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Abstract: UV radiation and H2O2 are the primary factors that cause skin aging. Both trigger oxidative
stress and cellular aging. It has been reported that deacetylase silent information regulator 1 (SIRT1),
a longevity gene, enhances activation of NF-E2-related factor-2 (Nrf2), as well as its downstream key
antioxidant gene hemeoxygenase-1 (HO-1), to protect cells against oxidative damage by deacetylating
the transcription coactivator PPARγ coactivator-1α (PGC-1α). Galangin, a flavonoid, possesses
anti-oxidative and anti-inflammatory potential. In the present study, we applied Ultraviolet B/H2O2-
induced human dermal fibroblast damage as an in vitro model and UVB-induced photoaging of
C57BL/6J nude mice as an in vivo model to investigate the underlying dermo-protective mecha-
nisms of galangin. Our results indicated that galangin treatment attenuates H2O2/UVB-induced
cell viability reduction, dermal aging, and SIRT1/PGC-1α/Nrf2 signaling activation. Furthermore,
galangin treatment enhanced Nrf2 activation and nuclear accumulation, in addition to inhibiting
Nrf2 degradation. Interestingly, upregulation of antioxidant response element luciferase activity
following galangin treatment indicated the transcriptional activation of Nrf2. However, knockdown
of SIRT1, PGC-1α, or Nrf2 by siRNA reversed the antioxidant and anti-aging effects of galangin.
In vivo evidence further showed that galangin treatment, at doses of 12 and 24 mg/kg on the dorsal
skin cells of nude mice resulted in considerably reduced UVB-induced epidermal hyperplasia and
skin senescence, and promoted SIRT1/PGC-1α/Nrf2 signaling. Furthermore, enhanced nuclear
localization of Nrf2 was observed in galangin-treated mice following UVB irradiation. In conclu-
sion, our data indicated that galangin exerts anti-photoaging and antioxidant effects by promoting
SIRT1/PGC-1α/Nrf2 signaling. Therefore, galangin is a potentially promising agent for cosmetic
skin care products against UV-induced skin aging.
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1. Introduction

Skin senescence is a progressive and complicated biological process, which is regulated
by both intrinsic and extrinsic factors, leading to cumulative structural and physiological
changes in skin layer and appearance [1]. Intrinsic aging tends to intensify with advancing
age, whereas extrinsic aging is primarily caused by exposure to UV irradiation from the
sun [2]. Both these factors cause the accumulation of reactive oxygen species, which in
turn leads to structural damage to proteins and DNA [3]. In addition, senescent cells also
exhibit a robust inflammatory response, reduction in antioxidant-related gene expression,
and higher secretion of matrix metalloproteinases (MMPs), which enable the degradation
of the extracellular matrix (ECM) in the dermal skin layer [4].

Previous studies have shown that ROS accumulation modulates the antioxidant-
related gene hemeoxygenase-1 (HO-1) and activates transcription factor NF-E2-related
factor-2 (Nrf2) [5,6]. Under conditions of stress, these antioxidant genes are upregulated
and exert their cellular protective function to eliminate excessive ROS production [7,8].
Upon stimulation, Nrf2 nuclear transactivation promotes the Nrf2/antioxidant response
element [9] signaling pathway [10]. HO-1, a redox-sensitive inducible protein encoded
by ARE promoter regulatory elements, protects dermal fibroblast cells against stress-
induced oxidative damage [11]. Therefore, enhancement of antioxidant capacity in the
skin by natural compounds may serve as a promising strategy for treating stress-induced
oxidative damage.

In addition to these antioxidant-related proteins, deacetylase silent information regula-
tor 1 (Sirtuin 1), an NAD (+)-dependent histone deacetylase, plays a vital role in regulating
various biological processes, including cellular senescence, as well as antioxidant, anti-
apoptotic, and anti-inflammatory signaling [12]. Sirt1 deacetylates the lysine residues of
these transcription factors, such as tumor protein P53 (p53), Forkhead box protein O1, and
PPARγ co-activator-1α (PGC-1α), to protect cells against damage [13]. Downstream of Sirt1,
deacetylated PGC-1α in turn facilitates the upregulation of Nrf2 and antioxidant-related
genes [14]. In contrast, PGC-1α enhances NRF1/TFAM signaling to promote mitochondrial
biogenesis [15].

