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Abstract

Cost-sensitive feature selection learning is an important preprocessing step in machine

learning and data mining. Recently, most existing cost-sensitive feature selection algorithms

are heuristic algorithms, which evaluate the importance of each feature individually and

select features one by one. Obviously, these algorithms do not consider the relationship

among features. In this paper, we propose a new algorithm for minimal cost feature selec-

tion called the rough sets and Laplacian score based cost-sensitive feature selection. The

importance of each feature is evaluated by both rough sets and Laplacian score. Compared

with heuristic algorithms, the proposed algorithm takes into consideration the relationship

among features with locality preservation of Laplacian score. We select a feature subset

with maximal feature importance and minimal cost when cost is undertaken in parallel,

where the cost is given by three different distributions to simulate different applications. Dif-

ferent from existing cost-sensitive feature selection algorithms, our algorithm simulta-

neously selects out a predetermined number of “good” features. Extensive experimental

results show that the approach is efficient and able to effectively obtain the minimum cost

subset. In addition, the results of our method are more promising than the results of other

cost-sensitive feature selection algorithms.

Introduction

Feature selection [1–4] is an essential process for machine learning applications [5–7], because

it improves generalization capabilities and reduces running time [8–10]. The goal of the fea-

ture selection problem is to find a feature subset to reduce the dimensionality of the feature

space and improve the predictive accuracy of a classification algorithm [11–16]. There are vari-

ous feature evaluation methods such as maximal margin [17], maximal stability [18], effective

distance [19], maximum relevance-maximum significance [20], and matrix factorization sub-

space learning [21, 22]. These evaluation methods assume that the obtained data are free.

However, in many real-world applications, we should pay test costs for collecting data items

[23–25]. Test costs are often measured by time, money, and other resources [26]. Therefore,

the cost must be considered in the feature selection process.
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Cost-sensitive feature selection (CSFS) [27–29] focuses on selecting a feature subset with

the minimal cost as well as one that preserves a particular property of the decision system [30–

32]. The CSFS problem becomes a feature selection problem when the cost of CSFS problem is

zero. Thus, the CSFS problem is more generalization than the feature selection problem, and it

has attracted a lot of research interest recently. The main aim of CSFS algorithms is to search

for the cheapest feature subset that preserves sufficient information for classification and clus-

tering (see, e.g., [31, 33, 34]).

In recent years, there have been many work on cost-sensitive feature selection. Tan pro-

posed cost-sensitive feature selection and used it in robotics [35]. Zhang proposed a cost-sensi-

tive feature selection with respect to waiting cost [36]. Min used basic concepts of rough set

theory to propose cost-sensitive attribute reduction [31]. Cost-sensitive feature selection based

on decision-theoretic was proposed by Jia [37]. Zhao considered numerical data with measure-

ment errors and proposed a cost-sensitive feature selection algorithm based on backtracking

approach [38]. Yang proposed a backtracking algorithm for granular structure selection with

minimal test cost in [39]. The Semi-greedy heuristics for cost-sensitive feature selection was

proposed by Min in [40]. However, these heuristic algorithms evaluate each feature individu-

ally and select features one by one. They do not consider the relationship among features and

have high time complexity.

In this paper, we propose a cost-sensitive feature selection algorithm based on Rough sets

and Laplacian score (CSFS-RSLS) to address the CSFS by considering the trade-off between

feature score and test cost. We aim to select a feature subset with maximal feature importance

and minimal cost. Thus, each feature is evaluated by both Laplacian score and test cost. Lapla-

cian score can evaluate features according to their locality preserving ability. The cost is given

by three different distributions [31, 41] to simulate different applications. It is distinguished

from the existing heuristic algorithms, the proposed algorithm takes into account the relation-

ship among features and simultaneously selects out a predetermined number of “good”

features.

Nine open datasets from the University of California-Irvine (UCI) library are employed to

study the performance of our algorithm. The proposed algorithm is implemented in our open

resource software called COst-SEnsitive Rough sets (COSER) [42]. The experimental results

show that CSFS-RSLS can select an optimal feature subset with the best exponential weight set-

ting. Compared with two heuristic algorithms [43, 44], CSFS-RSLS algorithm provides an effi-

cient solution on eight datasets. In addition, our algorithm significantly reduces the time

complexity and resource consumption.

