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Abstract: Overproduction of reactive oxygen species and impaired antioxidant defence 
accompanied by chronic inflammatory processes may impair joint health. 
Pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor alpha 
(TNF-α) stimulate the expression of metalloproteinases which degrade the extracellular 
matrix. Little is known regarding the potential synergistic effects of natural compounds 
such as α-tocopherol (α-toc), ascorbic acid (AA) and selenium (Se) on oxidant induced cell 
death. Furthermore studies regarding the metalloproteinase-3 inhibitory activity of 
glucosamine sulfate (GS) and chondroitin sulfate (CS) are scarce. Therefore we have 
studied the effect of α-toc (0.1–2.5 µmol/L), AA (10–50 µmol/L) and Se (1–50 nmol/L) on 
t-butyl hydroperoxide (t-BHP, 100–500 µmol/L)-induced cell death in SW1353 
chondrocytes. Furthermore we have determined the effect of GS and CS alone  
(100–500 µmol/L each) and in combination on MMP3 mRNA levels and MMP3 secretion 
in IL-1β stimulated chondrocytes. A combination of α-toc, AA, and Se was more potent in 
counteracting t-BHP-induced cytotoxicity as compared to the single compounds. Similarly 
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a combination of CS and GS was more effective in inhibiting MMP3 gene expression and 
secretion than the single components. The inhibition of MMP3 secretion due to GS plus 
CS was accompanied by a decrease in TNF-α production. Combining natural compounds 
such as α-toc, AA, and Se as well as GS and CS seems to be a promising strategy to 
combat oxidative stress and cytokine induced matrix degradation in chondrocytes. 

Keywords: tocopherol; ascorbic acid; selenium; chondroitin; glucosamine; chondrocytes; 
oxidative stress; inflammation; metalloproteinases 

 

1. Introduction  

Degenerative joint disorders including osteoarthritis (OA) and rheumatoid arthritis (RA) are 
characterized by an imbalance in the oxidant/antioxidant homeostasis resulting in oxidative stress, 
chronic inflammation, metalloproteinase activation and matrix destruction [1]. There is some evidence 
in the literature [2–4] for a beneficial role of antioxidant micronutrients on clinical symptoms of OA 
and RA.  

It has been shown that arthritis patients may exhibit decreased plasma α-toc levels and lower 
activity of the seleno-protein glutathione peroxidase (GSHPx) as compared to healthy control subjects 
[5]. Furthermore, a positive association between vitamin E consumption and joint health in humans has 
been recently reported [6]. However, litte is known about potential synergistic interactions of 
antioxidants including α-toc, AA and Se on arthritis prevention. Although the potential 
anti-inflammatory and metalloproteinase-3 inhibitory activity of glucosamine sulfate (GS) and 
chondroitin sulfate (CS) has been studied using the single compounds per se [7–9], their combination 
has not been systematically investigated in cultured cells. Thus, it is largely unclear if and in what 
extent a combination of GS and CS may affect MMP3 in chondrocytes. The aims of this study were 
twofold: First we have systematically determined the potential synergistic effect of α-toc, AA and Se 
on oxidant induced cell death in SW1353 chondrocytes. Secondly, we have investigated whether there 
is a synergistic inhibitory activity of GS and CS on MMP3 levels in chondrocytes stimulated with the 
pro-inflammatory cytokine interleukin-1β (IL-1β). 

2. Results and Discussion 

2.1. Potential cytotoxic effects of the test substances and IL-1β 

To assure that glucosamine and chondroitin do not affect cell viability, cells were incubated with 
increasing concentrations of the test substances. As shown in Figure 1, cell viability of SW1353 cells 
was not significantly impaired up to a concentration of 1,000 µmol/L GS and CS, respectively. For all 
further experiments concentrations of 100 and 500 µmol/L of GS or CS were chosen. IL-1β was not 
cytotoxic up to a concentration of 100 ng/mL (data not shown).  

