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China).

Sequence Data Processing
Raw sequences were deduplicated and quality-filtered by fastp
version 0.20.0 (Chen et al., 2018). Paired-end reads were merged
using FLASH v1.2.7 (Magoč and Salzberg, 2011) with the
following criteria: (i) the 300 bp reads were truncated at any
site receiving an average quality score of <20 over a 50 bp
sliding window, and the truncated reads shorter than 50 bp
were discarded, reads containing ambiguous characters were
also discarded; (ii) only overlapping sequences longer than
10 bp were assembled according to their overlapped sequence.
The maximum mismatch ratio of the overlap region is 0.2.
Reads that could not be assembled were discarded; (iii) Samples
were distinguished according to the barcode and primers. The
sequence direction was adjusted, exact barcode matching, two
nucleotide mismatches in primer matching. After that, all reads
from each sample were clustered into operational taxonomic
units (OTUs) at a 97% sequence similarity cutoff using the
Uparse pipeline of Usearch v7.11 (Edgar, 2013). A representative
sequence was selected from each OTU using default parameters,
and then taxonomic classification was conducted using the
RDP Classifier v2.22 (Wang et al., 2007). Bacterial reads were
compared to the SILVA 138 database (Quast et al., 2012) using
a confidence threshold of 70%, while, for fungal reads, the
UNITE v8.0 database was used (Nilsson et al., 2019). Taxonomies
were grouped at the phylum, class, order, family, and genus
levels. OTUs identified as unclassified bacteria or fungi at the
phylum level, archaeans, mitochondria, or chloroplasts were
excluded. These were classified as additional quality control
or contaminants, and removed before analysis. OTUs that
were < 1% of average relative abundance in groups were
summarized as “others.”

Statistical Analysis
The USEARCH generated OTU tables were modified into a
shared compatible file and then uploaded into Mothur v1.30.2
(Schloss et al., 2009) to make rarefaction curves to estimate
species richness and diversity. Alpha diversity analysis was
calculated for the different woodwasps groups using Mothur
v1.30.23 and visualized using R packages “vegan.” The Shannon,
Simpson, ACE, Chao, and coverage indices were calculated.
Among this, Chao and Shannon indices were calculated for
the different groups, and then the Wilcoxon rank-sum test was
used to calculate significant differences (∗0.01 < P ≤ 0.05,
∗∗0.001 < P ≤ 0.01). Beta diversity analyses were conducted
using QIIME v1.9.1 (Caporaso et al., 2010) and visualized using
R packages “vegan” and “ggplot2” in R v3.6.1. Beta diversity
analysis was performed to investigate structural variation in
microbial communities of the different group samples using
Unweighted and Weighted UniFrac distance metrics (Lozupone
and Knight, 2005) principal coordinates analysis (PCoA). The

1http://drive5.com/uparse/
2http://sourceforge.net/projects/rdp-classifier/
3http://mothur.org/wiki/miseq_sop/#alpha-diversity-1
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significance of differentiation of microbiota structure among
groups was assessed by adonis or permutational multivariate
analysis of variance (PERMANOVA) (Anderson, 2001) with
999 permutations.

Bacterial and fungal taxa analyses were plotted using the
R package “barplot”. Based on the modified OTUs data, the
difference in the top ten genera relative abundance between
different groups of microbial community species was compared
by one-way ANOVA, followed by Scheffe test (∗0.01 < P ≤ 0.05,
∗∗∗P ≤ 0.001), and was conducted using the R package “stats”.
Correlation analysis was carried out by R package “ggplot2”
and “corrplot” (Significant correlations are shown as ∗P < 0.05,
∗∗P < 0.01, and ∗∗∗P < 0.001).

Microbial community functions were predicted by
phylogenetic investigation of communities by reconstruction
of unobserved states v1.1.0 (PICRUSt2 v1.1.0) (Langille et al.,
2013) based on high-quality sequences. The PICRUSt2 generates
predictions from 16S rRNA and ITS2 data using annotations
of sequenced genomes in the Greengene database and KEGG
database release 64.0.

RESULTS

Gut Structure of S. noctilio Larva
The gut structure of S. noctilio was relatively simple. It accounted
for the largest proportion of the body cavity except for the fat
body. The gut was thin and thread-like from the oral cavity to the
anus. It consisted of three regions: foregut, midgut, and hindgut,
which lacked distinct fermentation chambers found in the typical

gut structure of xylophagous insects. We observed few xylem
particles in the crop of foregut. Foregut and midgut were not
separated, and they represented the majority of the digestive tract.
Malpighian tubules branched from the midgut-hindgut border
(Figures 1A–D). In addition, the fat body of the larva filled most
of the body cavity and enveloped the reticulate salivary glands.