In subsequent sections, we firstly presents the test-cost-sensitive decision system. Secondly,

the subsection includes two points, one is the Laplacian score with cost sensitive, the other is

our proposed algorithm. The CSFS problem in our algorithm is defined in this subsection.

Subsequently, we show two evaluation metrics, which can evaluate the performance of our

proposed CSFS-RSLS algorithm. Fourthly, we discuss the experiment process and list some

settings and results. Finally, we provide conclusion and future work.

Test-cost-sensitive decision system

In real applications, we consider decision system with test cost. The test-cost-sensitive decision

system is a fundamental concept in data mining and machine learning. The first part shows

the test-cost-sensitive decision system models. There are a number of measurement methods

with different test costs to obtain a numerical data item. We define test-cost-sensitive decision

system with error ranges in the second part.

Rough sets and Laplacian score based cost-sensitive feature selection
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Definition 1 [45]. A test-cost-sensitive decision system (TCS-DS) S is the 6-tuple:

S ¼ ðU;C;D; fVaja 2 C [ Dg; fIaja 2 C [ Dg; c�Þ; ð1Þ

where U is a finite set of objects called the universal, C is the set of conditional features, D is

the set of decision features. For each a 2 C [ D, Ia: U! Va. Va is the set of values for each a 2
C [ D, and Ia is an information function for each feature a 2 C [ D, c� : 2C ! Rþ [ f0g is the

feature subset test cost function, whereRþ is the set of positive real numbers.

We assume that the test sequence does not influence the total cost, and for each A� C, one

should specify the value of c�(A). Therefore, the feature subset test cost function c� is to employ

a vector

c� ¼ ½c�ð;Þ; c�ðfa1gÞ; c�ðfa2gÞ; � � � ; c�ðfa1; a2gÞ; � � � ; c�ðCÞ�: ð2Þ

The space requirement for storing function c� is 2|C|, which soon becomes unacceptable as |C|

increases. To deal with this problem, we need to develop an alternative representation of the

test cost function. Therefore, we set c : C ! Rþ [ f0g is the test cost function and

c�ðAÞ ¼
X

a2A

c�ðfagÞ ¼
X

a2A

cðaÞ; ð3Þ

we assume that the range of cost function c is non-negative ðRþ [ f0gÞ, which is a natural

assumption in reality. A feature test cost function can easily be represented by a vector c = [c
(a1), c(a2), � � �, c(a|C|)].

Definition 2 [43]. Let S = (U, C, D, V, I, c�, e) be a TCS-DS-ER, where U, C, D, V, I and c�

have the same meaning as Definition 1, e : C ! Rþ [ f0g is the maximal error range of a 2 C,

and ±e(a) is the error range of a. The error range of feature a is defined as

eðaÞ ¼ D

Pm
i¼1

aðxiÞ

m
; ð4Þ

where we set Δ = 0.1, a(xi) is the i-th instance value of a 2 C, i 2 [1, m], and m is the number of

instances. The precision of e(a) can be adjusted through Δ setting.

In order to facilitate processing and comparison, the conditional feature values are normal-

ized, and their value range from 0 to 1. In fact, there are a number of normalization

approaches. We employ a simple function of normalization: y = (x −min)/(max −min), where

y is the normalized value, x is the initial value, and max and min are the maximal and minimal

values in each conditional features.

Table 1 presents a decision system of Bupa liver disorder (Liver for short), which conditional

features are normalized values; where U = {x1, x2, � � �, x345}, C = {Mcv, Alkphos, Sgpt, Sgot,

Gammagt, Drinks}, and D = {Selector}. Table 2 presents an example of test cost vector.

Rough sets and Laplacian score based cost-sensitive feature

selection

In this section, we introduce the relative reduct by Rough sets, the Laplacian score (LS) and

our algorithm. The first part describes the relative reduct in numeric data. The second part

describes the use of LS in cost-sensitive feature selection. Our CSFS-RSLS algorithm is

described in the last part. The key of the exponential weighting algorithm is the feature impor-

tance exponent weighted function, test costs, and a user-specified exponent α.

