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Abstract: Research has proven that light treatment, specifically red light radiation, can provide more
clinical benefits to human health. Our investigation was firstly conducted to characterize the tissue
morphology of mouse breast post 660 nm laser radiation with low power and long-term exposure.
RNA sequencing results revealed that light exposure with a higher intervention dosage could
cause a number of differentially expressed genes compared with a low intervention dosage. Gene
ontology analysis, protein–protein interaction network analysis, and gene set enrichment analysis
results suggested that 660 nm light exposure can activate more transcription-related pathways in
HC11 breast epithelial cells, and these pathways may involve modulating critical gene expression. To
consider the critical role of the Wnt/T-catenin pathway in light-induced modulation, we hypothesized
that this pathway might play a major role in response to 660 nm light exposure. To validate our
hypothesis, we conducted qRT-PCR, immunofluorescence staining, and Western blot assays, and
relative results corroborated that laser radiation could promote expression levels of β-catenin and
relative phosphorylation. Significant changes in metabolites and pathway analysis revealed that
660 nm laser could affect nucleotide metabolism by regulating purine metabolism. These findings
suggest that the Wnt/β-catenin pathway may be the major sensor for 660 nm laser radiation, and
it may be helpful to rescue drawbacks or side effects of 660 nm light exposure through relative
interventional agents.

Keywords: breast; RNA sequencing; metabolite; purine metabolism; Wnt/β-catenin

1. Introduction

Light therapy, utilizing laser or light-emitting diodes (LEDs), has been widely used
for pursuing clinical benefits [1,2]. Light with a wavelength ranging between 600 nm and
900 nm has been proven to be involved in affecting cellular biology processes and has been
further applied to disease therapy, for example, acne vulgaris therapy [3], photodynamic
therapy [4], corneal attenuating endothelial cell dysfunction [5], and delaying sleep–wake
phase disorder [6].

A 660 nm laser displaying a lower permeability of animal tissues [7] has been widely
used for skin disease therapy, including modulating dentinogenesis and angiogenesis
in vitro [8], promoting the expression levels of VEGF and CD34 [9], and skin wound heal-
ing [10–12]. These biological effects of light radiation are decided by the intervention
dosage, strategies, and targeted organisms. Based on the different approaches to therapeu-
tic interventions, biological effects and molecular mechanisms of 660 nm laser radiation on
tissue are often different, for example, modulating autophagy to ensure hemostasis [13],
modulating MMP-2 expression to promote angiogenic processes [14], inhibiting the FOXO1
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signaling pathway to reduce oxidative stress [15], and downregulating NF-κB transcrip-
tional activity with higher cAMP to induce inflammation [16]. Owing to its excellent
features, LED light or laser has been widely used in breast surgery, for example, carbon
dioxide for breast lumpectomy [17], breast ptosis surgery [18], and 3D laser imaging [19].
A major risk of light radiation to the breast may be as a contributor to breast cancer, which
is the most dangerous cancer for females (4,055,770 diagnosed per year in the USA) [20].
Studies have proven that light can strongly interact with estrogen or related membrane
receptors, for example, photoreactivity [21], estrogen–DNA adducts, or DNA damage [22].
To date, few studies have focused on the investigation of a 660 nm laser on breast tissue.
Consequently, to determine how 660 nm laser exposure affects molecular regulation net-
works, it is necessary to investigate the biological effects of a 660 nm laser on breast tissue,
especially for epithelial cells.

Here, we conducted H&E staining to examine the morphological changes of breast
tissue post 660 nm laser radiation, providing global insights into the influence of laser radi-
ation. Then, RNA sequencing of breast epithelial cells (HC11) post 660 nm laser radiation
with two different intervention dosages was conducted. In addition, bioinformatics analysis
of the gene profile was employed to identify the critical pathways modulated by laser
radiation, including gene ontology (GO) analysis, protein–protein interaction (PPI) network
analysis, and gene set enrichment analysis (GSEA). Metabolome changes in HC11 cells post
intervention were investigated using liquid chromatography–mass spectrometry (LC–MS),
and enrichment pathway analysis of significantly changed metabolites was conducted
using the MetaboAnalyst database. Subsequently, qRT-PCR, immunofluorescence staining,
and Western blot analysis were conducted to validate whether critical pathways were
activated or not. Our investigation provides greater insights into the biological effects of
660 nm laser radiation, and it may guide laser radiation therapy for breast-related diseases.