NGS Sequencing
A total of 1,088,965 paired-end reads of 16S rRNA V3–V4
amplicon sequences and 1,167,000 reads of ITS amplicon
sequences were generated to survey the bacterial and
fungal communities, respectively. After quality filtering, we
obtained 663,494/895,353 high-quality sequences (an average
of 27,646/37,306 reads per sample), from which 1,902/293
OTUs were identified to be from 24 samples (Supplementary
Tables 2,4). The OTU-level rarefaction curves were generated
to compare the richness and evenness of OTUs among samples
(Supplementary Figures 1,2), indicating that these specimens’
sequencing depths were appropriate. Detected OTU numbers,
Shannon, Simpson, ACE, Chao, and coverage indices were
estimated as alpha diversity indicators (Supplementary Table 3).

Bacterial Communities Associated With
the Larvae and Adult Guts, and Frass of
S. noctilio
Alpha diversity analyses showed that bacterial species richness
(observed OTUs, Chao index) and species diversity (Shannon
index) were both significantly different among larvae, adults, and
frass (Figures 2A,B). The trends of the Chao index and Shannon
index were similar. Alpha diversity was significantly higher in

FIGURE 1 | Gut morphology of Sirex noctilio larva. (A) The digestive tract includes foregut (FG), midgut (MG), and hindgut (HG). Enlarged images of (B) Crop (Cr),
(C) Malpighian tubules (Mt), and (D) Anus (An) and Tail needle (Tn). Photographs were taken using Leica M205FA, United States.
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frass samples compared with adult samples and larva samples.
The alpha diversity value was the highest in frass, followed by
adults, and the lowest in larvae (Figures 2A,B). The results
showed no significant difference in the alpha diversity of gut
microbiota between the female and male adults, and between the
larvae and adults. The Shannon index of gut microbiota in larvae
was significantly lower than in females (P = 0.022) (Figure 2B).

Comparison of different groups of microbiota using PCoA
based on unweighted and weighted UniFrac metric data, showed
distinct clustering, with most of the variation explained by
the first two coordinates (Figures 2C,D, R2 = 0.2678, and
P = 0.001 for unweighted; R2 = 0.3018 and P = 0.002 for
weighted, adonis). Individuals from larva and frass were clustered
separately, whilst individuals in frass were clustered together
with individuals in female adults and male adults based on
weighted UniFrac metric data (Figure 2D). Most individuals
from female and male adults were clustered together. The results
of PERMANOVA showed significant differences between the
two groups (P ≤ 0.001) (Supplementary Table 5). Our findings
indicated that bacterial communities changed significantly with
the growth and development of S. noctilio, and the larval
gut communities differed markedly from those present in
adults or frass.

The relative abundance of bacterial communities among
different groups of S. noctilio was examined at phylum
and genus levels (Figures 3A,D and Supplementary
Figure 3). The taxonomic analysis at the phylum level
revealed that the bacterial communities inhabiting
S. noctilio were predominantly Proteobacteria, followed by
Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria,
and Deinococcus-Thermus (Figure 3A). At the genus
level, the dominant groups were Ralstonia, Pseudomonas,
Burkholderia s.l, Curvibacter, Acinetobacter, Enhydrobacter,
Methylobacterium, Bradyrhizobium, Bosea, Stenotrophomonas,
and Pseudoxanthomonas of phylum Proteobacteria; Rhodococcus,
Mycobacterium, and Microbacterium of phylum Actinobacteria;
Vibrionimonas and Hydrotalea of phylum Bacteroidetes;
Lactobacillus and Staphylococcus of phylum Firmicutes;
Granulicella and Bryobacter of phylum Acidobacteria;
Deinococcus of phylum Deinococcus-Thermus (Figure 3B).

We observed that each group had its own significantly
enriched set of microorganisms at the genus level (excluding
unclassified genera) (Figure 3C). For instance, Pseudomonas
was notably enriched in the larval gut as compared to other
groups (P ≤ 0.001), whereas Ralstonia was the most abundant
bacteria in the male gut (P ≤ 0.001). Acinetobacter was notably
enriched in the gut of female adults, whilst Methylobacterium was
significantly enriched in frass. The shared groups among different
groups of S. noctilio were shown in Venn diagrams, a total of 183
OTUs (9.62%) and 79 genera (10.93%) were only present in larval
groups (Supplementary Figure 4, see details Supplementary
Table 6). The common genera suggested that they might have
essential functions in the growth and development of S. noctilio.