Rough sets and Laplacian score based cost-sensitive feature selection
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Relative reducts in rough sets

Rough set theory [46], proposed in the early 1980s, is a mathematical tool to deal with uncer-

tainty and is a relatively new soft computing method. Concept of relative reduct has been thor-

oughly investigated by the rough set theory. The concept of relative reduct is built on decision

systems, and there are many different definitions, such as positive approximation reducts [47],

parallel reducts [48, 49], and a general definition reducts [50].

Definition 3. Any B� C is a decision-relative reduct if POSB(D) = POSC(D), and 8a 2 B,

POSB−{a}(D)� POSB(D).

The first condition guarantees that the information in terms of the positive region is pre-

served, and the second condition guarantees that no superfluous test is included. With this

decision-relative reduct, decision-relative core is naturally defined as follows.

Definition 4. Let Red(S) denotes the set of all decision-relative reducts of S. The decision-

relative core of S is Core(S) = \Red(S).

In other words, Core(S) contains those tests appearing in all decision-relative reducts. A

decision-relative reduct is also called a reduct for brevity.

Laplacian score in cost-sensitive feature selection

In real-world applications, the LS can be applied to supervised or unsupervised feature selec-

tion. For many datasets, the local structure of the space is more important than the global

structure. To represent the local geometry of the data, LS is used to construct a nearest-neigh-

bor graph. The nearest-neighbor graph of the LS is based on the observation that, two data

points are probably related to the same topic if they are close to each other. This can be well-

preserved under the data structure and the nearest neighbor graph can be obtained. The

importance of each feature is calculated from the nearest neighbor graph. For each feature, the

basic idea of LS is to evaluate the feature importance according to its locality preserving power.

Here, we apply the LS to unsupervised feature selection.

Table 1. A numerical decision system (Liver).

Patient Mcv Alkphos Sgpt Sgot Gammagt Selector

x1 0.53 0.60 0.27 0.29 0.09 1

x2 0.53 0.36 0.36 0.35 0.06 2

x3 0.55 0.27 0.19 0.14 0.17 2

x4 0.68 0.48 0.20 0.25 0.11 2

x5 0.58 0.41 0.05 0.30 0.02 2

x6 0.87 0.28 0.06 0.16 0.04 2

x7 0.61 0.34 0.11 0.16 0.01 2

� � � � � � � � � � � � � � � � � � � � �

x344 0.68 0.39 0.15 0.27 0.03 1

x345 0.87 0.66 0.35 0.52 0.21 1

https://doi.org/10.1371/journal.pone.0197564.t001

Table 2. An example of test cost vector.

a Mcv Alkphos Sgpt Sgot Gammagt

c(a) $16.00 $20.00 $45.00 $28.00 $33.00

https://doi.org/10.1371/journal.pone.0197564.t002
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For each feature, we assume that the feature importance is LS(a), a 2 C. We combine fea-

ture importance and cost as follows:

LSða; cÞ ¼ LSðaÞcðaÞa; ð5Þ

where α is a user-specified non-positive exponent and c is the cost of feature. If α = 0, this func-

tion reduces to the traditional feature importance. About function LS(a) [51], let’s set some

symbols. Let LS(ar) denote the Laplacian Score of the r-th feature. Let fri denote the i-th sample

of the r-th feature, i = 1, � � �, m. Our function can be stated as the following four main steps:

1. Construct a nearest neighbor graph G with m samples. The i-th sample corresponds to xi.
We put an edge between samples i and j if xi and xj are “close”, i.e. xi is among k nearest

neighbors of xj or xj is among k nearest neighbors of xi. When the label information is avail-

able, one can put an edge between two nodes sharing the same label.

2. If samples i and j are connected, put Sij ¼ e�
kxi � xjk

2

t , where t is a suitable constant. Otherwise,

put Sij = 0. The weight matrix S of the graph models the local structure of the data space.

