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The reach of gene–culture coevolution in animals
Hal Whitehead 1, Kevin N. Laland2, Luke Rendell 2, Rose Thorogood 3,4,5 & Andrew Whiten 6

Culture (behaviour based on socially transmitted information) is present in diverse animal

species, yet how it interacts with genetic evolution remains largely unexplored. Here, we

review the evidence for gene–culture coevolution in animals, especially birds, cetaceans and

primates. We describe how culture can relax or intensify selection under different circum-

stances, create new selection pressures by changing ecology or behaviour, and favour

adaptations, including in other species. Finally, we illustrate how, through culturally mediated

migration and assortative mating, culture can shape population genetic structure and

diversity. This evidence suggests strongly that animal culture plays an important evolutionary

role, and we encourage explicit analyses of gene–culture coevolution in nature.
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Genes and culture are both inheritance systems that
transmit information between organisms and generate
phenotypic change (see Box 1 for definitions). Social

learning is the key ingredient of culture. Animals learn important
skills from each other, including what to eat and where to find it,
how to recognise and escape predators, and which migratory
pathways to take through their environments. These cultural
adaptations affect population structures as well as the physical
and social environment that elicits genetic evolution. Thus, cul-
tural behaviour may select for particular functional genes, influ-
ence patterns of genetic diversity, and spark speciation. When
cultural activity is an important determinant of fitness, it can
generate selection for traits that further enhance cultural com-
petencies, allowing genes and culture to coevolve reciprocally
(Fig. 1).

Early reviews assumed that non-human cultures were insuffi-
ciently stable to affect genetic evolution1,2. However, recent
research has established that animal culture is present in insects,
birds, fishes and mammals3,4, that it can have important impacts
on fitness (e.g., ref. 5), that it can be stable over many generations
(e.g., refs. 6,7), and that it can affect evolutionary dynamics even
when transient (e.g., refs. 8,9). Here, we review evidence from
across the animal kingdom that the strength and direction of
selection, as well as population genetic structure, are influenced
by cultural activities in a range of species, not just humans. We
define gene–culture coevolution inclusively, as occurring when
cultural evolution shapes genetic evolution, often but not always
entailing reciprocal interactions between the two. We compare
genetics and culture as systems of inheritance, and explain the
different ways in which culture modifies genetic selection. These
include how culture may select for particular functional genes,
whether in populations, species-wide, or in different species, and
how culture shapes the structure and diversity of variation in
neutral genes.

Evolutionarily relevant properties of culture
Parallels between genetic and cultural inheritance are well-
established, but cultural transmission is mechanistically different
from genetic transmission and cannot simply be treated as
‘another class of gene’3,10,11. Although genes are transmitted at
conception from parents to offspring, social learning occurs
throughout the lifespan, from many different individuals. Culture
thereby allows for the propagation of phenotypic variants among
unrelated individuals, often within timespans significantly shorter
than a generation (e.g., social transmission of predator recogni-
tion in minnows, Pimphales promelas12; socially learned mating
preferences in grouse, Centrocercus urophasianus9). Such ‘hor-
izontal cultures’, comprising learning among similarly aged peers,
can be highly labile; conversely, ‘vertical cultures’, in which off-
spring learn from parents, can be very stable13,14. The stability of
cultural transmission can be enhanced through conformity (i.e., a
disproportionate tendency to adopt the most common beha-
viour), as in the foraging traditions of great tits, Parus major15.
This stability allows cultural traits to be maintained as Nash
equilibria, generating a ‘cultural inertia’ that can hinder adapta-
tion to changing environmental conditions, and leading to
population-specific traditions in behaviour (e.g., migratory
pathways in reef fishes16). Through eliciting change in behaviour,
often across an entire population, culture can transform the social
environment, whereas cultural activities (e.g., foraging) also
modify ecological circumstances. Culture thus encompasses a
range of temporal scales, pathways of information flow and
impacts on selection.

Cultural transmission has a number of additional properties
that affect its role in genetic evolution. Culture provides a highly

flexible means to adjust to novel conditions and modify selection.
Much of social learning is reliant on phylogenetically ancient and
widespread associative learning processes, such as classical and
operant conditioning17. This kind of learning can be applied in an
extremely flexible and open-ended manner, including learning
from both conspecifics and heterospecifics, which means that
animals are not restricted to learning only about environmental
features previously encountered by the lineage (e.g., established
predators or foods). Instead, animals can also learn about entirely
novel stimuli or events, and devise appropriate responses to them
(e.g., birds learn to evade a novel predator18,19). Via learning,
animals can therefore generate adaptive responses to conditions
without prior evolution of dedicated traits with suitable reaction
norms. In addition to responding appropriately to changing
features of their environments, such as the dangers presented by a
novel predator, social learning can also generate opportunities for
phenotypic change in the absence of any immediate environ-
mental change or stressor (e.g., when orangutans, Pongo pyg-
maeus, proactively devise new food-processing techniques, social
learning allows others to access hitherto-unexploited foods, such
as palm heart20).