2. Materials and Methods

Animal experiment: BALB/c mice (n = 3, female) were anesthetized using chloral
hydrate, and fur of breast part was removed to expose total breast tissue. Then, mouse was
fixed using adapter and exposed to 660 nm laser (power 10 mW, total intervention dosage
10 J/cm2). Breast tissue was obtained and fixed in 4% polyformaldehyde for 24 h. The fixed
tissue was delivered to Servicebio company (Beijing, China) for further H&E staining.

Cell culture: Mouse normal breast cell line HC11 was purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). Cells were cultured in complete
medium, RPMI 1640 (Gibco, ThermoFisher Scientific, Shanghai, China, Cat. 11875093)
containing L-glutamine, 50 µg/mL gentamycin, 10% Fetal Bovine Serum (FBS, Cat. 10270-
106, Gibco, ThermoFisher Scientific, Shanghai, China,), 10 ng/mL EGF (Beyotime, shanghai,
China, P6114-100 µg), 5 µg/mL insulin (Cat. C600366, Sangon Biotech, China), and 100-unit
penicillin/streptomycin (Cat. 15140122, Gibco, ThermoFisher Scientific, Shanghai, China).
The culturing environment was set as 5% CO2 at 37 ◦C.

RNA sequencing: HC11 cells in 12-well dish were exposed to 660 nm laser (10 mW,
0.5 J/cm2 and 1 J/cm2). Then, total RNA of HC11 cells was extracted with Total RNA
Extraction Kit (Solarbio, Shanghai, China). These RNA samples (n = 3 per group) were
stored at −80 ◦C and then delivered to Novogene company for further RNA sequencing
process (HiSeq 2500). The raw data of RNA sequencing were uploaded to GEO database
(GSE207183).

Bioinformatics analysis: RNA sequence libraries were generated with standard
mRNA stranded protocols from Illumina and sequenced on a Hiseq. 2500 (pair-end reads
150 bp long, RapidRun mode) at the Novogene company, China. Data processing was
carried out on personal computer (Intel i5 CPU). The generated reads were mapped to the
mouse genome version GRCm39 using Tophat v.2.1.1. Read data were converted to gene
counts with the program htseq v.1.99.2. Differential gene expression was assessed using
Bioconductor DESeq. 3.0 package [23] running in R language version 4.1.2. Only genes
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with p-values lower than 0.05 after FDR correction for multiple testing were considered
differentially expressed genes.

Volcano plot and heatmap of differentially expressed genes were created using ggplot2
(30 December 2016) running in Rstudio (Version 1.4.1717). Protein–protein interaction
(PPI) network was obtained from STRING website (https://cn.string-db.org/, 1 March
2022, organism mus musculus, and minimum required interaction score—high confidence),
and images of PPI network were produced using Cytoscape 3.8.2. Gene ontology (GO)
analysis of DEGs was conducted in g:profiler website (https://biit.cs.ut.ee/gprofiler/gost,
1 March 2022,) with ordered query. The bubble plot of GO analysis was generated using
ggplot2 running in Rstudio. Gene score enrichment analysis (GSEA) was conducted in
GSEA software v.4.2.2 (http://www.gsea-msigdb.org/gsea/index.jsp, 1 March 2022,) with
Hallmark gene set, and parameters were set as following: number of permutations, 3000;
permutation type, gene set. Gene overlapping was conducted in FunRich3.1.3. Permutation
types of GSEA were set as “gene set”, and other parameters were set as default if without
any special mention.

Immunofluorescence staining: For immunofluorescence staining, cells post treatment
(n = 3 replicates per group) were fixed in 4% polyformaldehyde for 30 min, and fixed
cells were incubated with primary antibody of rabbit anti-β-catenin (Abcam, Shanghai,
China, ab32572, conjugated with Alexa Fluor 647 dye) at 4 ◦C overnight. Fixed cells
were counterstained with DAPI to display nuclei. Photos were obtained by a fluorescent
microscope with a camera (Zeiss LSM 880, Germany). Excitation and emission wavelengths
were 405 and 425–460 nm (blue) for DAPI and 652 and 668 nm (red) for Alexa Fluor 647.