3. For the r-th feature, we define fr = [fr1, fr2, � � �, frm]T, D = diag(S1), 1 = [1, � � �, 1], and L =

D − S, where the maxtrix L is often called graph Laplacian. Let

~f r ¼ f r �
fTr D1

1TD1
1: ð6Þ

4. Compute the LS of the r-th feature as follow:

LSðarÞ ¼
~f Tr L~f
~f Tr D~f

: ð7Þ

Example 1 Firstly, we use a subtable of Table 1 as shown in Table 3 and obtain an error

range vector in Table 4 by Table 3. Secondly, we obtain the core feature is Gammagt by Table 4

and set k = 3 and t = 1, the weight matrix S can be written as follow:

S ¼

1 0 0 0:81 0:80 0

0 1 0:77 0:86 0 0

0 0:77 1 0:76 0 0

0:81 0:86 0 1 0 0

0:80 0 0 0:81 1 0

0 0:75 0 0:73 0 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

:

Table 3. A subtable of the Liver decision system.

Patient Mcv Alkphos Sgpt Sgot Gammagt Selector

x1 0.53 0.60 0.27 0.29 0.09 1

x2 0.68 0.36 0.20 0.35 0.12 2

x3 0.55 0.27 0.19 0.14 0.17 2

x4 0.68 0.48 0.20 0.25 0.11 1

x5 0.58 0.57 0.05 0.30 0.08 2

x6 0.87 0.28 0.06 0.20 0.09 1

https://doi.org/10.1371/journal.pone.0197564.t003
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Then, for each feature, the Laplacian Score LS(a) is shown in Table 5.

The value of the LS(a) indicates the quality of the feature. Table 5 shows that the feature

importance is Gammagt > Sgpt > Sgot > Mcv > Alkphos. When we add the cost and set α =

−1, the LS(Mcv, c) = LS(Mcv)c(Mcv)−1 = 0.8456 × 16−1 = 0.052; LS(Alkphos, c) = 0.037; LS(Sgpt,
c) = 0.021; LS(Sgot, c) = 0.033; LS(Gammagt, c) = 0.029; Obviously, after considering the feature

importance, the cost and the core. We choose the order is: Gammagt > Mcv > Alkphos >

Sgot > Sgpt. As opposed to considering only feature importance or cost, the result is very

different.

The proposed algorithm

To more quickly and efficiently deal with the problem of test cost, we propose a feature-impor-

tance function that includes cost sensitivity to calculate the feature score. This function com-

bines feature importance and cost, and is more reasonable and more widely applicable to

practical problems. The algorithm pseudocode is listed in Algorithm 1 and contains two main

steps:

1. Add the core feature to B according to reduct of rough sets;

2. Add the current-best feature to B according to feature importance function LS(a, c) until

the number of B set achieve the desired number of features.

Algorithm 1 Rough sets and Laplacian score based cost-sensitive feature selection

(CSFS-RSLS).
Input: (U, C, D, {Va|a 2 C [ D}, {Ia|a 2 C [ D}, c)
Output: A feature subset with minimal test cost
Method: CSFS-RSLS
1: B = ;;

//Core computing
2: for (i = 1; i � |C|; i + +)do
3: if (POSC − {ai}(D) 6¼ POSC(D))then
4: B  B [ {ai}; //{ai} is a core feature
5: end if
6: end for
7: For any a 2 C, compute LS(a, c); //compute the laplacian score for

each feature
//Addition feature

8: CA = C − B;
9: Select d features a 2 CA with the maximal LS(a, c);
10: B [ {a};
11: return B;

Table 4. An error range vector.

a Mcv Alkphos Sgpt Sgot Gammagt

e(a) 0.06 0.04 0.02 0.03 0.01

https://doi.org/10.1371/journal.pone.0197564.t004

Table 5. A feature importance vector of the Liver subtable.

a Mcv Alkphos Sgpt Sgot Gammagt

LS(a) 0.8456 0.7439 0.9506 0.9345 0.9680

https://doi.org/10.1371/journal.pone.0197564.t005
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Lines 7 and 9 are key to this algorithm. In line 7, we can insert different feature importance

significance functions LS(a, c) to obtain various algorithms. Line 9, where d is determined by

the comparison algorithm, selects the feature subset number. Eq (4) is introduced here to

adjust the influence of the test cost. We use a comparison method in the proposed algorithm

to choose the best features subset for different α values.