 



Molecules 2010, 15                            
 

 

29

Figure 1. Effect of glucosamine and chondroitin on cell viability in SW1353 cells. Cells 
were treated with increasing concentrations of test substances for 24 h. The test compounds 
did not impair cell viability at any of the concentrations tested. Cytotoxicity was 
determined by the neutral red assay and cell viability is expressed as percentage of control 
(untreated cells).  
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2.2. Effects of α-tocopherol, ascorbic acid and selenium on tert-butyl hydroperoxide induced cell death 

Treatment of SW1353 cells with increasing concentrations of t-BHP dose-dependently decreased 
cell viability, as summarized in Table 1. Pre-treatment of SW1353 cells with α-toc, AA, and Se partly 
counteracted t-BHP induced cytotoxicity. Importantly, a combination of α-toc, AA, and Se was more 
potent in counteracting t-BHP induced cytotoxicity as compared to the single treatment with either of 
these micronutrients. Even at concentrations where the single component did not improve cell viability 
the combination of 0.1 µmol/L α-toc, 10 µmol/L AA and 1 nmol/L Se was effective in partly 
preventing t-BHP-induced cell death (Figure 2).  

While 500 µmol/L t-BHP resulted in 70% cell death of SW1353 cells, the combination of  
2.5 µmol/L α-toc, 50 µmol/L AA and 50 nmol/L Se completely prevented t-BHP induced cytotoxicity 
(Table 1). 

The generation of reactive oxygen species is an important factor in the development of human 
osteoarthritis. In fact, reactive oxygen species may damage lipids, proteins, and matrix components of 
chondrocytes [10]. Our data clearly indicate that a combination of α-tocopherol, ascorbic acid and 
selenium is more efficient in counteracting oxidant induced cell death than the single compounds per 
se. The radical scavenging activity of α-toc is exerted through its phenolic hydroxyl group which 
readily donates a hydrogen to peroxyl radicals, resulting in the formation of stable lipid species [11]. 
Alpha-tocopherol becomes a relatively unreactive free radical as the unpaired electron becomes 
delocalized into the aromatic ring. The synergistic effect between AA and α-toc, as observed in our 
study in chondrocytes, may be mediated by the matter of fact that the vitamin E radical is efficiently 
reduced from its free radical form due to AA that can directly regenerate the tocopheroxyl radical back 
to tocopherol [12].  
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Thus, in oxidant challenged chondrocytes, α-toc and AA act synergistically to keep the steady state 
concentration of α-toc high. Thereby a loss of consumption of vitamin E is significantly prevented. 

Figure 2. Effect of α-tocopherol, ascorbic acid, selenium, and their combination on cell 
viability in SW1353 cells after challenge with tBHP. Cells were treated with α-tocopherol 
(0.1 µmol/L), ascorbic acid (10 mmol/L), selenium (1 nmol/L), and a combination of all 
three test compounds (0.1 µmol/L α-tocopherol, 10 µmol/L ascorbic acid, and 1 nmol/L 
selenium) for 24 h. After 3 h of challenge with 200 µmol/L t-BHP the neutral red assay 
was performed. Data are means + SEM of two independent experiments performed in 
duplicate. # p < 0.01; compared to control. 
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Table 1. Effect of α-tocopherol, ascorbic acid and selenium on cell viability after challenge 
with increasing concentrations of t-BHP. Data are means ± SEM and expressed in 
percentage of untreated control cells. 

 t-BHP 100 µmol/L 200 µmol/L 500 µmol/L 
   M SEM M SEM M SEM 
 Control 49.7 4.0 37.6 3.2 31.4 1.2 

 
α-Tocopherol (α-toc) 
 µmol/L       

 0.1 65.4 5.4 49.3 4.6 36.4a 1.6 
 0.5 90.7c 3.8 79.1c 7.9 64.8c 3.3 
 2.5 92.8c 3.2 89.7c 1.4 83.9c 7.5 

 
Ascorbic acid (AA) 
µmol/L       

 10 60.8 3.6 43.1 2.2 32.4 1.0 
 25 78.2c 2.6 59.6b 4.1 36.1 0.7 
 50 73.0b 4.5 65.9c 4.6 37.5a 1.8 
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Table 2. Cont. 