To understand the co-occurrence pattern of S. noctilio larval
gut bacterial communities, a heatmap correlation analysis was
established based on significant correlations among different
bacteria for the top ten genera (Figure 3D, Spearman, r ≥ 0.5,

P< 0.05). The high abundance bacterium Pseudomonas exhibited
co-occurrence correlations with Bradyrhizobium (r = 0.8),
Rhodococcus (r = 0.7), Ralstonia (r = 0.6), and Bosea (r = 0.9),
whereas it showed negative interactions with Vibrionimonas
(r = −0.6). Similarly, the high abundance bacterium Ralstonia
had negative interactions with Vibrionimonas. The highly
abundant bacteria Rhodococcus and Bradyrhizobium showed co-
occurrence correlations (r = 0.7). The two genera had similar
correlations with Curvibacter, Noviherbaspirillum, Ralstonia,
Pseudomonas, and Bosea, but had negative interactions with
Enhydrobacter, Vibrionimonas, and Clostridium.

Fungal Communities Associated With
the Larvae and Adult Guts, and Frass of
S. noctilio
The fungal compositions were simpler as compared with those
of bacteria in S. noctilio (Figures 4A,B). Both the numbers of
observed OTUs and Shannon index were less for fungi than
bacteria. Alpha diversity analyses showed that fungal species
richness (observed OTUs, Chao index) and species diversity
(Shannon index) were not significantly different among different
groups. However, we found that the Shannon index of gut
microbiota in larvae was significantly lower than those in males
(P = 0.012) and females (P = 0.035) (Figure 4B).

Comparison of different groups of microbiota, using PCoA
based on unweighted and weighted UniFrac metric data, showed
distinct clustering, with most of the variation explained by the
first two coordinates (Figures 4C,D, R2 = 0.1715, and P = 0.01
for unweighted; R2 = 0.3548 and P = 0.005 for weighted, adonis).
The fungal community structure was roughly similar between
female and male adults in either unweighted or weighted UniFrac
analysis. They harbored more significant numbers and more
diverse fungi than other groups (larva and frass). Individuals
from larva and frass groups clustered separately for unweighted
UniFrac analysis (Figure 4C), and together for weighted UniFrac
analysis (Figure 4D). The results of PERMANOVA showed
significant differences between the two groups (P ≤ 0.001)
(Supplementary Table 7). Our findings indicated that the fungal
community’s composition did not change with the growth and
development of S. noctilio, and the adult gut communities
were more abundant.

The relative abundance of fungal communities among
different S. noctilio groups was examined at phylum and
genus levels (Figure 5 and Supplementary Figure 5).
Basidiomycota and Ascomycota mainly dominated the
fungal communities in relation to S. noctilio at the
phylum level (Figure 5A). The phylum Basidiomycota
was represented primarily by Amylostereum, Tremella, and
Malassezia at the genus level. The phylum of Ascomycota
was represented primarily by Trichoderma, Simplicillium,
Hyphopichia, Diplodia, Scytalidium, Aspergillus, and
Penicillium (Figure 5B).

The top ten fungal genera (excluding unclassified genera)
inhabiting in larvae, adults, and frass of S. noctilio also varied
(Figure 5C). For example, Amylostereum was notably enriched
in the larval gut as compared with other groups (P ≤ 0.001),
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FIGURE 2 | Bacterial communities in the Sirex noctilio gut and frass. Boxplots of (A) species richness (Chao index), and (B) species diversity (Shannon index). The
significant differences of alpha diversities were analyzed using Wilcoxon rank-sum test (∗0.01 < P ≤ 0.05, ∗∗0.001 < P ≤ 0.01). (C) Unweighted and (D) weighted
UniFrac-based PCoA plots of bacterial communities. The significant differences in beta diversities were analyzed using adonis analysis with 999 Monte Carlo
permutations (L, larva; F, female; M, male; and FR, frass).

whereasAspergilluswas the most abundant fungus in the male gut
(P ≤ 0.05). The shared groups among four groups of S. noctilio
were shown in Venn diagrams, a total of 9 OTUs (3.07%) and
seven genera (4.35%) only were present in the larval group
(Supplementary Figure 6, see details Supplementary Table 8).
The common genera suggested that they might have important
functions in the growth and development of S. noctilio, especially
Amylostereum.

