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Abstract: SF6 is a common insulating medium of gas-insulated switchgear (GIS). However, it is
inevitable that SF6 will be decomposed due to partial discharge (PD) in GIS, which will cause hidden
dangers to the safe and stable operation of equipment. Based on the DFT method, the two-dimensional
nano-composite As-doped h-BN (As-BN) monolayer was proposed. By modeling and calculating,
the ability of an As-BN monolayer as a specific sensor for SO2F2 (compared with an H2O adsorption
system and CO2 adsorption system) was evaluated by parameters such as the binding energy (Eb),
adsorption energy (Eads), transfer charge (∆Q), geometric structure parameters, the total density of
states (TDOS), band structure, charge difference density (CDD), electron localization function (ELF),
sensitivity (S), and recovery time (τ). The results showed that an As-BN monolayer showed strong
adsorption specificity, high sensitivity, and short recovery time for SO2F2 gas molecules. Therefore, the
As-BN monolayer sensor has great application potential in the detection of SF6 decomposition gases.

Keywords: SF6 decomposition gas; gas sensor; As-BN monolayer; DFT

1. Introduction

SF6 gas is widely used in gas-insulated switchgear (GIS) due to its high dielectric
strength, excellent arc extinguishing ability, and good insulation characteristics [1–3]. How-
ever, some insulation defects, such as partial discharge (PD), are inevitable during the
long-term operation of GIS. The PD is the fault characteristic phenomenon before the com-
plete breakdown or flashover of GIS insulation, and it is also the early manifestation of GIS
internal insulation defects, causing great hidden dangers to the safe and stable operation
of GIS. Under the continuous action of PD, a variety of low-fluorine sulfides formed by
SF6 decomposition will react with H2O molecules, which will lead to the decomposition of
the SF6 gas which is difficult to reduce, and generate SO2F2 and other SF6 decomposition
gases [4–7]. This will significantly reduce the insulation performance of SF6 gas and accel-
erate the deterioration of GIS insulation, which may lead to sudden faults in the operation
of GIS. Therefore, the monitoring of SF6 decomposition gas is of great significance to the
defect identification and early warning of GIS.

At present, the traditional methods for detecting SF6 decomposition gases produced
by PD in GIS include chromatography and spectroscopy [8–11]. The basic principle of
chromatography is to push the mixed gas samples taken from GIS into the chromatographic
column, separate SF6 decomposition gases by using different gas adsorption or dissolution
capacities of each component and identify and calibrate them with special detectors. How-
ever, this method is relatively complex, high instrument price has high requirements for
operators, and cannot realize online monitoring. Spectroscopy is a quantitative detection
of SF6 decomposition gases by using the relationship between the absorption degree of
different measured gases and the volume fraction of the gas. However, the spectral method
has low sensitivity and low detection accuracy in the detection of trace gases, and there is a
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cross-interference between the absorption peak of SF6 and its decomposed components.
More importantly, with both spectroscopy and chromatography, it is difficult to achieve
online monitoring of SF6 decomposition gases. Therefore, it is very important to develop
real-time, accurate, convenient, and intelligent SF6 decomposition gas monitoring technology.

With the rapid development of nanotechnology, the gas sensor method has made
rapid progress. The basic principle of gas sensors based on nanomaterials is that when
detecting gas, nanomaterials, such as graphene, boron nitride, and carbon nanotubes,
interact with gas, resulting in varying degrees of electrical signal response to calculate
the type, concentration, and gas production rate of gas [12–16]. It has the advantages of
low preparation cost, simple process, fast detection speed, high sensitivity, and real-time
monitoring. At present, most studies on the monitoring of SF6 decomposition gases by
gas sensor method are mainly common gases, such as SO2 and H2S, but the exploration
of important gas components such as SO2F2 is still relatively small [17–20]. Therefore,
it is necessary to further develop gas sensors that can cover SO2F2 and other major SF6
decomposition gases. With the development of computer science, the DFT method based
on quantum mechanics has been widely used in the field of gas sensing [21–32]. According
to previous research, the material properties calculated by the DFT method have high
consistency with the experimental results, which confirms the feasibility of this method in
the field of gas sensing.

In this study, we proposed a novel As-doped h-BN (As-BN) monolayer gas sensor for
SF6 decomposition gas monitoring. Based on the DFT method, the gas sensing response
mechanism of the interaction between As-BN monolayer and SO2F2 gas molecules was
discussed at the micro-level. Considering the fact that SF6 gas molecules are more likely
to produce SO2F2 gas in the presence of gases such as H2O molecules in the air, the gas
sensing response parameters with As-BN monolayer and H2O and CO2 gas molecules
are also explored. This study provides a theoretical basis for the preparation of an As-BN
monolayer gas sensor for SF6 decomposition gas detection and provides a convenient way
for the development of other sensors.