 
Selenium (Se) 
nmol/L       

 1 53.7 4.3 39.4 3.1 29.0 1.2 
 10 77.9b 5.5 55.4b 4.6 33.2 1.2 
 50 91.6c 4.1 83.0c 1.7 47.8b 4.2 
 Combinations       

 

I (0.1 µmol/L α-toc, 10 
µmol/L AA, 1 nmol/L 
Se) 

87.0c 3.6 74.2b 6.1 42.6a 3.1 

 

II (0.1 µmol/L α-toc, 
25 µmol/L AA, 10 
nmol/L Se) 

98.1c 3.2 89.6c 1.6 69.0c 4.6 

 

III (0.1 µmol/L α-toc, 
25 µmol/L AA, 25 
nmol/L Se) 

100.6c 1.2 95.2c 2.4 82.7c 1.0 

 

IV (0.5 µmol/L α-toc, 
25 µmol/L AA, 10 
nmol/L Se) 

104.8c 1.6 97.8c 2.8 93.6c 3.9 

 

V (0.1 µmol/L α-toc, 
50 µmol/L AA, 50 
nmol/L Se) 

99.3c 2.7 96.5c 2.8 94.4c 2.3 

 

VI (0.5 µmol/L α-toc, 
50 µmol/L AA, 50 
nmol/L Se) 

101.7c 4.1 101.5c 1.6 94.8c 2.0 

 

VII (2.5 µmol/L α-toc, 
50 µmol/L AA, 50 
nmol/L Se) 

103.0c 1.2 98.9c 2.9 98.0c 4.5 

a p < 0.05; b p < 0.01;c p < 0.001; different superscripts within a column indicate significant differences. 

The protective effect of selenium on t-BHP-induced cell death in our chondrocyte model may be 
mediated due to the induction of the seleno-protein phospholipid-hydroperoxide glutathione 
peroxidase (PHGPx). PHGPx is an antioxidant seleno-protein known to directly reduce phospholipid 
hydroperoxides in membranes, thereby interacting synergistically with vitamin E [13]. 

Taken together current data in cultured chondrocytes indicate that α-toc, AA, and Se do not work in 
isolation from each other and are rather part of an interacting set of redox-antioxidants [14]. As far as 
the concentration of the antioxidant nutrients are concerned, it needs to be taken into account that the 
concentrations of α-toc (0.1–2.5 µmol/L), AA (10–50 µmol/L), and Se (1–50 nmol/L), as used in this 
study, are by in large physiologically achievable [15–20]. However the plasma concentrations of 
glucosamine [21] and chondroitin [22] may be lower as compared to the concentrations as used in our 
cell culture model. 

2.3. mRNA levels and secretion of matrix metalloproteinase-3 

Reactive oxygen species may serve as intracellular signalling molecules that amplify the synovial 
inflammatory response [10]. The pro-inflammatory cytokine IL-1β, as used in our SW1353 cell culture 
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model, initiates multiple intracellular events that ultimately result in the activation of proteinases 
including matrix metalloproteinase-3 [23]. In this context, it is suggested that SW1353 cells may be a 
valuable cellular model to study the induction of protease expression by inflammatory cytokines, a 
phenomenon which is also evident in primary chondrocytes [24]. SW1353 cells were treated with IL-
1β for 6, 12, and 24 h and MMP3 mRNA levels were determined by RT-PCR. MMP3 mRNA levels 
reached its maximum after 24 h of incubation (Figure 3), thus this time-point was selected for further 
MMP3 gene expression studies in the presence of the test compounds.  

Figure 3. MMP3 mRNA levels in SW1353 cells following 6, 12, and 24 h of incubation 
with IL-1β (10 ng/mL). The highest induction of MMP3 was observed after 24 h of 
incubation. Results are calculated in relation to β-actin and expressed as means + SEM of 
three independent experiments performed in duplicate.  

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
R

N
A

ra
tio

M
M

P-
3/
β-

ac
tin

control IL-1β (10 ng/ml)

6h

12h

24h

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
R

N
A

ra
tio

M
M

P-
3/
β-

ac
tin

control IL-1β (10 ng/ml)

6h

12h

24h

control IL-1β (10 ng/ml)

6h

12h

24h

6h

12h

24h

 
 

MMP3 is a membrane bound zinc anti-peptidase which degrades extra-cellular matrix [25]. Matrix 
metalloproteinase inhibitors have been proposed as potential therapeutic candidates in arthritis.  

