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COMMENTARY

Nano-optogenetic immunotherapy
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Chimeric antigen receptor (CAR) T cell-based immunotherapy has been increas-
ingly used in the clinic for cancer intervention over the past 5 years. CAR T-cell
therapy takes advantage of genetically-modified T cells to express synthetic CAR
molecules on the cell surface. To date, up to six CAR T cell therapy products
have been approved by the Food and Drug Administration for the treatment of
leukaemia, lymphoma, and multiple myeloma. In addition, hundreds of CAR-
T products are currently under clinical trials to treat solid tumours. In both the
fundamental research and clinical applications, CAR T cell immunotherapy has
achieved exciting progress with remarkable remission or suppression of cancers.
However, CAR T cell-based immunotherapy still faces significant safety issues,
as exemplified by “on-target off-tumour” cytotoxicity due to lack of strict antigen
specificity. In addition, uncontrolled massive activation of infused CAR T cells
may create severe systemic inflammation with cytokine release syndrome and
neurotoxicity. These challenges call for a need to combine nanotechnology and
optogenetics with immunoengineering to develop spatiotemporally-controllable
CAR T cells, which enable wireless photo-tunable activation of therapeutic
immune cells to deliver personalised therapy in the tumour microenvironment.

KEYWORDS
biophotonics, cancer, CAR T cell, immunotherapy, nanotechnology, optogenetics

1 EXTERNAL STIMULI-RESPONSIVE
CELLULAR IMMUNOTHERAPY

Despite the exciting progess of CAR T cell immunotherapy
in both fundamental research and clinical applications,1,2
it is still suffering from safety concerns associated with
uncontrollable CAR T cell activities. Recent advances in
nanotechnology and immunoengineering provide versa-
tile approaches for the remote control of CAR T cell
activities. For example, by incorporating genetically-
encoded light- or heat-sensitive modules into immune
cells, researchers are able to produce CAR T cells that can
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perceive external stimuli, such as light and ultrasound.3–9
The control of CAR T cells has been achieved either by
(1) stimuli-initiated transcription of the CAR transgene, or
(2) stimuli-driven reassembly of a split-CAR on cell sur-
face. In the first strategy, the transcription of the CAR
gene will only be initiated by a specific stimulus, thus
making the CAR expression remotely controllable. For
instance, Pan et al. developed a genetic device to ini-
tiate the CAR expression by ultrasound.5 They applied
a mechanical-sensitive cation channel (Piezo1) to per-
ceive the ultrasound vibration, which then initiates the
Ca2+/NFAT-responsive elements to drive CAR expression.
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Huang et al. developed a light-inducible nuclear translo-
cation and dimerization (LINTAD) system to control the
CAR expression by blue-light-initiated nuclear translo-
cation of transcriptional activators for inducible gene
transcription.6 In two additional studies, Miller et al. and
Wu et al. took advantage of heat shock-responsive pro-
moter to initiate CAR gene transcription under photother-
mal or ultrasound-induced heat, respectively.7,8 Although
considerable suppression of the toxicity was demonstrated
in these studies, the control over CAR T cell activity by the
CAR expression is sub-optimal because of the unsatisfac-
tory spatiotemporal precision. Also, the CAR expression
takes a long time, ranging from several hours to even days,
thus remaining largely irreversible and sacrificing the real-
time control of CARTcells.With regard to thermal control,
heat shock-responsive promoter might be easily perturbed
by various environmental factors, including hypoxia or
mechanical stress, making the controllability less specific.
In contrast, stimuli-driven reassembly of the split-CAR
provides reversible control of CAR T cell activities with
superior spatial and temporal precision. In this strategy,
the signalling domains of CAR are split into two parts and
stay non-functional at the resting condition. On each split
part, a stimulation-responsive dimerizer was installed,
which could drive the reassembly of the split-CAR under a
specific stimulus, thusmaking the re-assembled CAR fully
functional with tumour-killing ability.9

2 NANO-OPTOGENETICS FOR
WIRELESS CONTROL OF
IMMUNOTHERAPY

Based on the light-stimulated reassembly of the split-CAR
design, Nguyen and Huang et al. developed a light-
switchable CAR T cell (LiCAR-T) system by using a
light-oxygen-voltage (LOV) domain-based optical dimer-
izer (LOV2-ssrA/sspB) or cryptochrome 2 with CRY-
interacting basic helix-loop-helix N (CRY2/CIBN) as the
light-responsive dimerization tools for the optogenetic
control of CAR T cell immunotherapy (Figure 1).10 The
authors optimised the design of the LiCAR-T system to
solve several technical issues, including poor plasmamem-
brane targeting, undesired nuclear accumulation, and
background activation in dark condition. To validate the
spatiotemporal control of the tumour-killing activity of
LiCAR-T cells, the authors performed a series of in vitro
co-culturing experiments with CD19-positive tumour cells.
To solve the limited tissue penetration issue associated
with blue light-responsive tools, Nguyen et al. further
applied upconversion nanoparticles or plates (UCNPs) as
the nanotransducer to perceive deep tissue-penetrating
near-infrared (NIR, 700–1000 nm) light as the wireless