Culture typically leads to the production and propagation of
adaptive behaviour. Learned behavioural innovations (the ana-
logue of mutation) are usually not random but rather novel
functional solutions tailored to new challenges or hitherto-
unexploited opportunities21. For instance, among the most-
celebrated examples of animal innovation are the invention by
primates and cetaceans of new food-processing methods, and new
dominance and courtship displays, which spread because of their
perceived beneficial qualities and/or are associated with a rise in
status or reproductive success22,23. Learned behavioural innova-
tion is now extensively documented in animals21, and many such
innovations are propagated through social learning (e.g., ref. 24).
Animal social learning is also typically non-random and strategic,
with evidence that individuals often disproportionately copy
successful individuals and high-payoff behaviour25,26, enhancing
the spread of adaptive variants (e.g., some insects and birds are
known to copy the nest-site decisions of successful conspecifics
and heterospecifics27,28). Good information, supporting fitness-
enhancing behaviour, is far more likely to be propagated than bad
information.

These features, most of which are particularly well-documented
in vertebrates, mean that phenotypic accommodation through
culture has the potential to be common, rapid and powerful.
Cultures can quickly accumulate adaptive features29 and intro-
duce novelty into phenotype space, generating diverse selection
on genes30. Yet, cultural systems are not typically well-captured
by standard population genetic or quantitative genetic models of
trait evolution, but instead require dedicated theory2,3,13,31,32.

Culture modifies the strength of selection
A prima facie confusing feature of culture is that it can both speed
up and slow down genetic evolution, but these contrasting effects
are now well-understood, thanks to theoretical work2,13,33. In
stationary, or slowly changing, unimodal fitness landscapes,
learning typically slows evolution by reducing phenotypic dif-
ferences between genotypes34–36. This explains how cultural
species such as humans and, possibly, bottlenose dolphins (Tur-
siops spp.) can live in extremely diverse habitats without major
genetic adaptations37. However, learning usually accelerates
evolution in dynamic environments that cannot be tracked
effectively by selection of genes2,13, or in static multimodal fitness
landscapes, where the existence of multiple optima means that
populations can become trapped on suboptimal fitness peaks. In
the latter case, learning smooths the fitness landscape, increasing
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the likelihood of a directly increasing path of fitness to the global
optimum33,36,38 and helping genotypes to locate otherwise
difficult-to-find fitness peaks39.

In cases where learning accelerates evolution, phenotypic
change (henceforth ‘phenotypic accommodation’) precedes, and
then facilitates genetic adaptation by modifying selection on
genetic variation (‘genetic accommodation’)40. Although, as
described above, social learning can buffer selection on genetic
variation that would otherwise lead to genetic adaptation, this
buffering is unlikely to be perfect, and hence will not preclude
selection of alleles that increase the probability of producing the
phenotype, or improve it further (a process known as ‘genetic

assimilation’41). For instance, the dietary traditions of killer
whales, Orcinus orca, have favoured population-specific genes
influencing morphology and digestion42,43.

Social learning can also elicit the selection of genetic adaptation
in other traits (genetic accommodation). For instance, mate-
choice copying, where the choice of mating partner is influenced
by the mate-choice decisions of other individuals, is found in fruit
flies, fishes, birds and mammals. Mate-choice copying propagates
mating preferences over short time periods, such as a single
season, yet population genetic models have shown that it can
substantially enhance the strength of sexual selection on male
traits8. Birdsong provides another illustration of how cultural
change, which is rapid at least with respect to rates of genetic
change, can nonetheless be consequential for genetic evolution,
influencing patterns of migration and assortative mating, and
facilitating speciation44–46. In sum, theoretical work leads to the
expectation that genetic accommodation and genetic assimilation
in response to culture could be widespread in animal populations,
but this has been little investigated. Further examples of how
cultural plasticity can precede and facilitate genetic evolution, and
affect evolutionary rates, are considered in more detail in the
following section.