MMP3 mRNA levels were determined after co-incubation of IL-1β (10 ng/mL) with GS, CS and 
the combination of GS and CS. Under the conditions investigated, CS was more potent than GS and 
the combination of GS and CS was more potent than CS only, in inhibiting IL-1β-induced MMP3 gene 
expression (Figure 4A).  

Differences in MMP3 gene expression in response to the treatments with GS and CS were also 
reflected on the protein level (Figure 4B). Again a combination of 500 µmol/L GS plus 500 µmol/L 
CS significantly decreased MMP3 secretion, whereas the single components resulted only in a 
moderate but not significant inhibition of IL-1β-induced MMP3 secretion. 

The induction of MMP3 can be counteracted by a combination of GS and CS more efficiently than 
by a single treatment with these test components. Thus, GS and CS act synergistically in inhibiting 
cytokine-induced MMP3 induction. 

The underlying cellular and molecular mechanisms by which GS and CS may affect MMP3 have 
yet not been fully elucidated. Our data suggest that GS and CS affect MMP3 already on the 
transcriptional level which may in turn result in decreased MMP3 secretion. It has been suggested that 



Molecules 2010, 15                            
 

 

33

GS may decrease the production of glycosylinositol phospholipid (GPI)-linked proteins which are 
crucial for the stimulation of chondrocytes by IL-1β [7,26]. 

Figure 4. Effect of glucosamine and chondroitin on MMP3 mRNA levels (A) and protein 
secretion (B) in IL-1β stimulated SW1353 cells. Cells were stimulated with IL-1β  
(10 ng/mL) in the presence of different concentrations of glucosamine, chondroitin and the 
combination of both test compounds for 24 h. Cell culture supernatants were collected and 
the amount of MMP3 secreted by SW1353 cells was measured by specific ELISA. Results 
for MMP3 mRNA are calculated in relation to β-actin and compared to IL-1β-treated cells. 
Data are means + SEM of three independent experiments performed in duplicate.  
* p < 0.05; # p < 0.01; § p < 0.001; compared to IL-1β. 
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The relatively high concentration of GS which was necessary for the inhibition of MMP3 gene 

expression and secretion may be related to a competition between GS and glucose [present in high 
concentration in our cell culture medium (4.5 g/L)] for entering the chondrocytes via glucose 
transporters [9,27]. Furthermore, GS has been shown to inhibit nuclear factor κB (NFκB)-dependent 
signal transduction pathway [28] which is involved in MMP3 upregulation [29]. Thus, antagonists of 
NFκB including GS may be effective inhibitors of the excessive destruction that is evident during 
chronic inflammatory conditions including oasteoarthritis [29]. 

Accordingly, it is suggested that CS may decrease NFκB nuclear translocation possibly by affecting 
extracellular signal-regulated kinase 1/2, p38mitogen-activated protein kinase and c-Jun N-terminal 
kinase activation [30]. Our results indicate that pre-treatment of SW1353 cells with 100 µmol/L GS 
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and 100 µmol/L CS resulted in a 20% inhibition of nuclear p65 protein levels, one subunit of NFκB 
(data not shown). Thus, GS and CS seem to address identical molecular targets which may explain 
their synergistic inhibitory activity on MMP3 gene expression and secretion. NFκB regulates TNF-α 
production in chondrocytes. TNF-α in turn stimulates the expression of MMP3 [31]. In the present 
study the inhibition of NFκB activity due to GS and CS was accompanied by a 30% decrease in TNF-α 
mRNA levels (data not shown) and TNF-α secretion as summarized in Figure 5. Again a combination 
of GS and CS was more potent than the single components per se. 