Algorithm 1 has the following three main advantages over existing algorithms:

1. Computation time is reduced. Because the time complexity of the backtracking algorithm

for finding a dataset reduction is 2jCj, where |C| is the feature number of the dataset, when

|C| is large, the calculation time is impractically high. Algorithm 1 shows that the time com-

plexity of the CSFS-RSLS algorithm is |C|.

2. It can handle large datasets, which a number of existing algorithms cannot handle. Large

datasets have a very large number of features, and existing algorithms would find it very dif-

ficult to operate on them. However, in our algorithm, because the time complexity of the

CSFS-RSLS algorithm is |C|, the CSFS-RSLS algorithm is suitable for large datasets.

3. It is highly likely to produce feature subsets with the minimal total cost. For instance, in

Table 2, the existing algorithm obtains the feature subset {Mac, Alkphos, Gammagt}, which

has a total test cost is $16 + $20 + $33 = $69. Our algorithm obtains the feature subset fMac,

Alkphos, Sgotg, and its total test cost is $16 + $20 + $28 = $64. Obviously, our algorithm is

better.

Evaluation method

Among the existing algorithms, there are many algorithms to deal with the MTR problem. It is

necessary to define several evaluation methods to compare the performances. First, we need a

method to evaluate the quality of one feature subset. For example, if the test cost of the optimal

feature subset is $100, an equal number of feature subsets with test cost $120 are better than

another with a test cost of $150. We propose algorithm can run on many datasets or one data-

set with different test cost settings. We propose two statistical metrics: average below factor

and average exceeding factor.

Below factor

For a dataset produce test cost setting, let R0 be an optimal reduct. The below factor of a feature

subset R is

bf ðRÞ ¼
c�ðR0Þ � c�ðRÞ

c�ðR0Þ
: ð8Þ

The below factor is a quantitative metric for evaluating the performance of a feature subset. It

shows the goodness of a feature subset when it is better than the optimal. Naturally, if R is an

optimal feature subset, the below factor is 0.

Maximal below factor. To demonstrate the performance of the algorithm, statistical met-

rics are needed. Let the number of experiments be K. In the i-th experiment (1� i� K), the

feature subset computed by the algorithm is denoted by Ri. The maximal below factor (MBF)

is defined as

max
1�i�K

bf ðRiÞ: ð9Þ

Rough sets and Laplacian score based cost-sensitive feature selection
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This is the best case of the algorithm given the dataset. To some extent, it can express the per-

formance of this algorithm.

Average below factor. The average below factor (ABF) is defined as

PK1

i¼1
bf ðRiÞ

K1

: ð10Þ

Because ABF is averaged over K1 different test cost settings, the value of K1 is c�(R) less than c�

(R0). This value is a very good way to show the performance of the algorithm from a solely sta-

tistical perspective.

Exceeding factor

For a dataset with a test cost setting, the exceeding factor is used to show the performance of

the algorithm. Similarly, if the algorithm is run K times, the exceeding factor and the maximal

exceeding factor are defined in [31]. The exceeding factor provides a quantitative metric to

evaluate the performance of a feature subset. It shows the badness of a feature subset when it is

not optimal. The value of the maximal exceeding factor is the worst case for some datasets.

Although it relates to the performance of one particular feature subset, it should be viewed as a

statistical rather than individual metric.

The average exceeding factor (AEF) is defined as

PK2

i¼1
ef ðRiÞ

K2

: ð11Þ

The maximal exceeding factor is averaged on K2 = K − K1 different test cost settings. It is a sta-

tistical metric that represents the overall performance of the algorithm.

Experiments

In this section, we try to answer the following questions by experimentation.

1. Is the running time of our algorithm reduced?

2. Is our algorithm efficient?

3. Is the CSFS-RSLS algorithm effective?

4. Is our algorithm appropriate for the minimal test cost feature selection problem?

5. Is there an optimal setting of α that is valid for any dataset?

Datasets

Nine standard datasets are used to study the efficiency and effectiveness of the proposed

CSFS-RSLS algorithm. The nine standard datasets of Machine Learning Databases are: Liver,
Wpbc, Promoters, Voting, Ionosphere, Credit, Prostate-GE, SMK-CAN-187, and Waveform. The

SMK-CAN-187 [52] is a benchmark microarray based gene expression database and it has 187

samples and 19993 features. The other 8 datasets are from the UCI [53] library. Where Liver
and Wpbc datasets are from medical applications. The Promoters dataset is from game applica-

tions, Voting dataset is from society applications, Ionosphere dataset is from physics applica-

tions, and Credit dataset is from commerce applications. Prostate-GE dataset has 102 samples

and 5966 features from medical applications, the Waveform dataset has 5000 samples and 40

features from Vocality applications.