Culture creates new selection pressures
Culture changes selection on functional genes. Among the
processes of gene–culture coevolution, attention has over-
whelmingly focussed on relationships between the distributions of
functional genes within a population and cultural variants. Cor-
relations are expected if cultural innovations alter the selection
regimes for particular genes, as individuals with the same genes
can have different fitness in different cultural contexts. Given it is
impossible to demonstrate the causes of past episodes of adaptive
evolution experimentally, the strongest evidence comes from
humans, where extensive genetic sampling can be combined with
historical and archaeological data. For example, the coevolu-
tionary relationship between dairy farming and adult lactase
production is well-established47. More generally, diverse agri-
cultural practices are thought to have inadvertently selected for
alleles expressed in enhanced metabolism of the increased starch,
carbohydrates, alcohol and so forth, found in agricultural
diets31,48. Genomic studies have identified over 100 other variants
subject to recent selection for which cultural practices are thought
to be the primary source of selection, although the difficulty of
demonstrating their causal role precludes certainty48.

Box 1 Glossary

Conformity: A disproportionate adherence to majority behaviour (positive frequency dependence)2, which may override personal adherence to an
alternative.
Cultural evolution: Evolutionary change in behaviour, knowledge or constructed artefacts arising from social learning and transmission.
Cultural hitchhiking: Neutral genetic variants that happen to be carried by individuals who transmit selective cultural traits ‘hitchhike’ along the same
cross-generational pathways; matrilineal cultural inheritance can hence constrain mitochondrial genetic inheritance, leading to a reduction in variance93.
Cultural intelligence: Cognitive processes supporting and/or dependent on cultural transmission.
Cultural transmission: Diffusion of behaviour patterns or knowledge via social learning from others’ actions or their consequences.
Culture: (a) broad sense—equivalent to ‘Tradition’ below123; (b) more elaborate sense–a communal complex of multiple traditions56.
Ecotypes: Communities within the same species exploiting different ecological niches.
Gene–culture (or Culture-gene) coevolution: Cultural processes shape genetic evolution by modifying the selection of genes, often entailing reciprocal
interactions and feedbacks.
Horizontal transmission: Cultural transmission of behaviour between members of the same generation13.
Phenotypic plasticity: The ability of a genotype to produce different phenotypes in different environments.
Social learning: Learning that is facilitated by observation of, or interaction with, another animal or its products4,17.
Tradition: A behaviour pattern shared by members of a community that relies on socially learned and transmitted information.
Vertical transmission: Cultural transmission of behaviour from parent to offspring13.

Cultural transmission of behaviour

Genetic consequences of culture

Adaptive phenotypic variation

e.g., selection of functional genes,
patterns of genetic diversity,
spatial patterning of genes,
interspecies coevolution,

speciation

e.g., predator recognition & evasion,
foraging knowledge & skills,

mating, communication,
migration, tool use

Genetic evolution 
of cultural 

competencies & 
associated traits

e.g., brain size/
structure

Modified 
selection
pressures

Modified 
population
structure

Fig. 1 Principal interacting processes of gene–culture coevolution. Many
behaviours are transmitted through culture and often give rise to adaptive
phenotypic variation and subsequent genetic consequences (examples of
both are provided). These changes in genes also feedback on cultural
transmission. Orange boxes highlight common mechanisms
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In non-humans, the most-compelling evidence comes from
killer whales, in which recent population-genomic studies show
that functional genes associated with digestion differ between
ecotypes (Box 1) in ways that appear adaptive, and show evidence
of recent selection42,43. Genes associated with the methionine
cycle, which is involved in protein synthesis, differ systematically
between mammal-eating and fish-eating ecotypes, a contrast
presumed to result from different patterns of dietary protein
intake42. Although North Pacific and Antarctic mammal-eating
ecotypes both had strong signatures of selection in these groups
of genes, the precise locations of the variations were different in
the two ecotypes, suggesting independent genetic routes to
phenotypic change. Given the culturally mediated variation in
inter-population variation in chimpanzee (Pan troglodytes)
diets49, similar culturally initiated genetic variation in digestion
may well be found in this species too.

Culturally transmitted foraging preferences might also have
influenced the evolution of functional genes in great tits15,50.
Providing food for these birds is popular in the United Kingdom
and recent genomic comparisons of British great tits with those
from the Netherlands, where bird feeding is less common, suggest
there has been selection on genes involved in beak morphology50.
Birds that use feeding stations have larger beaks, perhaps because
these individuals are more effective at breaking open the provided
seeds. Parid tits became famous for their foraging innovations
when they learned to pierce open milk bottles to drink the cream
in 1940’s Britain; this behaviour spread too rapidly to be the result
of individual learning alone51. Artificial seeding of foraging
behaviours in great tits has subsequently demonstrated that
detecting and learning how to access bird feeders can spread
horizontally and vertically through populations via social
learning, enhancing individual learning15. It is therefore probable
that social transmission of information about seed feeders
increased their use quickly, and consequently altered selection
pressure for beak size in great tits50. Furthermore, genetic
differences within and between populations could affect culture
reciprocally; through their positions in social foraging
networks50,52, larger-beaked individuals may be more likely to
spread knowledge of new feeding opportunities53.