Galangin (3,5,7-trihydroxyflavone), a flavanol found in high concentrations in Alpinia
officinarum and other members of the ginger family, that is used in traditional Chinese
medicine, has been previously demonstrated to exert anti-cancer, anti-inflammatory, and
anti-oxidative effects [16–18]. Cumulative evidence shows that galangin executes a novel
function in skin therapy, such as in the treatment of allergic inflammation and atopic
dermatitis-like skin lesions [19,20]. Our previous studies demonstrated that galangin treat-
ment inhibited H2O2-induced suppression of Insulin Like Growth
Factor-1 (IGF1)/Extracellular Signal-Regulated Kinase (ERK) collagen synthesis signaling
in human dermal fibroblasts [21,22]. However, the detailed molecular mechanism by which
galangin exerts its anti-oxidative properties on dermal fibroblast cells remains unknown.

2. Materials and Methods
2.1. Cell Culture, UVB-Irradiation, H2O2 and Galangin Treatment

HS68 cells were obtained from the Bioresource Collection and Research Center (BCRC,
Hsinchu, Taiwan). HS68 cells were subcultured in high-glucose Dulbecco’s modified Eagle
medium (DMEM) (Sigma–Aldrich D5796, St. Louis, MO, USA) supplemented with 10%
fetal bovine serum (FBS) (HyClone) and 1% penicillin–streptomycin at 37 ◦C in a humidified
incubator under a 5% CO2 atmosphere. In H2O2-exposed cells, HS68 cells were treated
with 200 µM H2O2 for 1 h and treated with galangin for another 23 h. For UVB-exposed
cells, the cells were washed with PBS and exposed to the crosslinker containing UVB bulbs
at an intensity of 40 mJ/cm2. After UVB exposure, cells were treated with galangin for 24 h.
Low passage (<20) HS68 cells were used in this study.
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2.2. Antibodies and Reagents

All the antibodies employed in the present study are as follows: anti-β-gal (sc-19119,
Santa Cruz, CA, USA), anti-GAPDH (sc-32233, Santa Cruz, CA, USA), anti-HDAC1 (c-19)
(sc-6298, Santa Cruz, CA, USA), anti-HO-1 (H-105) (sc-10 789, Santa Cruz, CA, USA),
anti-Nrf2 (ab89443, Abcam, Cambridge, UK), anti-p-Nrf2 (S40) (ab76026, Abcam), anti-
PGC-1α (D-5) (sc-518025, Santa Cruz, CA, USA), anti-P16INK4A (10883-1-AP, Proteintech,
Manchester, UK), anti-p21 (F-5) (sc-6246, Santa Cruz, CA, USA), and anti-p53 (1C12) (no.
2524, Cell Signaling, Danvers, MA, USA), anti-SIRT1 (B-7) (sc-74465, Santa Cruz, CA, USA),
and anti-β-actin (sc-47 778, Santa Cruz, CA, USA). The secondary antibodies, namely
anti-rabbit, anti-mouse, and anti-goat, were purchased from Santa Cruz, California. H2O2,
galangin, and resveratrol were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.3. MTT Assay

The effect of cellular cytotoxicity on cell survival was assessed using the MTT assay.
Briefly, HS68 cells were seeded in 24 wells. After 24 h, cells were treated with different
concentrations of H2O2, UVB, and galangin. After treatment, MTT solution (5 mg/mL)
was added to each well and incubation was carried out for 3 h at 37 ◦C. The supernatant
was removed, and DMSO was added over a 10-min period on a shaker. Cell viability was
measured at an absorbance of 570 nm using a spectrophotometer reader (BioTek, Winooski,
VT, USA). The experiments were repeated thrice to obtain accurate and sufficient data for
statistical analysis.

2.4. Western Blotting Analysis and Immunoprecipitation

Proteins were extracted using radioimmunoprecipitation assay (RIPA) buffer (R0278,
Sigma–Aldrich, St. Louis, MO, USA) and quantified using the Bradford method. Different
percentages of SDS-PAGE (6–12%) were used to isolate different molecular weights of
the protein. After isolation, the protein on the gel was transferred to a PVDF membrane
(GE Healthcare, Amersham, UK), which was activated using methanol. The transferred
membranes were treated with blocking buffer and incubated with specific primary HRP-
conjugated antibodies overnight at 4 ◦C on an orbital shaker. The next day, the membranes
were incubated with the corresponding secondary antibodies at room temperature for
1 h. The membranes were photographed using an ImageQuant LAS4000 mini with a
chemiluminescence substrate. Further experimental details were performed as described
previously [23,24].