Western blot: Cultured HC11 cells (n = 3 replicates per group) were lysed in radioim-
munoprecipitation (RIPA, Roo30, Solarbio, Beijing, China) buffer containing PMSF, and
total proteins were measured using the BCA Protein Assay kit (Solarbio, Beijing, China).
Equal amount of protein was separated in 10% SDS-polyacrylamide gels and electrophoret-
ically transferred onto a polyvinylidene difluoride transfer membrane. After blocking with
5% nonfat milk, the membranes were incubated overnight with specific primary antibodies
against β-catenin (Abcam, Shanghai, ab32572), phosphorylated β-catenin (Abcam, Shang-
hai, ab277785, phosphorylated site S552), and actin (Solarbio, Beijing, China, K200058M).
The blots were then visualized by enhanced chemiluminescence (ECL).

qRT-PCR: Total RNA (n = 5 replicates per group) was extracted with Total RNA
Extraction Kit (Solarbio, Shanghai, China), and the quality and concentration were de-
tected using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). cDNA was synthesized using the Primescript RT Reagent Kit (TakaRa, Dalian,
China). Quantitative real-time PCR (qRT-PCR) analysis was performed using the SYBR
Green Master Mix (Roche, Basel, Switzerland). The sequence of primer: WNT6 forward
primer GCGGAGACGATGTGGACTTC, reverse primer ATGCACGGATATCTCCACGG;
18S rRNA-CGATGCTCTTAGCTGAGTGT, reverse primer GGTCCAAGAATTTCACCTCT.

Liquid chromatography–mass spectrometry: Post treatment (660 nm laser, 10 mW,
1.0 J/cm2), the 10 cm dish (n = 5 replicates per group, control and treatment) was placed on
wet ice, and old culture medium RPMI 1640 was collected to be removed. The cells were
washed 3 times with ice-cold NaCl (0.9% in HPLC grade and deionized H2O) and frozen
on dry ice. Cold 80% MeOH in H2O was added to the dish, which was then transferred to
wet ice before scrapping the cells. The cells were collected into a clear tube and frozen in
liquid nitrogen. Samples were stored at −80 ◦C until analysis.

Samples were vortexed and left on ice for 10 min. After centrifugation, supernatant was
transferred to new tube and evaporated to dryness using speed vacuum. The samples were
prepared and analyzed by LC–MS by Novogene company (Tianjin, China). MetaboAnalyst
was used to examine significantly changed metabolites and generate heat map, principal
coordinate analysis, and volcano plot (www.metaboanalyst.ca/, 1 March 2022).

Statistical analysis: Data were analyzed using GraphPad Prism 8.2.1(GraphPad Soft-
ware, La Jolla, CA, USA) and R language (version 3.6). Volcano plot, heatmap, and bubble
plot were generated using Rstudio software. One-way analysis of variance (ANOVA) with
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Tukey’s test was used for comparison of two groups in validation assay, including qRT-PCR,
metabolite analysis, and WB analysis. Both methods were achieved by the “Analyze” func-
tion in GraphPad Prism. All data are presented as mean ± SEM (standard error of mean).
Statistical significance is considered as follows: * p < 0.05, ** p < 0.01. If nom p-value < 0.05
and NES ≥ 1.0, this means that this pathway can be substantially considered upregulation.
If nom p-value < 0.05 and NES ≤ −1.0, this means that this pathway can be substantially
considered downregulation.

3. Results

Biological impact of breast tissue with long-term exposure to 660 nm. Murine ani-
mals have been commonly employed as therapeutic models to examine therapeutic benefits
post intervention, for example, orthotopic human breast cancer implanted in breast tis-
sue [24]. However, most external light or laser interventions always cause abnormalities,
for example, retina damage [25] and the thermal effects of lasers on organ development [26].
To determine the biological effects of 660 nm laser exposure, animal- or cell-based assays,
including H&E staining, RNA sequencing, bioinformatics analysis, metabolite analysis,
and relative molecular biology assays, were conducted. Consequently, we also employed
BALB/c mouse to determine the impacts of laser exposure, as given in the left panel of
Figure 1.
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Figure 1. Diagram of mouse breast (n = 3 replicates) with exposure to 660 nm laser (power, 10 mW; to-
tal light dosage, 10 J/cm2). The exposed breast tissue was obtained, and H&E staining was conducted
to examine the morphological changes post treatment. Scale bar is 2 mm and 50 µm, respectively.