Although genomic scans suggest large-scale culturally driven
selection for genes in recent human evolution, with a few
exceptions, such as the dairy farming-lactase case, further work is
required to pin down particular instances46,54. This is also the
case with non-humans where, for instance, it is necessary to
exclude the theoretical possibility that ‘allele-surfing’ (i.e.,
increases in allele frequencies during post-bottleneck population
growth) could have contributed to the patterns found in killer
whales55.

Culture favours genes enhancing adaptations for culture. A
substantial reliance on social learning has been predicted to select
for genetic variants that enhance such learning species-wide,
shaping supportive neural traits such as encephalisation,
energy production or plasticity, or modifying life-history traits
such as a longer juvenile period available for learning or enhanced
parental support. 'Cultural drive’ or ‘cultural intelligence’
hypotheses2,37,56–62 cite a range of evidence that cultural inheri-
tance can enhance fitness through the development of greater
competence in key behaviours such as foraging and predator
avoidance56,59, and they propose that this in turn will enhance
selection pressures for genetically coupled phenotypic traits par-
ticularly the neural and life-history variables mentioned above.
These effects may in turn lead to more reliance on culture,
potentially creating positive ontogenetic-evolutionary feedback
loops shaping gene–culture coevolution.

Tests of the cultural intelligence hypotheses have been of two
main types. Most common have been cross-species, comparative
analyses, addressing the prediction that the scale of cultural
inheritance in a species will be associated with selection on
supportive phenotypic characters. For example, Street et al.63

applied phylogenetic comparative analysis techniques to pub-
lished databases that span 55 primate genera and 184 species to
address relationships between records of social learning and
predictor variables. Evidence of greater proclivity for social
learning was predicted by both measures of brain size and of
reproductive lifespan. The authors concluded that results are
‘consistent with the hypothesis that the evolution of large brains,
sociality, and long lifespans has promoted reliance on culture ….
in turn driving further increases in brain volume, cognitive
abilities, and lifespan in some primate lineages’63.

Culture relies not only on social learning but also on
intermittent behavioural innovation, and similar comparative
analyses have identified relationships between records of innova-
tion and brain size in both primates64 and birds65. Reinforcing
these correlational analyses, a recent mechanistic model of brain
evolution concluded that ‘our results are consistent with aspects
of various cultural hypotheses for brain evolution’66.

A second approach is to compare closely related species
differing in cultural richness, recently explored in a comparison
between orangutan species, in which a more extensive cultural
repertoire has been described for the Sumatran (Pongo abilii)
than for the Bornean species (P. pygmaeus)67. Consistent with the
cultural intelligence hypothesis, the Sumatran species have brains
reported to be 2–10% larger and showed superior performance in
cognitive tests conducted in comparable captive environments67.

Evolutionary effects of culture may explain a further life-
history phenomenon, the existence of menopause not only in
humans but in whales, where females of matrilineal species may
live long after their reproductive span68. Modelling studies have
concluded that menopause can evolve through inclusive fitness
benefits69. Menopause is predicted to be favoured when females’
relatedness to the group and ability to assist relatives (e.g., by
providing a highly competent model from whom to learn)
increase with age, but continued reproduction would reduce their
capacity to assist relatives69. Older female killer whales are known
to be repositories of such extensive adaptive knowledge70.

Correlational tests of the cultural intelligence hypothesis
outlined above have, however, been constrained by relatively
crude measures of the scope of cultural intelligence in any given
species, often resting on post hoc analysis of publications that
report non-standardised measures of social learning. In future,
the field will benefit from the development of more comparable
and systematic variables to be applied in such analyses.

Culture generates selection across species. One difficulty with
demonstrating gene–culture coevolution arises when genes and
culture are both spread predominantly through transmission
from parents to offspring. When culture changes how species
interact, however, it can also influence genetic evolution across
species boundaries, removing this potential confound. For
example, experimental studies with brood parasitic cuckoos and
hosts have established that culture may alter the strength of
selection across time differently to when culture is absent.
Knowledge of the threat of brood parasites (‘cuckoos’) is main-
tained in groups via social learning among naïve fairy-wren
(Malurus cyaneus) hosts71,72, and reed warblers (Acrocephalus
scirpaceus) learn about the identity of cuckoos that mimic more
dangerous enemies horizontally from peers18,19,73. In reed war-
blers at least, this socially learned and transmitted information
leads to increased detection of cuckoos and strengthens selection
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against the parasite74. However, common cuckoo (Cuculus
canorus) females have a colour polymorphism, likely to be an
MC1R variant75, that defeats host culture. Social learning about
cuckoos is not generalised across morphs, so knowledge spreads
quickly only about the common form. In this case, host culture
generates a stronger selective advantage for cuckoos that appear
different (i.e., negative frequency dependent selection) than if
hosts only learned individually18.