The PureProteome™ Protein G Magnetic Bead System (Millipore, MA, USA) was used
for immunoprecipitation, according to the manufacturer’s instructions [25]. First, 500 µg
of cell lysate was incubated with 2 µg of specific primary antibody, and the mixture was
incubated overnight on a rotator at 4 ◦C. The immunoprecipitated protein was eluted from
the magnetic beads at 95 ◦C for 5 min and then separated by SDS-PAGE.

2.5. Luciferase Reporter Assay and siRNA Transient Transfection

The pGL3-ARE plasmid was provided by Being-Sun Wung (National Chiayi Uni-
versity, Chiayi City, Taiwan). The dual luciferase reporter gene (DLR) analysis system
(Promega, CA, USA) was used to measure ARE transcription activity. Cells were trans-
fected with the pGL3-ARE luciferase reporter gene construct using PureFection transfection
reagent. After a 4-h transfection period, the medium was changed and treatment with
different concentrations of galangin was carried out for 24 h. Luciferase activity was
measured using a reporter microplate luminometer (Turner Biosystems, Sunnyvale, CA,
USA). Sirt1-siRNA (SASI_Hs01_00153666) and PGC-1α-siRNA (SASI_Hs01_00063323) were
purchased from Sigma–Aldrich (St. Louis, MO, USA).

2.6. SA-β-Gal Staining

An SA-β-gal staining kit (No. 9860, Cell Signaling, Danvers, MA, USA) was used to
detect senescent cells. HS68 fibroblasts were seeded on slides for 24 h and then subjected to
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different treatment procedures. The cells were fixed with 4% paraformaldehyde at room
temperature for 10 min and washed twice with ice-cold PBS. The cells were then incubated
with staining solution overnight at 37 ◦C. Images were captured using a light microscope
(Olympus DP73, Tokyo, Japan).

2.7. Nuclear and Cytoplasmic Separation

A nuclear and cytosol separating kit (BioVision, Milpitas, CA, USA) was used to
isolate the nuclear and cytosolic proteins, according to the manufacturer’s instructions [26].
Nuclear fractions were resuspended in CEB-A mix (proteinase inhibitor cocktail, DTT), and
cytoplasmic fractions were resuspended in NEB mix (proteinase inhibitor cocktail, DTT).
Nuclear and cytosolic proteins were separated by SDS-PAGE.

2.8. Immunofluorescence Staining

HS68 cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% Triton
X-100 for 15 min at room temperature before staining with the primary antibody p-Nrf2
(S40) (ab76026; Abcam, Cambridge, UK). Incubation with Alexa 488 goat anti-rabbit IgG
secondary antibodies (A11008, Invitrogen, Carlsbad, CA, USA) was carried out for 2 h at
room temperature. Staining with 4′,6-diamidino-2-phenylindole (DAPI) was performed to
ensure localization of the nucleus. Images were captured using a fluorescence microscope
(Olympus DP73, Tokyo, Japan).

2.9. Experimental Animals and Treatment Protocols

C57BL/6J nude mice were kept at a constant temperature (22 ◦C), with a light/dark
cycle of 12 h, and were provided access to food and tap water. Briefly, dorsal skin sec-
tions from five-week-old mice were subdivided into the following four areas: (i) control
group + vehicle; (ii) UVB-irradiation + vehicle group; (iii) UVB irradiation + low-dose
galangin (12 mg/kg) group; and (iv) UVB irradiation + high-dose galangin (24 mg/kg)
group. The dorsal skin areas were topically applied with vehicle (propylene glycol: ethanol:
H2O = 1:1:8) or galangin (100 µL each) and were irradiated with UVB (150 mJ/cm2 per
exposure, 3 times a week for 8 weeks). Each group consisted of six animals. All animals
were weighed and inhaled with 1–3% isoflurane before sacrificed.