Here, to examine the biological influences of red light on breast tissues, BALB/c
mouse breast with fur removed was exposed to a 660 nm laser (10 mW, 10 J/cm2). Post
intervention, this breast tissue was resected and further examined using H&E staining.
As given in Figure 1, no significant tissue damage was observed by identifying changes
in breast tissue morphology. Owing to the highly dense ducts and microvessels in breast
tissue, we also examined the integrity of these vascular networks, presented by yellow
arrows in the zoomed image. Near the boundary of microvessels, we did not observe
any leakage of hemoglobin, which will be presented as high-light red patterns. These
results demonstrated that 660 nm laser radiation did not influence the morphology of
breast microvessels. Therefore, these results suggest that long-term exposure to a 660 nm
laser do not display any significantly histological damage to breast tissue.
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RNA sequencing analysis: Although H&E staining suggested that no significant
damage was observed post intervention, it is not as clear to depict the few impacts of
660 nm laser radiation on breast tissue. Subsequently, we performed 660 nm radiation on
mouse epithelial cells, HC11, with two intervention dosages. The HC11 cell line has been
widely used to determine the molecular mechanisms of external intervention, for example,
17β-estradiol regulating STAT5 isoforms in female mammary epithelial cells [27] and LGL1
binding to integrin β1 to promote epithelial branching [28]. Owing to the critical roles
of HC11 cells in female epithelial cell investigation, we consequently determined a laser
intervention on female epithelial cells.