Novel behaviours that spread and are maintained through
culture also have the potential to initiate, or intensify, selection on
interacting species. For example, recent experiments with great
tits show that social transmission of foraging preferences can
switch a prey species’ defence strategy from crypsis to
aposematism76. Another candidate for interspecies gene–culture
coevolution lies in the wide array of complex socially learned
foraging techniques of killer whales77. Corkeron and Connor78

suggest that the seasonal migrations of baleen whales to the
tropics may function to avoid killer whale predation. Although
the details of baleen whale migrations seem socially learned79, the
drive to migrate is likely to have a genetic basis that may have
been influenced by the predatory cultures of killer whales.

There are many familiar examples where humans are the
cultural species; these include the industrial revolution increasing
selection for melanic forms of peppered moths (Biston betularia)80,
and the rise of agriculture facilitating coevolution of novel
pathogens with humans81,82. Although evidence for non-human
culture altering selection in other species is at present limited, in
theory this could influence any type of interaction where social
learning in (at least) one party occurs. For example, previously
‘honest’ foraging bumblebees (Bombus terrestris) learn to rob
nectar from flowers by observing others83—if this knowledge
transmits across generations84, it could shape pollination
efficiency and selection on the plant83. The onset of a new
foraging culture could also rapidly shift selection on host
microbiomes as they adapt to a novel resource, or influence
transmission of microbial communities85. Culture influencing
genetic change across species boundaries has great potential to
demonstrate how gene–culture coevolution can operate.

Culture shapes population genetic structure and diversity
Culture shapes neutral genetic variation in space. When cul-
tural knowledge strongly affects habitat use or patterns of dis-
persal through the social learning of habitat preferences,
migration routes or foraging methods that select for different
habitats, then cultural knowledge can be unevenly distributed
across the range of a species. If neutral genes are being trans-
mitted in parallel with these cultural traits—which would neces-
sitate relatively stable vertically transmitted cultures—persistent
geographical patterns of genetic variation can result. For example,
in Shark Bay, Australia, foraging techniques of bottlenose dol-
phins (Tursiops aduncus) that are transmitted from mother to
daughter have set up a distinctive spatial structure of mitochon-
drial haplotypes over scales of a few kilometres, which the dol-
phins could traverse in minutes. Haplotypes characteristic of a
feeding type that is used in deep water map onto the greater
depths, whereas in the neighbouring shallows other haplotypes
predominate86.

Through culturally facilitated dispersal, adaptation to culturally
modified environments, and the effects of cultural practices on
admixture, culture has directly or indirectly shaped much of the
current geography of human genes48,87. Similar effects may arise
from culture in other species32. Migration routes, or navigation
strategies (e.g. ‘follow the coast’), learned from parents can set up
geographical patterns in neutral genetic variation at either or both
ends of the route88. Cultural transmission of migration routes is

common among birds89, especially long-lived species, and
cetaceans, especially baleen whales; in both cases, geographical
patterns of genetic variation result79,90. A particularly remarkable
case is that of the beluga whales (Delphinapterus leucas), where
strict matrilineal migration cultures have retained distinct
mitochondrial haplotype distributions on summering grounds
in eastern and western Hudson Bay, reflecting different glacial
refuges of maternal ancestors, even though the whales from each
side of the bay meet and mate in winter and during migration91.
In contrast, some species, such as barnacle geese (Branta
leucopsis) and southern right whales (Eubalaena australis), tend
to mate within migratory cultures, leading to spatial patterns in
nuclear as well as mitochondrial DNA79,90. Geographical effects
reappear in other sections of this review, where we consider how
culture may segregate populations, leading to population
structure and in some cases seeding speciation, reducing diversity,
or selecting for particular functional genes (Fig. 1).