2.10. Immunohistochemistry

The slides were immunostained with anti-PGC-1α, anti-Sirt1, and anti-β-gal antibodies
using an UltraVision LP detection system (Vector Laboratories, Burlingame, CA, USA),
according to the manufacturer’s instructions [27]. Tissue biopsies were dried overnight at
60 ◦C. The following day, tissues were deparaffinized in xylene for 40 min and rehydrated
with a graded series of ethanol. The slides were covered with permanent mounting medium
(Sigma–Aldrich, St. Louis, MO, USA) and photographed under a microscope (Olympus
DP73, Tokyo, Japan).

2.11. Statistical Analysis

Statistical analysis was performed using Graph Pad Prism5 statistical software (San
Diego, CA, USA). The overall significant difference between the averages of multiple
groups was evaluated using the analysis of variance. The data were analyzed using a
separate one-way analysis of variance. Significant differences between individual means
were determined using Tukey’s test. All results were quantified using ImageJ software.

3. Results
3.1. Galangin Inhibited UVB- and H2O2-Induced Proliferation Reduction in HS68 Cells

To investigate the cellular cytotoxicity of galangin (Figure 1A) in vitro, HS68 cells were
treated with different doses of galangin (0, 10, 20, 30, 40, and 50 µM) for 24 h. The MTT
assay results showed that galangin was not cytotoxic to HS68 cells (Figure 1B). Next, we
determined whether H2O2 or UVB induces cell-proliferation reduction in HS68 cells. The
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cells were exposed to different doses of H2O2 (100, 150, 200, 250, and 300 µM) and UVB (25,
30, 40, 50, and 60 mJ/cm2) for 24 h. The results indicated that cell viability decreased in a
dose-dependent manner following H2O2/UVB exposure (Figure 1C,D). Next, we examined
the protective effects of galangin in H2O2- and UVB-exposed cells. The results indicated
that galangin was able to protect HS68 cells against H2O2- and UVB-induced dermal cell
death, and a dose of 30 µM was chosen for subsequent experiments (Figure 1E,F).
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Figure 1. Galangin inhibits UVB- and H2O2-induced proliferation reduction in HS68 cells.
(A) Structure of galangin (3,5,7-trihydroxyflavone). (B–D) HS68 cells were treated with galangin,
H2O2, and UVB, at the indicated concentrations/intensities for 24 h. (E,F) HS68 cells were exposed
to H2O2 (200 µM) or UVB (40 mJ/cm2) and then co-treated with galangin at various concentrations
(10–30 µM). The MTT assay was used to determine cell viability. Values shown are means ± SE.
Quantification of the results is shown (n = 3) * p < 0.05, *** p < 0.001 vs. control cells; # p < 0.05,
## p < 0.01, ### p < 0.001 vs. H2O2- or UVB-treated cells.

3.2. Effect of Galangin on the SIRT1/PGC-1α/Nrf2 Pathway and Upregulation of Antioxidant
Genes (HO-1) in HS68 Cells Exposed to UVB/H2O2

To evaluate the involvement of the SIRT1/PGC-1α/Nrf2 pathway in the antioxidant
effect of galangin against UVB/H2O2-induced dermal fibroblast oxidative damage, West-
ern blotting was performed to detect the protein expression of SIRT1, PGC-1α, p-Nrf2,
Nrf2, and HO-1. Galangin treatment dose-dependently increased the protein levels in
SIRT-1, PGC1-α, p-Nrf-2, and HO-1 (Figure 2A). Immunoprecipitation experiments further
confirmed that galangin treatment prevents Nrf-2 degradation through ubiquitination
(Figure 2B). Furthermore, treatment with galangin in UVB- and H2O2-exposed cells sub-
stantially induced Sirt-1/PGC-1α/Nrf-2 signaling (Figure 2C,D). These results indicated
that galangin ameliorates H2O2- and UVB-induced oxidative damage in dermal fibroblasts
by enhancing the Sirt-1/PGC-1α/Nrf-2 signaling pathway.
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Figure 2. Effects of galangin on the Sirt1/PGC-1α/Nrf2 pathway and upregulation of antioxidant
genes (HO-1) in HS68 cells exposed to UVB/H2O2. (A) HS68 cells were treated with different
concentrations of galangin for 24 h. (B) The binding of Ub with Nrf2 was detected using immunopre-
cipitation under different concentrations of galangin for 24 h. (C,D) HS68 cells were exposed to H2O2

(200 µM) or UVB (40 mJ/cm2) and then co-treated with galangin at a specific concentration (30 µM).
Protein levels of Sirt1, PGC-1α, Nrf2, p-Nrf2, and HO-1 were detected by Western blot. Values shown
are means ± SE. Quantification of the results is shown (n = 3) * p < 0.05, ** p < 0.01, *** p < 0.001 vs.
untreated control cells; # p < 0.05, ### p < 0.001 vs. H2O2/UVB-treated cells.