stimulation. UCNPs are a type of unique luminescent
nanomaterials that convert NIR excitation into visible
light with shorter wavelengths (Figure 1). Taking advan-
tage of abundant metastable intermediate energy levels
in lanthanide ions, UCNPs provide ladder-like energy
diagrams for electrons to jump up multiple steps by per-
ceiving multiple excitation photons. The authors further
engineered the dopant and size of UCNPs to obtain 4.5
times enhanced NIR-to-blue upconverted light emission,
which allows researchers to use the NIR light as the wire-
less stimulus to excite the injected UCNPs and obtain
efficient blue emission to drive the reassembly of split-
CAR.10 Considering the fine spatial and temporal precision
of both the NIR irradiation and the reversible split-CAR
design, the authors were able to restrict the LiCAR-T
cells activation strictly at the tumour sites under real-
time NIR stimulation. With this clever design, researchers
can achieve effective tumour eradication without causing
severe safety issues in tumour-bearing mice, as indicated
by substantial attenuation of B cell aplasia and reduced
production of interleukin 6, a proinflammatory cytokine
regarded as the culprit for CRS. Moreover, since the size
and surface modification of UCNPs are highly tunable,
the group also demonstrated intravenous administration
of the LiCAR-T-UCNP conjugates for spatiotemporal con-
trol of anti-tumour immunity in mouse models of tumour,
clearing obstacles for future clinical translations.10

3 FUTURE PERSPECTIVES

Nano-optogenetic immunotherapy promises to overcome
the significant challenge of safety issues obstructing con-
ventional CAR T cell immunotherapy by enabling spa-
tiotemporal control of CAR T cell activities. Looking
forward, we envision that nano-optogenetic technolo-
gies can provide versatile approaches for wireless and
spatiotemporal control of cellular immunotherapy with
deeper tissue penetration. For instance, by engineering
the UCNPs with efficient excitation at the second win-
dow NIR (1000–1700 nm), UCNP-mediated optogenetics
can reach even deeper tissues because of less scatter-
ing and less absorption in this photoactivation window.
Moreover, the emerging mechanoluminescence nanoma-
terials, which can convert ultrasound stimulation into
light output, are also promising to serve as the nanotrans-
ducer for ultrasound-induced reassembly of split-CAR
with spatiotemporal and reversible control of therapeutic
immune cells. In a similar manner, X-ray-excitable scin-
tillation nanomaterials, which convert X-ray stimulation
into light, are also desirable to enable X-ray-controllable
cellular immunotherapy with unlimited depth of tissue
penetration.
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F IGURE 1 Schematic of UCNP-mediated nano-optogenetic cellular immunotherapy by using light-switchable CAR T (LiCAR-T) cells.
(A) The general practice of using LiCAR-T-UCNP for wirelessly controlled nano-optogenetic immunotherapy. (B) Schematic of UCNP as the
nanotransducer to convert NIR light into blue light. (C) Schematic of UCNP-mediated wireless control of LiCAR-T cells by NIR stimulation.
The signalling domains of CAR are split into two separate polypeptides, with each appended with one component from a pair of optical
dimerizers (either LOV2-ssrA/sspB or CRY2/CIBN). UCNPs sever as the nanotransducer to convert NIR excitation into blue emission via
energy transfer and photon-upconversion from Yb3+ to Tm3+. The blue emission initiates the assembly of optical dimerizer and brings the
two CAR splits into close proximity, thus enabling a functional CAR reassembly to restore efficient tumour-killing ability

The potential for nano-optogenetic immunotherapy
seems to be quite promising, but one has to keep in
mind several caveats during clinical translations. First, it
is always desirable to develop external stimuli and nan-
otransducers with better biocompatibility and efficiency,
as well as deeper tissue penetration. For instance, light-
responsive CAR T cells are most sensitive to blue light,
which requires the use of inorganic UCNPs to convert
NIR into blue light for wireless activation in deeply-buried
tissues. Although studies have demonstrated that UCNPs
with appropriate surface modifications do not cause acute
toxicities during the therapeutic window, there remains
a need for long-term assessment of the biosafety of the
nanomaterials. In this regard, biodegradable organic nano-
materials, such as the triplet-triplet annihilation UCNPs
(TTA-UCNPs), might serve as an attractive. Second, nano-
optogenetic immunotherapy awaits further optimizations
for the efficient treatment of solid tumours. Currently,
FDA-approved CAR T cell therapy products are only tar-
geting haematological neoplasms. However, the potency
of CAR T cell therapy for the solid tumour is less efficient
due to several obstacles, such as the physical barrier (e.g.,
stromal cell and extracellular matrix) hindering the infil-
tration and trafficking of CAR T cells, the hypoxia and

immunosuppressive tumourmicroenvironment (TME), as
well as the heterogeneous antigen expression lowering the
antigen-recognition by CAR T cells. In this regard, nano-
optogenetic approaches can be designed with the ability
to soften the physical barriers, alter the TME, and upregu-
late antigen presenting in solid tumours. Third, developing
cost-effective nano-optogenetic immunotherapy is impor-
tant for clinical applications. The commercially available
CAR T products are autologous CAR T cells, which are
manufactured based on the T cells collected from each
individual patient. This personalised production of CAR
T cells imposes a great financial burden on the patient
and society, which generally costs more than 350 000 dol-
lars for a single treatment. In contrast, allogeneic CAR T
cells allow massive manufacturing to substantially reduce
the overall cost of cellular immunotherapy. Moreover, it
can provide “off-the-shelf” products that are immediately
ready for use, in stark contrast to autologous CAR T cells
requiring more than 10 days for ex vivo culture and expan-
sion. Also, it is of great merit to address the limitations
of the “graft-versus-host” safety issue of allogeneic CAR T
cells by restricting the nano-optogenetic immunotherapy
localised at the tumour sites. Regardless of these poten-
tial problems, nano-optogenetic immunotherapy provides
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spatiotemporal, wireless, and reversible control of CAR
T cells for efficient and safer immunotherapy, thus hold-
ing great potential for the future development of next-
generation precision cancer treatment, in which the ‘living
drug’ will be personalised on-demand to each patient’s
particular situation.
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