Culture can reduce genetic diversity. Culture can potentially
reduce genetic diversity in socially structured populations
through two related processes: cultural hitchhiking and culturally
mediated migration92. In cultural hitchhiking, culture creates
heritable variation in reproductive success or survival between
different groups, so that the diversity of neutral genes transmitted
in parallel with the cultural traits (i.e., vertically) is reduced to
essentially those genes in the original groups with successful
cultures93. In culturally mediated migration, culture sets up
barriers or divisions within a population, inhibiting dispersal and
mating. Then, the diversity of neutral as well as functional genes
is reduced through processes such as bottlenecks and selection94.
Cultural hitchhiking, as well as culturally mediated migration,
require cultures that affect fitness or dispersal, respectively, that
are quite stable, and that do not frequently transfer between
population segments.

Both cultural hitchhiking and culturally mediated migration
have been considered drivers of the very-low mitochondrial DNA
diversity of five species of whale that have matrilineal social
systems in which daughters typically stay grouped with their
mothers while both are alive95. Female sperm whale (Physeter
macrocephalus) populations are partitioned into sympatric,
matrilineally based clans with distinct cultures and fitness
differences, so that their exceptionally low mitochondrial
diversity is consistent with cultural hitchhiking95. The division
of killer whales into ecotypes is much deeper77. A strong mutual
antipathy of proto-ecotypes is supported by genomic results,
suggesting that a form of culturally mediated migration may be
behind the killer whales’ low genetic diversity95.

In all these cases, it is difficult to rule out all non-cultural
drivers of low genetic diversity (such as bottlenecks, population
divisions, background selection or selective sweeps without
cultural input), and several processes may have contributed92.
However, it is telling that both hominins and those matrilineal
whale species with particularly clear evidence that culture affects
behaviour and fitness10,37 have remarkably low genetic diversity.
Similar processes may also have affected genetic diversity in
birds92,96,97, as described below.

Culture may drive the early phases of speciation. For speciation
there are two central requirements—the separation of an existing
species into groups, and reproductive isolation in the face of
secondary contact. As culture can establish behavioural differ-
ences among initial population divisions more rapidly than
genetic inheritance and local adaptation77,88,98, the role culture
plays in influencing divergent selection has attracted theoretical
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and empirical attention, particularly concerning traits and pre-
ferences involved in assortative mating99.

Several researchers have argued100,101 (supported by popula-
tion genetic models98,102,103) that the influence of culture on
speciation depends on whether only the trait involved in mate
choice is learned socially, or whether the preference is also
learned. Learned-trait models (where the preference is genetically
determined but the signal is socially transmitted) indicate that if
culture reduces stabilising selection against new alleles affecting
learning predispositions, then genetic divergence in mating
preferences will arise more quickly than when traits are
genetically inherited98,102. However, if mating traits are learned
obliquely and independently of the tutor’s fitness, then in theory
selection will be inhibited as the trait is learned from both mated
and unmated tutors103. Cultural transmission of traits may even
break down incipient speciation if secondary contact occurs
because learning can mask genotypic variation103,104; the trait can
be rapidly adjusted through learning (e.g., conformity of song
dialect) to match the preferences of either population. For this
reason, cultural transmission is primarily thought to inhibit
sympatric speciation100.

However, where mating signals and receiver preferences are
both culturally transmitted (e.g., male songbirds learn a dialect
and females learn a preference from the same tutors) culture will
instead promote speciation under both allopatric98 and secondary
contact102 scenarios. Learned preferences will increase the
strength of divergent selection acting on the trait and prevent
recombination, amplifying both cultural and genetic evolution of
associated loci102. Biases to learning (e.g., songs and preferences
are learned during a sensitive period) may restrict individuals
shifting phenotypes to match local preferences and further limit
gene flow99.

Studies of culturally transmitted song in birds have generated
the best lines of evidence for the role of culture in speciation105,
with recent work demonstrating that song learning increases rates
of species diversification across clades106. White-crowned spar-
rows (Zonotrichia leucophrys) song dialects vary strongly over
small spatial scales, with restricted gene flow between dialect
groups97. Recently, genomic studies of neighbouring subspecies
(Z.l. nutalli and Z.l. pugetensis) demonstrated that song dialects
likely act as a barrier to gene flow, with the strength of song
discrimination correlated with genetic distance between sites96.
Among indigobirds (Vidua), which are brood parasites, cultural
transmission occurs across species, as males learn the song of
their host species and females imprint upon that same song107.
Switching host species therefore creates strong isolating barriers
that have led to rapid recent speciation in sympatry108. Finally,
culture-shaping speciation may even have been captured in action
with the recent establishment of an apparently isolated lineage of
Galápagos finches (Geospizinae) derived from the hybrid mating
of a cactus finch (G. conirostris) immigrant male with a medium
ground finch (G. fortis)—termed the ‘Big Bird’ lineage109. Twenty
years ago, Grant and Grant44 showed that Darwin’s finches
acquire their song-type and preference from their father (or
foster-father). Although females do not sing, they mate
assortatively according to their culturally inherited song type as
well as by imprinting on parental morphology; culture therefore
facilitates pre-zygotic reproductive isolation by constraining
female mate choice, even in the absence of genetic penalties110.
Together with changes in beak size, in only three generations this
song culture has most probably contributed to allele segregation
and incipient speciation of the Big Bird lineage109, although
experiments demonstrating this mechanism remain to be done.