A heatmap correlation analysis was established based on
significant correlations among different fungi for the top ten
genera in S. noctilio larva gut (Figure 5D, Spearman, r ≥ 0.5,
P < 0.05). The high abundance fungus Amylostereum had
negative interactions with other fungal genera to varying
degrees, which explained, to some extent, why it was
present abundantly. Meanwhile, the high abundant fungus
“g_unclassified_f_Callciaceae” had slight co-occurrence
correlations with other fungal genera. Conversely, except
for the above two, the remaining fungal genera showed a strong
positive correlation.

Co-Occurrence of Bacteria and Fungi in
S. noctilio Larval Gut
We determined the correlations between bacteria and fungi
within S. noctilio larval gut, and found the species richness
(Chao index) of bacteria within the community were significantly
correlated to those of fungi (R = 0.5, p = 0.012) (Figure 6A),
whilst the species diversity (Shannon index) was not significantly
correlated (R = 0.16, p = 0.46) (Figure 6B). In addition, most of
the highly abundant bacterial and fungal genera were positively
correlated to varying degrees (Figure 6C). However, the relative
abundance of Amylostereum was negatively correlated to almost
all other bacterial and fungal genera, and Enhydrobacter also
showed a slightly similar trend.

Microbial Functions Predicted via
PICRUSt2 in S. noctilio Larval Gut
Bacterial community functional prediction showed 23 genes
potentially related to lignocellulose degradation and one
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FIGURE 3 | Taxonomic composition of bacterial communities associated with Sirex noctilio gut and frass. Relative abundance of each bacterial (A) phylum, and (B)
genus. Each bar is indicated by a different color at phylum and genus level. OTUs that were <1% of average relative abundance in groups are summarized as
“others”. (C) Significant differences of microbial composition in larvae, female adults, male adults, and frass in the relative abundance of top ten (one-way ANOVA
followed by Scheffe test; ∗0.01 < P ≤ 0.05, ∗∗0.001 < P ≤ 0.01, ∗∗∗P ≤ 0.001). (D) Spearman correlations of samples with the OTU abundance of genus in
S. noctilio larval gut in the relative abundance of top ten. Blue boxes represent co-exclusion/negative correlations; red boxes represent co-occurrence/positive
correlations between microbes (L, larva; F, female; M, male; and FR, frass).

gene potentially related to nitrogen fixation (Figure 7A), and
the detailed enzyme-catalyzed reactions were demonstrated
in Supplementary Table 9. Based on the lignocellulose
degradation pathways, most of the predicted genes were involved
in lignin degradation, including vanillate monooxygenase
(EC1.14.13.82), glutathione peroxidase (EC1.11.1.9), catalase
(EC1.11.1.6), chloride peroxidase (EC1.11.1.10), glycolate
oxidase (EC1.1.3.15), catalase-peroxidase (EC1.11.1.21), and
cytochrome c peroxidase (EC1.11.1.5). For cellulose and
hemicellulose degradation, beta-glucosidase (EC3.2.1.21) was the
most abundant. For biological nitrogen fixation, we predicted
key genes for nitrogenase component proteins (nifH).

Fungal community functional prediction showed 20 genes
potentially related to lignocellulose degradation and no
gene potentially related to nitrogen fixation (Figure 7B).
The detailed enzyme-catalyzed reactions were demonstrated
in Supplementary Table 10. Based on the lignocellulose
deconstruction pathways, most of the predicted genes
were involved in cellulose and hemicellulose degradation,
including beta-glucosidase (EC3.2.1.21), carboxylesterase
(EC3.1.1.1), alpha-galactosidase (EC3.2.1.22), beta-galactosidase
(EC3.2.1.23), and beta-mannosidase (EC3.2.1.25). For
lignin degradation, catalase (EC1.11.1.6) was the most
abundant.
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FIGURE 4 | Fungal communities in the Sirex noctilio gut and frass. Boxplots of (A) species richness (Chao index), and (B) species diversity (Shannon index). The
significant differences of alpha diversities were analyzed using Wilcoxon rank-sum test (∗0.01 < P ≤ 0.05). (C) Unweighted and (D) weighted UniFrac-based PCoA
plots of fungal communities. The significant differences in beta diversities were analyzed using adonis analysis with 999 Monte Carlo permutations (L, larva; F, female;
M, male; and FR, frass).