3.3. Galangin Triggered Nrf2 Nuclear Translocation and ARE Transcriptional Activation in HS68
Cells Exposed to H2O2

Nrf2/ARE activation has been reported to regulate antioxidant genes. Next, we
examined the nuclear translocation pattern of Nrf-2 and its transcriptional activation.
Our Western blot analysis results showed that nuclear accumulation of p-Nrf-2 in H2O2-
induced HS68 cells was further enhanced by galangin treatment (Figure 3A). Further-
more, immunofluorescence images of p-Nrf2 nuclear co-localization showed similar results
(Figure 3B). Next, we measured the ARE activity level upon galangin treatment, and
our results showed that Nrf-2-dependent luciferase activity was markedly increased in
a dose-dependent manner (Figure 3C). In conclusion, galangin considerably augmented
the nuclear translocation and transcriptional activation of Nrf-2, which is a transcription
factor that regulates the production of antioxidant proteins to protect dermal fibroblast
cells against oxidative damage.

3.4. Galangin, as Well as Resveratrol (Sirt1 Activator), Enhanced the Sirt1/PGC-1α/Nrf2 Pathway
and Antioxidant Genes (HO-1) in HS68 Cells following UVB/H2O2-Induced Damage

Previous study showed that resveratrol was capable of activating Sirt1 signaling and
protecting cells against oxidative damage [28,29]. Herein, we compared the protective
effects of galangin and resveratrol at the same dose (30 µM) on UVB/H2O2-exposed
cells. Interestingly, galangin-treated cells exhibited similar levels of enhancement in Sirt-
1/PGC-1α/Nrf-2 signaling compared with cells treated with resveratrol at the same dose
of 30 µM (Figure 4A,B). Our results demonstrated that galangin could act as another
Sirt-1-activating compound.
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3.5. Anti-Aging Effects of Galangin on UVB/H2O2-Induced HS68 Cell Senescence

To identify whether exposure to UVB or H2O2 causes dermal aging, Western blot
analysis was performed to investigate the anti-aging effect of galangin. Our results demon-
strated that aging markers, such as p53, p21, and p16, were upregulated following exposure
to H2O2 (200 µM) or UVB (40 mJ/cm2); moreover, this result was reversed by galangin
treatment (Figure 5A,B). SA-β-gal staining was employed to detect the aged dermal fi-
broblasts. Our results indicated that UVB or H2O2 exposure increased the number of
SA-β-gal-positive cells. However, treatment with galangin reversed UVB/H2O2-induced
dermal fibroblast cell senescence (Figure 5C).
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Figure 3. Galangin triggers Nrf2 nuclear translocation and ARE transcriptional activation in HS68
cells exposed to H2O2. (A,B) HS68 cells were exposed to H2O2 (200 µM) or UVB (40 mJ/cm2) and
then co-treated with galangin at a specific concentration (30 µM). p-Nrf2 expression was estimated
in the cytosolic and nuclear fractions. The p-Nrf2 protein level was detected by Western blot.
(C) p-Nrf2 nuclear translocation was further ascertained by immunofluorescence staining. An anti-
Nrf2 antibody and a FITC-conjugated second antibody were used to detect p-Nrf2 cellular distribution.
DAPI staining indicated the nucleus location (blue). The images were acquired using florescence
microscopy (200×). HS68 cells were transfected with ARE-luciferase construct for 24 h. The cells were
then treated with different doses of galangin (10, 20, and 30 µM) for 24 h and assayed for luciferase
activity. Values shown are means ± SE. Quantification of the results is shown (n = 3) * p < 0.05,
*** p < 0.001 vs. untreated control cells; ### p < 0.001 vs. H2O2-treated cells.
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Figure 4. Galangin enhances the Sirt1/PGC-1α/Nrf2 pathway and its downstream gene (HO-1), as
well as resveratrol (Sirt1 activator), in HS68 cells under UVB/H2O2-induced damage. (A,B) HS68
cells were exposed to H2O2 (200 µM) or UVB (40 mJ/cm2) and then co-treated with galangin (30 µM)
or resveratrol (30 µM) as indicated in related graphs. The protein levels of Sirt1, PGC-1α, p-Nrf2,
Nrf2, and HO-1 were detected by Western blot. Values shown are means ± SE. Quantification of the
results is shown (n = 3) * p < 0.05 vs. untreated control cells; # p < 0.05, ## p < 0.01, ### p < 0.001 vs.
H2O2/UVB-treated cells.
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  Figure 5. Anti-aging effects of galangin on UVB/H2O2-induced senescence of HS68 cells. (A,B) HS68
cells were exposed to H2O2 (200 µM) or UVB (40 mJ/cm2) and then co-treated with galangin at a
specific concentration (30 µM). Protein levels of p53, p21, p16, and β-Gal were detected by Western
blot. (C) After treatment, cells were stained using an SA-β-Gal staining kit to detect SA-β-Gal
activity. Positive cells were stained in green color, which indicated senescent cells. Values shown
are means ± SE. Quantification of the results is shown (n = 3) ** p < 0.01, *** p < 0.001 vs. untreated
control cells; # p < 0.05, ## p < 0.01, vs. H2O2/UVB-treated cells.
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3.6. Silencing of Sirt1 or PGC-1α by siRNA Diminished the Protective Effects of Galangin under
H2O2 Exposure in HS68 Cells