Finally, by coupling changes in population structure and
modified selection on functional genes, cultural transmission of
foraging traits or preferences could also help facilitate genetic

divergence. Killer whale population structure is strongly influ-
enced by culturally transmitted specialisations on particular prey
resources, giving rise to different killer whale ‘ecotypes’ that can
be distinguished behaviourally and morphologically77. There are
significant genetic divergences between these lineages both in
mitochondrial111 and nuclear42 genomes. It is believed that the
ecotypes arose from cultural niche specialisation by matrilineal
groups, which later developed reproductive barriers, culturally
(e.g., through learned aggression towards outgroups) and/or
genetically77. In killer whales, culturally transmitted behaviour
has therefore triggered the evolution of multiple lineages
considered to be currently undergoing incipient ecological
speciation77. Although some have suggested they should now
be considered different species111, these ecotypes are not
currently recognised as such. The genetic evidence suggests that
the present day global diversity of killer whales has arisen in the
last 250 kya, or ~8000 generations42, but the genus Orcinus has
been present in the fossil record for up to 5My—so why are
estimates of ecotype divergence so relatively recent? The most
likely explanation is that the formation of ecotype lineages is a
dynamic process, with learning and cultural transmission at its
heart, both driving the exploitation of new niches as they arise
and leading to increased specialisation risk, resulting in lineage
extirpation112. Thus, in killer whales, cultural transmission
seemingly underlies adaptive radiation into ecotypes and then
incipient species, but can also increase local extirpation risk. The
social learning of foraging techniques or habitat preferences by
young animals has the potential to trigger genetic radiation in a
variety of taxa, but this has been little investigated beyond killer
whales.

The precise nature of the interactions between individuals with
alternative cultures may be key to speciation, and to other
processes of gene–culture coevolution. However, such interac-
tions, almost inevitably, are rarely observed. How conspecifics
whose cultures have begun to differentiate respond to each other,
for example, by conformist convergence or alternatively by
avoidance and conflicts, is a topic that can benefit from
complementary observations in the field and experiments.

Conclusions and future directions
Until now, consideration of gene–culture coevolution has largely
focussed on the evolution of functional genes in human
populations1,31,54. Our review extends the reach of this discussion
by suggesting that culture may change the nature of the evolu-
tionary process in diverse ways, and for many animals. Culture
provides a form of inheritance that is additional to genes and our
review indicates it is far from trivial in its consequences for
genetic evolution; moreover the two inheritance streams can
interact to influence each other’s evolution3,11,30,46,113.

Human culture, so prolific and dominant across the globe, has
had a dramatic impact on genetic evolution in other species114, a
process for which we now have preliminary evidence at least, in a
diversity of other species. There is good evidence for both humans
and non-humans that culture can shape geographic patterns of
genes, and comparative phylogenetic evidence that it has driven
species-wide genetic traits, such as aspects of brains and life-
histories. The cultures of killer whales offer a case study of how
culture may drive the evolution of functional genes within
population segments, and the ecotype-fissured killer whales offer
a simpler system than human culture within which to delineate
fundamentals of such processes.

Two processes of gene–culture coevolution were first con-
sidered for non-humans, with their relevance for our own species
explored later. Cultural hitchhiking was conceived to explain low
genetic diversity in cetaceans93, and was later extended to
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Table 1 Processes and cases of gene–culture coevolution

Process of
gene–culture
coevolution

Typical or relevant characteristics of
culture (not necessarily sufficient)

Stronger evidence Weaker evidence Circumstantial
evidence

Culture selects
functional genes

Transgenerational transmission of
phenotypes typically stable; strong
selection derives from behavioural
homogeneity; conformity.

Humans (e.g., LCT, AMY1, HbS…)
31,48 Killer whales (e.g., methionine-
expressed alleles, …)42

Birds50 Non-human
primatesa

Culture favours
adaptations for culture

Complex and diverse learning
environment created by culture;
adaptive advantages of strategic and
high-fidelity copying; socially
transmitted technology; conformity.

Humans2,48,54,66,124 Cetaceans37 Non-human
primates59,61,63,64

Birds46

Culture generates
selection across
species

Transgenerational transmission of
phenotypes modifies selection on
other species.