To precisely examine the gene profiles post long-term exposure to 660 nm on breast
vasculature, RNA sequencing experiments were conducted with different intervention
dosages, 0.5 J/cm2 and 1.0 J/cm2, respectively. These intervention doses were set according
to Monte Carlo eXtreme simulation, which is presented in Figure S1. Post intervention
(Figure 2a,b), there were 279 and 954 genes identified as differentially expressed genes
(DEGs), respectively, which may be associated with modulating cellular response to 660 nm
laser radiation. For low-dosage intervention (Figure 2a), 44 and 235 genes were identified as
downregulated and upregulated DEGs (Table S1), respectively. The amount of upregulated
DEGs was ~5-fold compared with downregulated DEGs, implying that upregulated path-
ways may play a central role in following cellular response. When the intervention dosage
was increased to 1.0 J/cm2 (Figure 2b), 256 and 698 genes were identified as downregulated
and upregulated DEGs (SI Table S2), respectively. Notably, folds of upregulated DEGs were
attenuated to ~2.7 compared with downregulated DEGs, demonstrating that upregulated
pathways may be highly involved in regulating the biological processes of 660 nm laser ra-
diation for further cellular response. Interestingly, as presented in the heatmap (Figure 2c),
we can observe that these DEGs (as given in Table S2) are likely changed depending on
the intervention dosage. These results suggest that investigation of RNA sequencing data
should be employed to explore which pathways are essential for cellular response to 660 nm
laser radiation.
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Figure 2. RNA sequencing analysis of HC11 cells post treatment. (a). Gene profile of cells (n = 3 per
group) post treatment. Intervention dosage is set as 0.5 J/cm2. In total, 44 genes and 235 genes were
identified as downregulated and upregulated differentially expressed genes, respectively. (b). Gene
profile of cells post treatment. Intervention dosage is set as 1.0 J/cm2. In total, 256 genes and 698 genes
were identified as downregulated and upregulated differentially expressed genes, respectively.
(c). Heatmap of differentially expressed genes with different intervention. Gene expression was
normalized using z-score method. Threshold value to consider as significant difference was set as
FDR q < 0.05 and |log2FoldChange| ≥ 1.0.
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Protein–protein interaction network and gene ontology analysis: To further exam-
ine how the 660 nm laser intervention affects gene profiles in HC11 cells, upregulated
DGEs were employed to conduct protein–protein interaction (PPI) network and gene on-
tology (GO) analysis to identify critical node genes and pathways. As given in Figure 3a,
only 11 genes were identified as a high correlation, and these genes are associated with
gene transcription, for example, Rps28, Rps18-ps3, Rpl7a-ps5, Rps27rt, Rps10-ps1, Rpl23a,
Rpl29, and Sec61g. Unfortunately, no hub genes in the low-dosage intervention group were
observed compared with the control group, and other bioinformatics analyses failed to
present enriched annotations with a statistical difference. When the intervention dosage
was increased to 1.0 J/cm2, the image of the PPI network analysis (Figure 3b) displayed
several clusters labeled with different colored circles, and these clusters can be attributed
to transcription, the inflammation response, and the Eph/Ephrin kinase family. Further-
more, we also conducted a GO analysis of DEGs depending on the different intervention
groups using the go:profiler database, and only the GO analysis of the high-dosage in-
tervention (Figure 4) is presented as the top 10 terms. These terms can be attributed as
transcription regulation-related terms and DNA binding-related terms, consistent with PPI
network analysis. Therefore, these results suggest that 660 nm laser intervention mainly
affects transcription-related pathways to modulate downstream pathways and display
different phenotypes.
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Figure 3. Protein–protein interaction (PPI) network of differentially expressed gene dependence on
intervention group: (a) low-dosage intervention and (b) high-dosage intervention group. The PPI
network was produced using STRING and Cytoscape software. Key nodes to modulate relative
pathways were labeled using circles with different colors.
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Gene set enrichment analysis (GSEA): To systematically assess the influence of 660 nm
laser intervention, we conducted GSEA depending on different intervention dosages using Hall-
mark gene sets. As given in Figure 5a, there were 12 enriched pathways considered as having a
significant difference, i.e., hallmark_Wnt_beta_catenin_signaling, hallmark_UV_response_up, hall-
mark_TNFA_signaling_via_NFKB, hallmark_p53_pathway, hallmark_oxidative_phosphorylation,
Hallmark_myogenesis, hallmark_myc_targets_v2, hallmark_E2F_targets, hallmark_DNA_repair,
hallmark_apical_junction, and hallmark_adipogenesis. Owing that the value of the normalized
enrichment score (NES) is more than 1.0, these pathways could be substantially considered up-
regulation. When the intervention dosage was increased to 1.0 J/cm2, 13 enriched pathways
(Figure 5b) could be considered as having a significant difference, including 6 substantially
upregulated pathways and 7 substantially upregulated pathways. To identify the critical path-
ways modulating the cellular response, we found that there were four substantially upregu-
lated pathways (Figure 6), which were identified in both enriched terms. These pathways are
hallmark_Wnt_beta_catenin_signaling, hallmark_p53_pathway, hallmark_apical_junction, and
Hallmark_myogenesis, respectively. As per previous reports, the p53 pathway is also associated
with apoptosis [29], and the abovementioned results did not display any apoptotic phenotype,
implying that the p53 pathway may not be a critical pathway in modulating the cellular response
during 660 nm laser intervention. Moreover, the apical junction [30,31] and myogenesis [32,33]
have been corroborated as having a higher association with Wnt_beta_catenin_signaling. There-
fore, these results suggest that the Wnt/β-catenin pathway may play a critical role in the cellular
response during 660 nm laser intervention.
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Figure 6. GSEA score profile of four enriched pathways depending on light treatment with two
dosages: Hallmark_p53_pathway, Hallmark_Wnt_beta_catenin_signaling, Hallmark_Apical_junction,
and Hallmark_Myogenesis. Threshold value to consider as significant difference is set as |normalized
enrichment score (NES)| ≥ 1.0 and NOM p-value < 0.05 and FDR q-value < 0.25.

External intervention alters metabolites. As a major external intervention resource,
light often involves modulating molecular transduction via affecting Ca2+ or other signal-
ing molecules [34,35]. To determine whether light can regulate epithelial cells of breast
vessels, we conducted pathway enrichment analysis using Metascape. As given in Figure 7,
enriched pathways were clustered as several major nodes, i.e., response to radiation, gly-
cosaminoglycan metabolism, degradation of the extracellular matrix, cytokine signaling in
the immune system, transport of small molecules, and lipid homeostasis. Among these en-
riched pathways, metabolism-related terms, for example, glycosaminoglycan metabolism
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and lipid homeostasis, were enriched, implying that external light intervention might affect
the metabolism of epithelial cells.
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Figure 7. Metascape analysis of enriched pathways using upregulated DEGs in higher intervention dosage.