Rough sets and Laplacian score based cost-sensitive feature selection
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The data of our experiments come from real applications. However, because these datasets

do not provide the test cost, we use uniform, normal, and pareto distributions to generate ran-

dom test costs in [1, 100]. To help show the performance of the cost-sensitive feature selection

algorithm, we create these data for the experiments. The data underlying this study have been

uploaded to Github and are accessible using the following link: https://github.com/fhqxa/

PLOSONE-D-17-34607.

Their basic information are listed in Table 6, where |C| is the number of features, and |U| is

the number of instances, |D| is the number of classes.

Comparison of three distributions

For each dataset, we have different α values, and there are three distributions for generating

the test cost settings. The algorithm is run 100 times with different test cost settings and differ-

ent α settings on nine datasets.

Figs 1–9 show the results of finding the optimal factors from the three distributions. The

proposed algorithm performs the best with the pareto distribution for each dataset. Except for

the Ionosphere dataset, the normal distribution leads to the worst performance. A possible rea-

son is that the pareto distribution generates many small values and a few large values, and

there are many features with both low test costs and large LSs. In contrast, the normal

Table 6. Datasets information.

No. Name Domain |U| |C| |D|

1 Liver Clinic 345 6 2

2 Wpbc Clinic 198 33 2

3 Promoters Game 106 57 2

4 Voting Society 435 16 2

5 Ionosphere Physics 351 34 2

6 Credit-g Commerce 1000 20 2

7 Waveform Vocality 5000 40 3

8 Prostate-GE Clinic 102 5966 2

9 SMK-CAN-187 Society 187 19993 2

https://doi.org/10.1371/journal.pone.0197564.t006

Fig 1. Finding optimal factor of Liver dataset.

https://doi.org/10.1371/journal.pone.0197564.g001
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Fig 2. Finding optimal factor of Wpbc dataset.

https://doi.org/10.1371/journal.pone.0197564.g002

Fig 3. Finding optimal factor of Promoters dataset.

https://doi.org/10.1371/journal.pone.0197564.g003

Fig 4. Finding optimal factor of Voting dataset.

https://doi.org/10.1371/journal.pone.0197564.g004
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Fig 5. Finding optimal factor of Ionosphere dataset.

https://doi.org/10.1371/journal.pone.0197564.g005

Fig 6. Finding optimal factor of Credit-g dataset.

https://doi.org/10.1371/journal.pone.0197564.g006

Fig 7. Finding optimal factor of Prostate-GE dataset.

https://doi.org/10.1371/journal.pone.0197564.g007
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distribution generates many values close to the mean value, and there are no low test costs and

large LSs. Finally, in the uniform distribution, there are more cheap tests than in the normal

distribution, and fewer cheap tests than in the pareto distribution.

Figs 10–18 show the average below factor. For the three distributions, the average below fac-

tor is more convincing than the maximal below factor because the average below factor is cre-

ated from a statistical point of view. Hence, for the three distributions, the average below

factor can better describe the performance of the CSFS-RSLS algorithm. From these results, we

can see that the proposed algorithm obtains the best performance for each dataset from the

uniform distribution except for the SMK-CAN-187 dataset. With the pareto distribution, the

average factor is 0 for the Wpbc, Promoters, Prostate-GE, SMK-CAN-187, and Waveform data-

sets. These results indicate that the test cost of the feature subset and the optimal reduction is

the same. In the Ionosphere dataset, although the optimal factor is 1, the average below factor is

not 0 but about 0.5. This result shows that the test cost of the feature selection subset is less

than the test cost of the optimal reduction and is half that of the optimal reduction.