DISCUSSION

Contribution of Gut Structure to
S. noctilio Larval Nutrition
The structure of S. noctilio larval gut was simple; it was thin
and thread-like from the oral cavity to the anus, without any
specialized structures. We observed that foregut and midgut
were not clearly separated, few xylem particles were present
in the crop that might temporarily store food for subsequent
digestion. Bignell (1981) also report the digestion of cellulose and
hemicellulose in the crop of cockroaches using enzymes from
the midgut, which was colonized by bacteria. Some stinkbugs
have specialized midgut crypts that provide places for microbes
to colonize (Bistolas et al., 2014). Otherwise, this is different
from other wood-feeding insects, such as higher termites, and

the hindgut of them has specialized structure called fermentation
chamber that can harbor endosymbiotic microorganism to help
in wood digestion (Warnecke et al., 2007). Some wood-feeding
insects’ hindgut microorganisms can even use the uric acid
released by the Malpighian tubules as a nitrogen source (Philipp
and Moran, 2013). Apart from gut, Talbot (1977) show that
S. noctilio salivary secretions putatively played an important role
in the digestion of fungi. Above mentioned, further research is
required to confirm this observation.

Contribution of Gut Bacteria and Fungi
to S. noctilio Larval Nutrition
Given the limited digestion capacity of the gut, gut microbiota
may play an important role in overcoming nutritional
deficiencies. In this study, we first used both 16S rRNA and
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FIGURE 5 | Taxonomic composition of fungal communities associated with Sirex noctilio gut and frass. Relative abundance of each fungal phylum and genus (A,B).
Each bar is indicated by a different color at phylum and genus level. OTUs that were <1% of average relative abundance in groups are summarized as “others”.
(C) Significant differences of microbial composition in larvae, female adults, male adults and frass in the relative abundance of top ten (one-way ANOVA followed by
Scheffe test, ∗0.01 < P ≤ 0.05, ∗∗∗P ≤ 0.001). (D) Spearman correlations of samples with the OTU abundance of genus in S. noctilio larval gut in the relative
abundance of top ten. Bule boxes represent co-exclusion/negative correlations; red boxes represent co-occurrence/positive correlations between microbes (L, larva;
F, female; M, male; and FR, frass).

fungal ITS2 region to explore the larval and adult guts and
larval frass to reveal the features of the microbial community of
S. noctilio.

Bacterial communities in S. noctilio gut and frass varied
significantly, whereas there was no significant difference in
fungal communities. The term frass commonly refers to insect
feces. Still, for Sirex, frass refers to chewed xylem that mixes
with a small amount of excrement from the trailing gallery
left by foraging larva (Thompson, 2013). Hence, frass was also
included in our study to compare with the insect’s gut microbiota.
We found that the gut microbial communities were more

similar between the female and male adults than that of larvae,
indicating that the host developmental stage could influence the
microbial community. This result was consistent with studies
on Lepidopteran holometabolous insects (Wang et al., 2020).
The gut bacterial and fungal community structures and diversity
were similar between female and male adults of S. noctilio,
which was in agreement with previous findings in Laodelphax
striatellus, although Hemiptera is hemimetabolous insect (Bing
et al., 2020). Under the unweighted Unifrac, the bacterial and
fungal communities clustered further apart, indicating that
there might be more unique species in each group. Under the
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FIGURE 6 | Correlation of bacterial and fungal alpha diversity indices in Sirex noctilio larval gut. (A) Chao index and (B) Shannon index. The Pearson correlation
coefficient (R) and the significance level (P-value) are shown on the plots. (C) Spearman correlations of samples with the OTU abundance of bacterial and top seven
fungal genera in S. noctilio larval gut. Positive correlations are displayed in red and negative correlations in blue. Color intensity and the size of the circles are
proportional to the correlation coefficients. Significant correlations are shown as *P < 0.05, **P < 0.01, and ***P < 0.001. The pink font indicates fungal genera and
light blue font indicates bacterial genera.

weighted Unifrac, the distance between each group of samples
seemed closer, indicating that the relative abundance of their
unique species might be lower, while the relative abundance
of the common species was closer. Since bacterial populations
severely disrupt or significantly decrease in pupal stage and
recover only 4–6 d after adult emergence (Hakim et al., 2010;
Hroncova et al., 2015), we did not study S. noctilio gut at
the pupal stage.