Figure 5. Effect of glucosamine and chondroitin on TNFα protein secretion in IL-1β 
stimulated SW1353 cells. Cells were stimulated with IL-1β (10 ng/mL) in the presence of 
500 µmol/L of glucosamine, chondroitin and the combination of both test compounds for 
24 h. Cell culture supernatants were collected and the amount of TNFα secreted by 
SW1353 cells was measured by specific ELISA. Data are means + SEM of three 
independent experiments performed in duplicate. * p < 0.05; compared to IL-1β. 
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As far as MMP3 is concerned, it should be considered that in the present study only mRNA and 
protein levels of MMP3 have been determined. Thus, it needs to be studied in the future whether 
changes in MMP3 gene expression and secretion due to GS and CS are also reflected on the activity 
level. Whether the inhibition of MMP3 due to the combined application of GS and CS may result in 
changes in extracellular matrix production needs to be also studied in the future. 
 
3. Experimental 

3.1. Cell culture 

SW1353 cells, a human chondrosarcoma cell line (I.A.Z., Munich, Germany), were grown in 
Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS),  
100 U/mL penicillin and 100 µg/mL streptomycin (all obtained from PAA Laboratories, Pasching, 
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Austria). Cells were grown under standard conditions in a humidified incubator at 37 °C and 5% CO2. 
The medium was replaced every second day. For experiments, cells were seeded at an initial densitiy 
of 5 × 103 cells/cm2 24 h before the start of experiments. 

3.2. Cytotoxicity studies 

Cytotoxicity of the test substances was evaluated by the neutral red assay [32,33]. Cells were 
treated with increasing concentrations of IL-1β (Invitrogen, Karlsruhe, Germany) (1, 10, and  
100 ng/mL), glucosamine and chondroitin (100, 500, 750, and 1000 µmol/L). After 24 h incubation the 
medium was replaced by medium containing neutral red (3-amino-m-dimethylamino-2-
methylphenazine hydrochloride, DMEM, 50 µg/mL; Carl Roth, Karlsruhe, Germany) and cells were 
incubated for 3 h. The neutral red dye was extracted by a bleaching solution containing 50% ethanol, 
1% acetic acid and 49% H2O. Absorbance was read at 540 nm (Labsystems iEMS Reader MF, 
Labsystems, Finland) and cell viability was calculated as percentage of medium treated control cells. 
In a second set of experiments the impact of the antioxidants ascorbic acid, α-tocopherol, and selenium 
(alone and in combination) on tert-butyl hydroperoxide (t-BHP)-induced cell death was studied. 
SW1353 cells were incubated with increasing non-cytotoxic concentrations of ascorbic acid (0, 10, 25, 
and 50 µmol/L; Carl Roth, Karlsruhe, Germany), α-tocopherol (0, 0.1, 0.5, 2.5 µmol/L; BASF, 
Ludwigshafen, Germany) and selenium (0, 1, 10, 50 nmol/L; Sigma-Aldrich, Munich, Germany) 
(single substances and combinations) for 24 h. t-BHP (Acros Organics, NJ, USA) was added in 
different concentrations (0, 100, 200, and 500 µmol/L) for 3 h to induce cell damage/death and cell 
viability was determined by neutral red assay. 

3.3. Matrix metalloproteinase-3 and tumor necrosis factor alpha gene expression and secretion 

RNA isolation and real time PCR measurements 

Cells were co-incubated with IL-1β (10 ng/mL) and 100 and 500 µmol/L glucosamine sulfate, 
chondroitin sulfate (Bayer AG, Leverkusen, Germany) or the combination of both (100 and  
500 µmol/L of each test compound). After 6, 12, and 24 h the medium was collected and the cells were 
lysed by TRIsure reagent (Bioline, London, United Kingdom) according to the manufacturer’s 
protocol. The concentration of RNA was determined by measuring the absorbance at 260 nm. The 
purity was determined by the ratio of 260/280 nm using a spectrophotometer (Beckman Coulter 
GmbH, Munich, Germany). RNA concentration was diluted to 100 ng/µL and aliquots were stored at -
80 °C until PCR analysis. Real-time quantitative PCR was performed in a Rotor Gene 6000 
thermocycler (Corbett Research, Sydney, Australia) and carried out using the SensiMix™ One-Step 
Kit with SybrGreen detection (Quantance, Berlin, Germany) according to the manufacturer’s 
instructions. Primer sequences for β-actin, MMP3 and TNFα are summarized in Table 2 below. mRNA 
levels of MMP3 and TNFα were related to the house-keeping gene β-actin. 
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Table 3. Primer sequences and conditions for real time PCR experiments. 