To ensure that galangin activates Sirt1/PGC-1α/Nrf2 signaling to attenuate skin
aging in H2O2-exposed cells, we used siRNA to silence Sirt1 and PGC-1α expression; this
would enable identification of the protective effects of galangin. Our data showed that
silencing Sirt1 or PGC-1α effectively hindered Nfr2 activation and HO-1 protein expression
(Figure 6A). Furthermore, galangin attenuated H2O2-induced upregulation of SA-β-gal-
positive cells, which was reversed following the knockdown of Sirt1 or PGC-1α (Figure 6B).
These results indicated that the induction of Nrf2 in attenuating aging is mediated via Sirt1
and PGC-1α signaling in dermal fibroblast cells exposed to H2O2.
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  Figure 6. Silencing of Sirt1 or PGC-1α diminishes the protective effects of galangin under H2O2

exposure in HS68 cells. (A) Levels of Nrf2, p-Nrf2, and HO-1 measured by Western blot in response
to Sirt1 and PGC-1α silencing. (B) After treatment, cells were stained using an SA-β-Gal staining
kit to detect SA-β-Gal activity. Positive cells were stained in green, which indicates senescent cells.
Values shown are means ± SE. Quantification of the results is shown (n = 3) * p < 0.05, ** p < 0.01, vs.
galangin plus H2O2-treated cells.

3.7. Silencing of Nrf2 by siRNA Diminished the Protective Effects of Galangin under H2O2
Exposure in HS68 Cells

To demonstrate that the protective effects of galangin are mediated by Nfr2 activation,
siRNA-Nrf2 transfection was used to silence Nfr2 expression. Successful knockdown of
Nrf2 was confirmed by Western blot analysis (Figure 7A). Furthermore, galangin attenuated
H2O2-induced upregulation of SA-β-gal-positive cells, which was reversed following Nrf2
knockdown (Figure 7B). These findings confirmed that the anti-aging effect of galangin is
mediated through Nrf2 activation.
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Figure 7. Silencing of Nrf2 diminishes the protective effects of galangin under H2O2 exposure in
HS68 cells. (A) p-Nrf (active) and Nrf protein levels were detected by Western blotting in response to
siRNA silencing to ensure knockdown efficiency. β-actin acted as loading control. (B) After treatment,
cells were stained using an SA-β-Gal staining kit to detect SA-β-Gal activity. Positive cells were
stained in green, which indicates senescent cells. Values shown are means ± SE. Quantification of the
results is shown (n = 3) * p < 0.05, ** p < 0.01, vs. galangin plus H2O2-treated cells.