Bacterial communities in S. noctilio larval gut were
dominated by Pseudomonas, followed by Ralstonia, Rhodococcus,
Enhydrobacter, Bosea, Curvibacter, and Bradyrhizobium. These
typical taxa include bacteria from the phyla Proteobacteria
and Actinobacteria, and some of the former in other insects
seem to supplement nutrients and are necessary for normal
growth (Watanabe et al., 2003). In addition, Pseudomonas
species can grow at a wide range of temperatures from 5 to
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FIGURE 7 | Selection of genes involved in the lignocellulose degradation and nitrogen fixation of Sirex noctilio larval gut. (A) Bacterial and (B) fungal communities
(the sum number of predicted gene family counts).

42◦C (Termine and Michel, 2009), which might be beneficial
for larvae to adapt better to the environment. Most of the
OTUs were conserved across both larvae and adults, such as
Ralstonia, Pseudomonas, Burkholderia s.l, Stenotrophomonas,
Acinetobacter, Curvibacter, Enhydrobacter, Methylobacterium,
etc., indicating that these bacterial genera were the resident
gut microbiota and may be functionally relevant for the host.
Intriguingly, the relative abundance of these core bacterial genera
was different between larvae and adults’ guts. This may partly
be due to the adult woodwasp’s not feeding on the host tree but

stored fat-body reserves (Taylor, 1981). Our results also reflected
the slight difference of the gut microbial communities and
functional predictions between guts and frass (Supplementary
Figure 7). Zoogloea, Ruminobacter, Nitrospira, and Nitrosospira
were found only in larval gut samples, which were reported
to be efficient in the degradation of organic matter and play a
role in the nitrogen cycle (Anderson, 1995; Daims et al., 2015).
These findings suggest gut microbiota fluctuations in S. noctilio
when they feed on recalcitrant food sources. Adams et al. (2011)
report that Streptomyces and Pantoea present in S. noctilio could

Frontiers in Microbiology | www.frontiersin.org 11 April 2021 | Volume 12 | Article 641141

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-641141 April 7, 2021 Time: 12:20 # 12

Li et al. Gut Structure and Microbiota in Woodwasp

degrade cellulose and assist in nutrient intake, but these two
genera were not observed in our study, implying that these may
be from other organs of the insect body, or their presence may
vary across geographic regions.

Fungal communities in S. noctilio larval gut were dominated
by Amylostereum. Other core OTUs were conserved across
both larvae and adults, such as Trichoderma, Hyphopichia,
etc. The unique fungal genera in larval guts were mainly
Pichia and Ceratocystis, also the wood rotting fungi. Similarly,
yeast was found in the guts of Apis spp., the carpenter bee
Xylocopa spp., and Vespidae (Stefanini, 2018). The obligate
mutualist A. areolatum is beneficial to the larvae, while the
facultative symbionts may assist their insect hosts in digestion
and xenobiotic detoxification (Gupta and Nair, 2020). The
development of woodwasp larvae is correlated with the growth
of the symbiotic fungus Amylostereum; larvae feed exclusively on
the fungus until the third instar and then on fungus-colonized
wood (preferentially at the border of fungal growth in wood)
(Taylor, 1981; Thompson et al., 2014). In our findings, the
high relative abundance of this fungus in the gut was probably
due to its roles involved with food sources. Furthermore, we
observed very few fungal OTUs in our dataset, which could be
due to the primer selection or database imperfection leading to
the unclassified taxa. Further studies are required for in-depth
analysis of the fungal OTUs.

Bacterial-fungal interactions existing in insects are very
important. Various microbes such as bacteria, archaea, and fungi
interact with each other in their respective insect hosts (Gurung
et al., 2019). The bacterial communities changed greatly with
the growth and development of S. noctilio, while the fungal
communities were more stable. Our results showed that some
bacteria and fungi might be positively or negatively correlated
in S. noctilio larval gut. Our findings suggested the importance
of evaluating microbial diversity in insects that share a similar
ecological niche, and some bacteria may have mutually beneficial
interactions with fungi, same as reported by Bing et al. (2020).