Considering the abovementioned bioinformatics analysis, few pathways were en-
riched post the low intervention (0.5 J/cm2), implying that the profile of metabolites under
this intervention condition may not be significantly affected. Consequently, metabolism
analysis between the higher intervention dosage (1.0 J/cm2) and the control was conducted
on HC11 cells. Subsequently, metabolites extracted from the HC11 cells post treatment
were analyzed using liquid chromatography–mass spectrometry (LC–MS) to examine
changes compared with the control group (Table S3). As expected, external light treat-
ment resulted in significant changes to several critical metabolites (Figure 8A). Among
these significant changes in metabolites, 5 downregulated and 60 upregulated metabolites
were identified, and the relative intensity of these significant changes is represented in a
heatmap with group clusters (Figure 8B). Pathway analysis of these significantly changed
metabolites (p-value < 0.05 and FDR < 0.05) revealed that an increase in enriched path-
ways is directly associated with purine metabolism and phosphatidylcholine biosynthesis
(Figure 8C, labeled by red square). The significantly changed metabolites in enriched
phosphatidylcholine biosynthesis are cytidine monophosphate, pyrophosphate (diphos-
phate), S-adenosylmethionine (S-adenosyl-L-methionine), and CDP-ethanolamine. These
metabolites are mainly located at the endoplasmic reticulum and mitochondria, which
catalyze products of nucleotide and lipid synthesis. Moreover, enrichment of purine
metabolism displayed a higher association with nucleotide synthesis, consistent with the
phosphatidylcholine biosynthesis pathway.
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Figure 8. (A). Volcano plot of metabolite profiles dependent on log2FoldChange (n = 5 replicates
per group). Red dots are presented as downregulated metabolites, and blue dots are presented
as upregulated metabolites (threshold value |log2FoldChange| > 1.0 and FDR q-value < 0.05).
Intervention dosage is set as 1.0 J/cm2. (B). Heatmap shows abundance of significant difference in
metabolites post intervention compared with the control group. Five parallels per group. Clustering
was conducted at row and column levels. (C). Metabolism pathways on significantly upregulated
metabolites (p < 0.05 and FDR q-value < 0.05) in control and treatment groups obtained from
MetaboAnalyst website.

Finally, to further demonstrate how external light intervention affects nucleotide
metabolism, we examined several critical nucleotide metabolites post intervention. As
given in Figure 9, only adenosine, guanine, ATP, and GTP were significantly upregulated.
Except as energy suppliers, adenosine, guanine, and relative metabolites also play an
essential role in modulating signaling transduction, for example, the expression of brain-
derived neurotrophic factor by cycling adenosine monophosphate [36], critical substrates
in the GTPase-related pathway [37–39]. These results imply that nucleotide-related second
messages might be involved in the response to light-induced stimulus.
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Figure 9. Normalized peak areas of the selected metabolites post treatment. Intervention dosage is
set as 1.0 J/cm2. Data are presented as mean ± standard error (n = 5 per group). One-way analysis of
variance (ANOVA) with Tukey’s test: ns, no significance; ** p < 0.01; *** p < 0.001.

Intervention activates the Wnt/β-catenin pathway. As mentioned above, the Wnt/β-
catenin pathway may be the essential pathway to modulate downstream genes post in-
tervention. Here, we firstly analyzed the overlapped genes among the DEGs in different
groups and the gene set of the Wnt/β-catenin pathway, in which the WNT6 gene was
enriched, as given in Figure 10a. Moreover, we also found that 214 genes were identified in
both DEGs with different intervention groups (Table S4). To validate the role of the Wnt/β-
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catenin pathway, qRT-PCR assays were conducted, and the results demonstrated that the
WNT6 gene displayed dosage-dependent upregulation post intervention (Figure 10b). In
the Wnt/β-catenin pathway, catenin protein is the key regulatory protein to modulate
downstream genes. We firstly examined the distribution of β-catenin in the HC11 cells
post intervention, and the confocal images showed (Figure 10c) that β-catenin was sig-
nificantly upregulated and redistributed to cell membranes, consistent with enrichment
of the apical junction pathway. Furthermore, we also conducted Western blot analysis of
β-catenin and relative phosphorylation levels. As shown in Figure 10d, we can observe
that the high-dosage intervention significantly upregulated expression levels of β-catenin
and promoted phosphorylation levels. These results suggest that a high dosage-dependent
intervention can activate the Wnt/β-catenin pathway to further modulate transcription
levels of downstream genes.
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Figure 10. Exposure to 660 nm laser modulates β-catenin-mediated Wnt pathway. (a). Venn diagram
of Wnt pathway gene set and DEGs depending on different treatment groups. (b). Quantification of
WNT6 gene post different intervention. Intervention dosages are set as 0.5 and 1.0 J/cm2 (n = 3 per
group). (c). Immunofluorescence staining of catenin protein (red) post treatment (n = 3 replicates per
group). Nucleus was stained using DAPI dye. Intervention dosage is set as 1.0 J/cm2. (d). Western
blot and quantitative measurement analysis of β-catenin and relative phosphorylation levels post
intervention (n = 3 replicates per group). Data are presented as mean ± standard error. One-way
analysis of variance (ANOVA) with Tukey’s test, **, p < 0.01.
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4. Discussion