Fig 8. Finding optimal factor of SMK-CAN-187 dataset.

https://doi.org/10.1371/journal.pone.0197564.g008

Fig 9. Finding optimal factor of Waveform dataset.

https://doi.org/10.1371/journal.pone.0197564.g009
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Fig 10. Average below factor of Liver dataset.

https://doi.org/10.1371/journal.pone.0197564.g010

Fig 11. Average below factor of Wpbc dataset.

https://doi.org/10.1371/journal.pone.0197564.g011

Fig 12. Average below factor of Promoters dataset.

https://doi.org/10.1371/journal.pone.0197564.g012
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Fig 13. Average below factor of Voting dataset.

https://doi.org/10.1371/journal.pone.0197564.g013

Fig 14. Average below factor of Ionosphere dataset.

https://doi.org/10.1371/journal.pone.0197564.g014

Fig 15. Average below factor of Credit-g dataset.

https://doi.org/10.1371/journal.pone.0197564.g015

Rough sets and Laplacian score based cost-sensitive feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0197564 June 18, 2018 14 / 23

https://doi.org/10.1371/journal.pone.0197564.g013
https://doi.org/10.1371/journal.pone.0197564.g014
https://doi.org/10.1371/journal.pone.0197564.g015
https://doi.org/10.1371/journal.pone.0197564


Fig 16. Average below factor of Prostate-GE dataset.

https://doi.org/10.1371/journal.pone.0197564.g016

Fig 17. Average below factor of SMK-CAN-187 dataset.

https://doi.org/10.1371/journal.pone.0197564.g017

Fig 18. Average below factor of Waveform dataset.

https://doi.org/10.1371/journal.pone.0197564.g018
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Figs 19–27 show the average exceeding factors. Here, the optimal setting for α is very close,

if not equal, to that for the finding optimal factor. We only need to obtain the optimal setting

to find the optimal factor. When this α is at the optimal setting, the average exceeding factor is

very low. For example, it is 0 for the nine datasets with the pareto distribution. That is, the con-

structed feature subsets do not have a higher test cost than that of the optimal reduction, on

average. This performance would very satisfactory for practical applications.

In Table 7, we list the results of each dataset to compare the two approaches according to

the optimal factor. Both methods are based on CSFS-RSLS. The first approach, called the non-

weighting approach, is implemented by setting α = 0. The second approach, called the average

α approach.

We observe the following:

Fig 19. Average exceeding factor of Liver dataset.

https://doi.org/10.1371/journal.pone.0197564.g019

Fig 20. Average exceeding factor of Wpbc dataset.

https://doi.org/10.1371/journal.pone.0197564.g020
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Fig 21. Average exceeding factor of Promoters dataset.

https://doi.org/10.1371/journal.pone.0197564.g021

Fig 22. Average exceeding factor of Voting dataset.

https://doi.org/10.1371/journal.pone.0197564.g022

Fig 23. Average exceeding factor of Ionosphere dataset.

https://doi.org/10.1371/journal.pone.0197564.g023
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Fig 24. Average exceeding factor of Credit-g dataset.

https://doi.org/10.1371/journal.pone.0197564.g024

Fig 25. Average exceeding factor of Prostate-GE dataset.

https://doi.org/10.1371/journal.pone.0197564.g025

Fig 26. Average exceeding factor of SMK-CAN-187 dataset.

https://doi.org/10.1371/journal.pone.0197564.g026
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1. The non-weighting approach only performs well on the Ionosphere dataset relative to the

other datasets. The non-weighting approach has the highest average value of 0.661 on the

Ionosphere dataset. For the eight other datasets, the results are unacceptable. For the Wave-
form dataset, when α = 0, it obtains an optimal factor of 0 for the uniform and normal dis-

tribution. In a word, when α = 0, this algorithm has no effect. Therefore, the non-weighting

approach is not suitable for the minimal test-cost feature subset problem.

2. The average α approach takes a statistical approach and significantly improves the quality

of the results in each dataset. For the Promoters, Prostate-GE, Credit-g, and SMK-CAN-187
datasets, the approach has especially good results. For the SMK-CAN-187 dataset, the value

increases by about 99.1% for the uniform distribution. Relatively good results are obtained

for the other datasets. For example, for the uniform distribution, the best value of the α = 0

approach is 0.440, and the value of the average α approach is 0.979, an increase of 52.9%.