The duramen (or heartwood) is mainly made up of cellulose,
hemicellulose, and lignin. Different digestive enzymes are
required for different substrates, which may sometimes act in
congruence (Chiappini and Aldini, 2011). Some species feed
on predegraded wood (Colepicolo-Neto et al., 1986), similarly,
although the symbiotic fungus A. areolatum may help in primary
degradation (Fu et al., 2020), gut microbiota also contributes to
these processes (Schloss et al., 2006; Le Roes-Hill et al., 2011).
We predicted the presence of several genes encoding enzymes
in gut microbiota involved in degradation: several peroxidases,
oxidizing phenolic/non-phenolic compounds and modifying
lignin polymers (Levasseur et al., 2013); glycolate oxidase,
oxidizing glycolate to glyoxylate and producing reactive oxygen
species; and gluco-oligosaccharide oxidases, oxidizing different
carbohydrates, which may be involved in the lignocellulose
degradation (van Hellemond et al., 2006). For degradation of
cellulose and hemicellulose, genes encode enzymes such as
endoglucanase, cleaving internal bonds in cellulose (Klyosov,
1990); beta-glucosidase, hydrolyzing cellobiose and short-chain
oligosaccharides (Glass et al., 2013). Our results showed that
genes that encode carboxylesterase and beta-glucosidase were

predicted in the gut fungal communities. Carboxylesterase also
shows insecticide resistance in Myzus persicae (Devonshire
and Moores, 1982). We also predicted genes that encode
cellobiosidase, alpha-L-fucosidase, endo1,4-b-xylanase, and
alpha-N-arabinofuranosidase [(hemi)cellulosic accessory
enzymes catalyzing the hydrolysis of arabinans, arabinoxylans,
alpha-l-fucosyl residues (Numan and Bhosle, 2006)]; xylan1,4-
beta-xylosidase [glycosidase hydrolyzing linkage between
beta-linked xylose residues in beta-1,4 xylan (Zhou et al., 2012)];
beta-galactosidase [enzyme hydrolyzing beta-galactosidic bonds
(Husain, 2010)]; and beta-mannosidase (enzyme hydrolyzing
terminal beta-H-mannose residues in beta-D-mannosides). Most
of the genes predicted in our study are also detected in several
cerambycid larvae such as Anoplophora glabripennis, Trichoferus
campestris, etc. (Scully et al., 2013; Mohammed et al., 2018).

For nitrogen fixation, the key genes (nifH, nifD, and nifK for
nitrogenase component proteins) (Gaby and Buckley, 2014), were
predicted in larval gut bacterial communities. These genes might
be involved in nitrogen fixation and provide nitrogen to insects
(Ramírez-Puebla et al., 2013). Similar with our results, Sirex frass
was enriched with nitrogen compared to pine xylem (Thompson,
2013), indicating nitrogen fixation by larval gut bacteria.

Both structure and microbiota of the gut may help providing
physiological and molecular adaptations to their woodwasp
hosts. The gut microbiota may also facilitate the survival of
other microbes in other body parts of the woodwasp, or mediate
indirect metabolic interactions. In-depth understanding of the
gut structure and its microbiota can help in S. noctilio pest
control by developing strategies for interfering with the gut
microbiota. Further research is required to understand the
relationship between the composition of the gut microbiota of
the S. noctilio and its geographic distribution, and its similarities
and differences with the local species S. nitobei. The co-evolution
of the mutualism among S. noctilio, its symbiotic fungus
A. areolatum, and its gut microbiota also needs to be looked into.

CONCLUSION

Our characterization of the S. noctilio gut structure and gut
microbiota suggest their role in the survival of the larvae in
nutrient-deficient host xylem. The larval gut was thin and
thread-like from the oral cavity to the anus. It lacked distinct
fermentation chambers, which indicates its limited, but not
ineffective, capacity to digest xylem. A wide variation in bacterial
communities was observed in guts of larvae and adults, and larval
frass, and fungal communities did not change significantly in
different developmental stages and frass. Pseudomonas,Ralstonia,
and Burkholderia s.l were dominant in the guts of larvae, adults,
and frass, respectively, Amylostereum was dominant in S. noctilio
larval gut. Correlation analysis showed that the bacteria and
fungi with higher abundance in the larval gut also exhibited
varying degrees of positive or negative correlation. Functional
predictions of bacterial and fungal communities inhabiting the
larval gut suggest a role in degrading lignocellulose and fixing
nitrogen. Therefore, we hypothesized that Sirex larvae may rely
on the symbiotic fungus Amylostereum for lignin digestion and
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food resources; the gut bacteria may play an important role in
fixing nitrogen and degrading lignocellulose for the survival of
Sirex larvae.
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