Humans48,80,114 Birds18,74,76 Killer whalesa

Culture shapes neutral
genetic variation in
space

Stable, transgenerational transmission
of phenotypes.

Humans48,125 Long-lived birds90

Beluga whales91 Baleen whales79

Bottlenose dolphins86

Culture can reduce
genetic diversity

Stable, transgenerational transmission
of phenotypes; behavioural
homogeneity.

Sperm whales95 Killer
whales95 Humans48,94

Pilot whales95 False
killer whales95

Birds92

Culture may drive the
early phases of
speciation

Stable, transgenerational transmission
of phenotypes; behavioural
homogeneity; conformity.

Birds44,48,98,126 Killer whales77

Humans48
Homininsa

Cases are designated as ‘stronger evidence’ where there exists compelling experimental, theoretical or correlational data that imply gene–culture coevolution. Cases with ‘weaker evidence’ are those
where experimental, theoretical or correlational data are consistent with gene–culture coevolution but where plausible alternative explanations have not been ruled out. Cases described as
‘circumstantial’ are those in which gene–culture coevolution has been proposed but not yet investigated
aProposal made in the text

a b

c d

Fig. 2 Species whose culture may have affected their genetic evolution. a Young orangutan peering closely at mother’s skilled tool use in foraging.
Predictions that the more extensive cultural repertoire of Sumatran compared with Bornean orangutans would be associated with neuro-cognitive
superiority were confirmed on the neutral ground of cognitive tests in zoos67. Image courtesy of Christiaan Conradie and Caroline Schuppli. b Young pack
ice killer whale from the Antarctic assesses potential prey with mother. Members of this seal-feeding ecotype have evolved genes that assist in the
digestion of mammal food42. Image courtesy of Robert Pitman. c Great tits learn foraging techniques from one another53. Compared with the relatively
feeder-free Netherlands, great tits living in Britain where feeders are common have evolved stronger jaws that are more efficient at processing feeder
food50. Image used under licence from Fotolia/Nataba. d Female sperm whales live in tight matrilineal groups whose distinctive cultural behaviours may
have reduced the diversity of hitchhiking mitochondrial genes95. Image courtesy of Wayne Osborn
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humans94,115. Culturally mediated speciation was a topic first
introduced for birds44 and whales77, but might also apply to
hominins. It is now well-established that Neanderthals, Deniso-
vans and Homo floresiensis coexisted with modern humans and
possessed distinct behavioural repertoires116. Culturally trans-
mitted ecological specialisations may have led to radiations
comparable to that of killer whales in our own evolutionary past,
possibly on multiple occasions.

A sizeable body of experimental data, mathematical theory and
comparative analyses collectively attests to the potential sig-
nificance of gene–culture coevolution in animals. However, at this
stage conclusions must often be regarded as tentative. This is
primarily because few studies have genetic and cultural data that
are directly comparable in terms of the organisms or groups of
organisms sampled, or in the spatial and temporal scopes of the
data. Second, our evidence comes predominantly from studies of
non-human primates, birds and cetaceans, taxa for which cultural
transmission has received the most attention to date5,37,117

(Table 1; Fig. 2) but which limits scope for generalisations.
Comparing across taxonomic groups is further complicated by
the differing foci on various aspects of culture, such as song for
birds, foraging for primates, and mate-copying for insects. It
would be helpful if more systematic and comparable measures
were adopted to capture cultural content (foraging, navigation,
song etc.), social transmission mechanisms (copying, teaching,
etc.) and the distribution patterns of cultural variants as they
evolve regionally and over generations. Ideally, future studies
would systematically assemble coupled data on both genomics
and the diverse dimensions of cultural complexity to facilitate
comparative analyses of the gene–culture coevolutionary
hypotheses that we have outlined above.

Another limitation of the current state of knowledge is that a
large portion of available evidence is correlational. Experimental
studies would add clarity, but many of the best-studied taxa tend
not to be well suited for manipulative experiments. Birds are an
exception15, but the extensive evidence now accruing for social
learning in insects118 makes this taxonomic group a promising
area for development of the field119. For example, a recent study
of a parasitoid wasp species (Lariophagus distinguendus) shows
that early learning of host preferences has facilitated the evolution
of two isolated, potentially speciating, lineages120, and a recent
finding that fruit flies (Drosophila melanogaster) can carry cul-
turally transmitted mate preferences across multiple cultural
generations121 suggests great potential for experimental evolution
of both culture and genes122. The study of gene–culture coevo-
lution beyond humans may be in its infancy, but sufficient evi-
dence now exists to see it as an exciting and significant avenue for
further focused empirical research.
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