3.8. Galangin Alleviated UVB-Induced Skin Photodamage in C57BL/6J Nude Mice

The protective effects of galangin in vivo were demonstrated by the topical adminis-
tration of galangin on the dorsal skin of 4-week-old C57BL/6J nude mice following UVB
(150 mJ/cm2) exposure three times a week over a duration of 8 weeks (Figure 8A). The
skin epidermis thickness, collagen content, as well as protein levels of Sirt1, PGC-1α, Nfr2,
HO-1, and β-Gal were examined. Our data showed that topical application of galangin on
UVB-irradiated dorsal skin of mice led to a dose-dependent decrease in epidemic thickness
and an enhancement of collagen fiber density in the dermis (Figure 8B). The immunohis-
tochemistry (IHC) images of the obtained results showed a remarkable upregulation in
the Sirt1 and PC-1α levels in galangin-treated mice following UVB irradiation (Figure 8B).
Moreover, the β-Gal levels, which are an indicator of senescence, were reduced upon galan-
gin treatment (Figure 8B). Furthermore, Western blot analysis of the skin tissue showed that
the protein levels of Sirt1, PGC-1α, p-Nrf2, and HO-1, as well as the nuclear transactivation
of Nrf-2, were dose-dependently increased in the galangin-treated groups compared with
the corresponding parameters in the UVB-irradiated groups (Figure 8C,D). In conclusion,
our study demonstrated that galangin protected human dermal fibroblasts against H2O2-
or UVB-induced damage through enhanced Sirt1/PGC-1α/Nrf2 signaling, as well as its
downstream effector HO-1, to attenuate oxidative stress-induced senescence (Figure 9).
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Figure 8. Galangin alleviates UVB-induced skin photodamage in C57BL/6J nude mice. (A) The
experimental animal protocol has been described in detail in the Materials and Methods section.
(B) Skin morphology and collagen levels were determined by H&E stain and Masson’s trichrome
stain, respectively. Sirt1, PGC1-α, and β-Gal were detected by immunohistochemistry. (C) Western
blot analysis of SIRT1, PGC1-α, p-Nrf, and HO-1 protein levels in the dorsal skin of the mice. α-
Tubulin acted as a loading control. (D) p-Nrf2 expression in the cytosol and nucleus was analyzed
using a nucleus and cytosol extraction kit and detected by Western blotting. Values shown are
means ± SE. Quantification of the results is shown (n = 3) ** p < 0.01 vs. vehicle control group;
# p < 0.05, ## p < 0.01, ### p < 0.001 vs. UVB-irradiated group.
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4. Discussion

Human skin senescence is a progressive process resulting from ROS accumulation,
followed by human fibroblast dysfunction and wrinkle formation. Skin senescence is
divided into two major types: intrinsic aging and extrinsic aging. Both are strongly linked
to increased generation of ROS, which is an imbalance between free radical production and
anti-oxidative defense in the skin [30]. In the present study, we utilized two in vitro models
to induce human dermal fibroblast damage, including H2O2 and UVB, to mimic the intrinsic
and extrinsic effects of skin aging, respectively. Additionally, UVB-irradiated dorsal skin of
nude mice was used as a skin photoaging model in the in vivo study. In the present study,
we found that treatment with galangin, a natural flavonoid derived from Alpinia officinarum,
considerably alleviates the deleterious effects induced in both in vitro and in vivo models.
The protective properties of galangin were accomplished with the upregulation of Sirt1
and PGC-1α, which in turn augmented the expression of antioxidant genes, such as HO-
1, and reduced dermal senescence. The antioxidant responses of galangin are activated
by Nrf2/ARE signaling. In addition, galangin-induced Nrf2 activation was found to be
regulated by the Sirt1 and PGC-1α signaling pathways. This was further confirmed by
silencing Sirt1 and PGC-1α using siRNA, which attenuated Nrf2 activation and enhanced
cellular senescence. Further evidence showed that Nrf2 knockdown cells were unable to
rescue the anti-aging effects of galangin; consequently, it was inferred that Nrf2 activation
is essential for the action of galangin in reviving stress-induced dermal fibroblast aging.
In summary, our findings indicated that galangin substantially reverses H2O2-induced
cellular senescence by promoting SIRT1/PGC-1α/Nrf2 signaling.