Gene Sequence (5' - 3') 
Annealing 
temperature 

b-actin F: GGA TGC AGA AGG AGA TCA CTG 55°C 
 R: CGA TCC ACA CGC AGT ACT TG   
MMP3 F: TTT TGG CCA TCT CTT CCT TCA  59°C 
 R: TGT GGA TGC CTC TTG GGT ATC   
TNF-α F: CCC CAG GGA CCT CTC TCT A 60°C 
  R: GGT TTG CTA CAA CAT GGG CTA CA   

 
3.4. MMP3 and TNFα quantification by ELISA 

Secretion of MMP3 and TNFα was determined in all culture supernatants using a commercial 
ELISA kit (DuoSet® ELISA Development System, R&D Systems, Inc. Wiesbaden, Germany) 
according to the manufacturer’s protocol. Optical density readings at 450 nm were performed using a 
microplate reader (Tecan Germany GmbH, Crailsheim, Germany). 

3.5. Western blot analysis for p65 

Following pre-treatment with test compounds for 1.5 h cells were co-incubated with IL-1β for 3 h. 
Subsequently, cells were washed with ice-cold PBS, scraped and centrifuged (800× g, 4 °C, 3 min). 
After discarding the supernatant, the remaining cell pellet was carefully resuspended in 100 µl of 
ice-cold buffer A [10 mmol/L HEPES (pH 7.9), 10 mmol/L KCl, 1.5 mmol/L MgCl2, 0.5 mmol/L 
DTT, 0.1%, Nonidet-P40, protease inhibitor cocktail (Sigma)], and incubated on ice for 15 min. 
Afterwards, the homogenates were centrifuged (4,000xg, 4 °C, 1 min) and the supernatants were 
removed. The pellets were resuspended in 80 µL of ice-cold buffer B [40 mmol/L HEPES (pH 7.9), 
400 mmol/L KCl, 1mmol/L DTT, 6.25% 5M NaCl, 10% glycerol and protease inhibitors], left on ice 
for 30 min and centrifuged (18,000xg, 4 °C) for 30 min. Supernatants (nuclear extracts) were removed 
and stored at -80°C until further analysis [34]. 

Protein concentrations were determined by BCA protein assay (Pierce, Rockford, USA). A quantity 
of protein of each sample (40 µg) was mixed with loading buffer, denatured at 95 °C for 5 min and 
separated on a 12% SDS-PAGE. Subsequently, the samples were transferred onto a polyvinylidene 
fluoride (PVDF) membrane and blocked with 5% skim milk dissolved in TBS + 0.05% Tween-20 
(TBST) for a minimum of 1 h. The membrane was probed with the respective antibody (p65: 1:500; 
actin: 1:800) (Santa Cruz Biotechnology, Heidelberg, Germany) at 4 °C overnight. Afterwards the 
membrane was washed and incubated with the respective HRP-conjugated secondary antibody (anti-
rabbit: 1:4,000) for 50 min. The protein bands were visualized using Pierce® ECL Western Blotting 
Substrate kit (Pierce) in a ChemiDoc XRS system (BioRad, Munich, Germany). Relative intensities of 
the bands were quantified by densitometry and expressed as ratio between target protein (p65) and 
loading control (actin). 
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3.5. Statistical analysis 

Results are expressed as mean values with SEM. Data were tested for normal distribution and 
analyzed by posthoc test (Dunnett following ANOVA) or by t-test. In the case of non-parametric data 
the Mann-Whitney U-test was applied. Differences were considered significant when the p value was 
≤ 0.05. Statistical analyses calculations were performed with SPSS Version 15.0. 

4. Conclusions 

Overall our results suggest that combining natural compounds such as α-toc, AA, and Se as well as 
GS and CS seems to be a promising strategy to combat oxidative stress and cytokine induced matrix 
degradation in cultured chondrocytes. The in vitro data regarding the synergistic antioxidant activity of 
α-toc, AA, and Se as well as the synergistic inhibitory activity of GS and CS on MMP3 levels and 
TNF-α secretion need to be validated in vivo. 
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