Here, our investigation indicated that breast epithelial cells post 660 nm laser radiation
did not significantly affect the cellular morphology, and the RNA sequencing results
illustrated that 660 nm laser radiation could activate the Wnt/β-catenin pathway to further
modulate the expression levels of downstream genes. These results suggest that long-term
exposure to a 660 nm laser may be helpful for breast vessels through the Wnt/β-catenin
pathway, requiring more evidence to support this hypothesis.

Radiation therapy with red laser or LED light has been widely used for disease ther-
apy [40,41], especially for photosensitizer-mediated photodynamic interventions [42–44].
With low-power and high-dosage intervention, no significant morphological changes were
observed, and the integrity of the breast vasculature was not damaged (Figure 1). Al-
though the previous literature has reported that red light could modulate proliferation
and apoptosis pathways to induce further cellular response [45,46], no stronger evidence
supports that long-term red radiation is harmful to human organisms [47]. No significant
morphology damage does not mean that red laser radiation will not further influence the
cellular response at molecular levels. Therefore, more evidence of the biological impact
post radiation may benefit from RNA sequencing.

By identifying the differentially expressed genes (DEGs) depending on intervention
dosage, the number of DEGs was significantly increased from 279 to 954 (Figure 2a,b),
implying that dosage-dependent radiation can significantly affect the gene profiles of breast
epithelial cells (HC11 cells). Light intervention can generate a thermal effect on cells [48],
although intermittent intervention can inhibit this thermal effect. RNA sequencing results
revealed that no heatshock-related proteins were significantly upregulated (Figure 2) and
illustrated that this type of thermal effect could be inhibited by intermittent intervention.
These results are corroborated by GO (Figure 4) and GSEA analyses (Figure 5). Therefore,
we should consider other pathways of red laser radiation to modulate the expression levels
of downstream genes.

Light, as a common external intervention, often modulates signaling transduction
by photoreceptors [49] or by affecting second messages [50]. Owing to the presence of
various ligands binding to enzymes, external light can modulate metabolism-related pro-
cesses, for example, TCA [51] and ATP synthesis [52]. However, our study, by determining
the metabolite profiles, revealed that external light could significantly upregulate several
metabolites (Figure 8A,B), and enrichment pathway analysis demonstrated that two path-
ways, i.e., purine metabolism and phosphatidylcholine biosynthesis, were enriched, and
bioinformatics analysis based on the roles of these upregulated metabolites confirmed that
external light intervention (660 nm) on HC11 cells is nucleotide metabolism. To analyze
the profiles of nucleotides using LC–MS, adenosine, guanine, and related triphosphate
products were significantly upregulated post intervention (Figure 9). Why did 660 nm light
promote products of these metabolites? For ATP and related metabolites, red light can
modulate the oxidative phosphorylation pathways [53–55], which is a major mechanism
for generating ATP. Owing to the salvage pathways of purine synthesis in eukaryotic
cells [56], inosine-5′-monophosphate dehydrogenase 1 (IMPDH1) may be a critical node
for modulating guanine nucleotides by external illumination conditions. However, several
nucleotide moieties (cAMP, GTP, GDP, or GMP) are important second messages for pre-
serving signaling transduction. The concentration of these nucleotide moieties in vivo may
involve regulating downstream pathways, which requires more investigation to identify
the impact of a 660 nm laser on signaling transduction.