Antioxidants play an essential role in protecting cells against oxidative stress and
damage by eliminating excessive free radicals [31]. Galangin is a flavonoid compound
with anti-oxidative potential, serving as a source of readily available hydrogen to form its
3,5,7-trihydroxyl group, which scavenges free radicals [32]. The antioxidant potential of the
therapeutic effects of galangin has been reported in various diseases, including diabetes
mellitus and nephrotoxicity [31,33]. Furthermore, a study demonstrated that galangin
restores hepatic mitochondrial function by improving the antioxidant status, which po-
tentially decreases the peroxidation of membrane lipids [18]. Zhang et al. reported that
galangin is primarily driven by hydrophobic interactions and hydrogen bonds within the
active site of α-glucosidase, which moderately inhibits α-glucosidase in the treatment of
type 2 diabetes [34]. Most importantly, our recent study indicated that galangin treatment
alleviated H2O2/UVB-induced intracellular and mitochondrial ROS production as well
as mitochondria membrane potential (MMP) imbalance [35]. In addition, another study
showed that galangin could promote Nrf2 signaling to protect keratinocytes cells from
UVB-induced damage [36]. Sirt1 and Nrf2 signaling were enhanced by galangin to reduce
oxidative stress in cadmium-induced renal damage [37]. Therefore, we assumed that the
protective effect of galangin against H2O2/UVB-induced damage is mediated by its antiox-
idant efficacy. In our prior studies, we reported that galangin protects skin cells against
ROS-induced aging and alleviates oxidative stress and inflammatory responses in HS68
cells. It was also identified that galangin treatment attenuated the levels of phosphorylated
NF-κB and pro-inflammatory cytokines, which were increased by H2O2. The effect of
galangin probably was induced by enhancing the IGF1R/Akt survival pathways, which
then led to an anti-inflammatory effect [21,22].

Flavonoids, including luteolin, quercetin, apigenin, and naringenin, were previously
shown to enhance Sirt1 expression or activate Sirt1 [38–41]. However, relatively few studies
have reported that galangin regulates Sirt1 expression. A previous study indicated that
galangin is capable of upregulating Sirt1 and deacetylated LC3, which in turn induces
hepatocellular carcinoma autophagy and apoptosis [42]. Sirt1 plays multiple roles in cancer
and age-related diseases [43]. Shen et al. reported that fullerenol activates Sirt1, leading to
decreased levels of acetyl-p53 and p21/Waf1/Cip1, in protecting retinal pigment epithelium
(RPE) cells against senescence under ROS stimulation [44]. Additionally, Nrf2 is not only
responsible for regulating antioxidant, anti-inflammatory, and detoxifying proteins but is
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also an important modulator of cellular longevity. Nrf2 is translocated into the nucleus and
binds AREs in the promoter region of genes encoding antioxidant enzymes, such as HO-
1 [36]. At the molecular level, Nrf2, a cytoprotective transcription factor, was demonstrated
to hamper UV-induced skin carcinogenesis and attenuate UVA-induced oxidative damage
in skin dermal fibroblasts [45]. Moreover, luteolin has been reported to induce Sirt1/Nrf2
signaling to protect hepatocytes against HgCl2-induced ROS generation, inflammatory
responses, and cellular apoptosis [46]. Zhang et al. reported that pyrroloquinoline quinine
treatment protects against UVA-induced dermal aging by activating the SIRT1/Nrf2/HO-1
pathway [43]. In our study, galangin was capable of activating Sirt1. Furthermore, all these
findings are similar to our obtained results, implying that the protective mechanism of
galangin may be mediated by the activation of the SIRT1/Nrf2/HO-1 signaling pathway
to attenuate H2O2-induced skin dermal aging.

5. Conclusions

In conclusion, our previous study showed that galangin inhibits dermal fibroblast
inflammation by enhancing the IGF1R/Akt survival pathway in H2O2-induced senescence.
In the present study, we further explored the anti-aging effects of galangin in attenuating
H2O2-induced senescence by upregulating the Sirt1/PGC-1α/Nrf2 signaling pathway
and downregulating specific senescence-associated markers, such as p53, p21, p16, and
SA-β-gal. A more detailed mechanism involved in hindering oxidative stress-induced
dermal aging by galangin was elucidated in the present study. Therefore, the findings of
our study demonstrated that galangin may be applied as a versatile natural candidate in
the development of skin care products.
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