This result is a big improvement.

Effectiveness compare with two algorithms

In this section, we compare the proposed algorithm with two existing algorithms [43, 44] to

show the efficiency of our algorithm. First, the two existing algorithms and the CSFS-RSLS

Fig 27. Average exceeding factor of Waveform dataset.

https://doi.org/10.1371/journal.pone.0197564.g027

Table 7. Results for α = 0 and α with the optimal setting.

Dataset α = 0 optimal α

Uniform Normal Pareto Uniform Normal Pareto

Liver 0.145 0.220 0.443 0.894 0.319 0.979

Wpbc 0.018 0.235 0.703 0.854 0.337 1.000

Promoters 0.000 0.040 0.295 0.920 0.415 1.000

Voting 0.440 0.510 0.523 0.979 0.661 0.991

Ionosphere 0.086 1.000 0.898 0.929 1.000 1.000

Credit-g 0.220 0.553 0.548 0.957 0.796 0.999

Prostate-GE 0.003 0.126 0.716 0.980 0.488 1.000

SMK-CAN-187 0.003 0.018 0.741 0.994 0.565 1.000

Waveform 0.000 0.000 0.438 0.678 0.201 1.000

https://doi.org/10.1371/journal.pone.0197564.t007
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algorithm are used in a support vector machine classifier to compute the classification accu-

racy. We used 60% of the dataset as the training set and the rest as the test set. Second, using

the uniform distribution, each algorithm was run 100 times with different test cost settings

and the optimal factor was compared with different exponential weight settings.

Fig 28 shows the classification accuracy of the three algorithms for eight datasets. For the

Liver, Wpbc, Promoters, Voting, Credit, Prostate-GE, and SMK-CAN-187 datasets, the classifica-

tion accuracy of the λ-weighted algorithm and δ-weighted algorithm is the same. For these

datasets, the CSFS-RSLS algorithms has a higher classification accuracy than these two algo-

rithms. Even for the Prostate-GE dataset, the classification accuracy of the CSFS-RSLS algo-

rithm is higher than that of the two algorithms by about 10%. For the Ionosphere dataset, our

CSFS-RSLS algorithm is only lower than the δ-weighted algorithm by about 1%. However, it is

higher than the λ-weighted algorithm by about 7%.

Fig 29 shows the optimal factor found by the three algorithms with the optimal exponential

weight. For the Promoters, Voting, Ionosphere, Credit, Prostate-GE, and SMK-CAN-187 data-

sets, the optimal factor found by the CSFS-RSLS algorithm is 1. For the Ionosphere dataset, the

optimal factor found by the CSFS-RSLS algorithm is higher than that of the λ-weighted algo-

rithm by about 0.4. This is an unsatisfactory number. For the Liver dataset, the optimal factor

found by the CSFS-RSLS algorithm is lower than that of the δ-weighted algorithm by about

0.01. This value is acceptable.

Conclusion and further work

In this paper, we have developed a new method for cost-sensitive feature selection. Firstly, we

use rough sets to calculate the core of all features and use LS to calculate the importance of the

each feature. Secondly, the cost is randomly generated by the three different distributions.

Finally, we combine the feature importance and cost. To compare the performance of the pro-

posed algorithm, we use two heuristic algorithms to our paper in the same experimental envi-

ronment. Extensive experimental results show that the proposed algorithm can have better

performance and obtain a feature subset with low cost. The CSFS-RSLS algorithm also outper-

forms the existing algorithms.

Fig 28. Classification accuracy.

https://doi.org/10.1371/journal.pone.0197564.g028

Rough sets and Laplacian score based cost-sensitive feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0197564 June 18, 2018 20 / 23

https://doi.org/10.1371/journal.pone.0197564.g028
https://doi.org/10.1371/journal.pone.0197564


With regard to further work, many tasks need to be undertaken. First, other realistic data

models with test costs can be built. A second point to be considered in future research is that

the misclassification cost also should be added to the model. A model combining the test cost

with the misclassification cost will be more suitable for real application. In the future, we will

focus on designing more effective and efficient algorithms to cope with the minimal cost fea-

ture-selection problem. In summary, this study suggests new research trends for the feature

selection problem and cost-sensitive learning.
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