Owing to the presence of cytochrome-related proteins, the previous literature has
proven that light can modulate the biological functions of mitochondria and further regulate
downstream pathways [57–59]. Bioinformatics analysis revealed that four pathways, i.e.,
hallmark_Wnt_beta_catenin_signaling, hallmark_p53_pathway, hallmark_apical_junction,
and Hallmark_myogenesis, were observed in both GSEA analysis results. Considering the
high association between mitochondria and the Wnt/β-catenin pathway [60,61], we can
believe that 660 nm laser radiation can substantially activate the Wnt/β-catenin pathway.
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We conducted RT-PCR, immunofluorescence staining, and Western blot analysis, and the
results strongly suggested that 660 nm laser radiation activates the Wnt/β-catenin pathway
through upregulating the WNT6 gene, β-catenin, and relative phosphorylation levels.

The Wnt/β-catenin pathway is involved in many biological processes, including mod-
ulating chronic inflammation [62], liver functions [63], regulating cell proliferation [64],
genome stability [65], neurodegeneration [66], and cardiometabolic disorders [67]. Upreg-
ulating the Wnt/β-catenin pathway may be of great impact on breast vessel functions,
including uremic vascular calcifications [68] and angiogenesis [69–71]. However, most
vessel damage also induces downregulation of the Wnt/β-catenin pathway, and comple-
mentary Wnt sources can promote vascular development post damage [72]. Activation of
the Wnt/β-catenin pathway led by a 660 nm laser may provide potential intervention for
vascular repair.

5. Conclusions

In summary, H&E staining of breast tissue post intervention did not display any
significant damage and microvessel leakage. Through omics analysis by RNA sequencing
and relative bioinformatics, we found that 660 nm laser intervention can significantly affect
the expression levels of transcription-related genes, and further GO functional analysis
revealed that the Wnt/β-catenin pathway can be considered substantial upregulation.
These results were corroborated by qRT-PCR, immunofluorescence staining, and Western
blot analysis. Significant changes in metabolites and pathway analysis revealed that a
660 nm laser could affect nucleotide metabolism by regulating purine metabolism. Our
findings suggest that 660 nm laser radiation may activate the Wnt/β-catenin pathway and
nucleotide metabolism, which provides a potential approach to identifying the impact of a
660 nm laser on the microcirculation system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12101389/s1, Figure S1: Photon migration within breast
tissues. Scale bar is energy density (J/cm2). Red raw is the light direction and grey square is light
source.; Table S1: Downregulated and upregulated DEGs in first group; Table S2: Downregulated
and upregulated DEGs in second group; Table S3: Metabolite profiles in control and treated groups;
Table S4: 214 genes were identified in both DEGs with different intervention groups [73–76].

Author Contributions: H.W. and J.Z., conceptualization, methodology, funding acquisition, super-
vision, writing—original draft preparation; Q.X., investigation, conceptualization, methodology,
funding acquisition; J.Y., Y.M., J.Z. and L.W., investigation, writing—original draft preparation; Z.G.
and X.Z., methodology, writing—review and editing, resources. All authors have read and agreed to
the published version of the manuscript.

Funding: The work is supported by the Talent Postdoctoral Program from Henan Province Funding
(ZYQR201810168), the Young Teacher’s Founding of Henan University, and the Henan Province
Development Breakthrough Program (202102310110), Henan Province scientific and technological
research (222102220028); Young Elite Scientist Sponsorship Program by Henan Association for Science
and Technology (No. 2021HYTP014).

Institutional Review Board Statement: Ethical Review Committee and Laboratory Animal Welfare
Committee of Henan University (HUSOM2020-015).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/biom12101389/s1
https://www.mdpi.com/article/10.3390/biom12101389/s1


Biomolecules 2022, 12, 1389 14 of 17

Abbreviations

qRT-PCR Real-time quantitative reverse transcription PCR
GO Gene ontology
PPI Protein–protein interaction
GSEA Gene set enrichment analysis
DEGs Differentially expressed genes
DAPI 4′,6′-diamidino-2-phenylindole
LED Light-emitting diode
NES Normalized enrichment score
LC–MS Liquid chromatography–mass spectrometry
PPI Protein–protein interaction
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