2. Computational Details

Based on the DFT method, the construction and calculation of the model in this
study are all in DMol3 and CASTEP codes of the Materials Studio software [33–36]. In
order to avoid the interference of adjacent units, a 15 Å vacuum layer was constructed.
The Perdew-Burke-Ernzehof (PBE) of the generalized gradient approximation (GGA) is
selected to better deal with the inter-electron exchange-correlation functional. DFT semi-
core pseudo-potential (DSPP) is used to simplify the electronic interaction between atoms.
At the same time, double numerical plus polarization (DNP) is also added as the basic
function of the linear combination method of atomic orbitals. Considering the Van Der
Waals forces in the process of impurity doping and gas adsorption and the interaction
between long distances, the DFT-D2 method is used to analyze all models, which can
effectively improve the calculation accuracy of the system. The k point, energy convergence
accuracy, maximum force, and maximum displacement are set to 6 × 6 × 1, 1 × 10−5 Ha,
2 × 10−3 Ha/Å, 5 × 10−3 Å.

In this study, the calculation formula of binding energy is as follows:

Eb = Edoped-BN + µB/N − EBN − µAs (1)

where Edoped-BN and EBN represent the energy of the doped-BN monolayer and pristine
h-BN monolayer, respectively; the µ represents the chemical potential of the counterpart
elements. The calculated formation energies of As-BN monolayers doped with As atoms at
positions 1 and 2 are 6.501 eV and 6.931 eV, respectively.

In this study, the adsorption energy formula is as follows:

Eads = EGas/As-BN − EGas − EAs-BN (2)
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where EGas/As-BN, EGas, and EAs-BN represent the energy of adsorption systems, gas molecule,
and As-BN monolayer, respectively.

In this study, the calculation formula of transfer charge is as follows:

∆Q = Q1 − Q2 (3)

where Q1 and Q2 represent the total charge of the gas molecule after and before adsorption,
respectively.

In this study, the calculation formula of sensitivity is:

S = (1/σAs-BN/gas − 1/σAs-BN)/(1/σAs-BN) (4)

where the σAs-BN/gas and σAs-BN, respectively, represent the conductivity of adsorption
systems and As-BN monolayer.

In this study, the calculation formula of recovery time is:

τ = v0
−1 exp(−Eads/kT) (5)

where v0, k, and T represent the attempt frequency, Boltzmann constant, and thermody-
namic temperature, respectively.

3. Results and Discussion

Constructing appropriate h-BN monolayers is the basis for our subsequent research.
As shown in Figure 1(a1,a2), we first constructed h-BN monolayers containing nine N
atoms and nine B atoms in a 3 × 3 × 1 supercell. The B-N bond length is 1.453 Å, and the
B-N-B or N-B-N bond angle is about 120◦. At the same time, other parameters are also
similar to previous studies. Then, we doped the h-BN monolayer by substituting an As
atom for an N atom (position 1) or a B atom (position 2). At the same time, we calculated
the geometric structure parameters and binding energy (Eb) of the two after doping. Both
are positive, indicating that the formation reactions of the two are endothermic reactions.
The formation of the two needs to provide heat or other forms of energy in the outside
world. The smaller formation energy of position 1 indicates that the doping method of
one As atom instead of one N atom is more reliable and stable, while the doping method
of position 2 is difficult to complete in the experiment. This may be related to the fact
that an As atom has the same valence electron as an N atom. This makes an As atom
replaces an N atom without an unpaired electron, and an As atom replacing a B atom will
produce defects. From the perspective of geometric configuration, the B-N bond length of
the b-BN monolayer (1.453 Å) is closer to the As-B bond length after doping in position 1
(l1 = 1.848 Å) than that after doping in position 2 (l2 = 2.000 Å). This indicates that the
binding of an As atom at doping site 1 is closer than that at doping site 2, the change of
bond length before doping is smaller, and a more stable structure can be formed. At the
same time, the B-As-B bond angle (α1 = 96.390◦) formed by doping site 1 is closer to the
B-N-B/N-B-N bond angle (120◦) before doping than the N-As-N bond angle (α2 = 94.138◦)
formed by doping site 2. The large change of bond angle will cause excessive distortion of
the material, which will not be conducive to the stability of the material and the application
of the function. Therefore, the adsorption of the three gas molecules (SO2F2, H2O, and
CO2) explored in this study was based on an As atom to replace an N atom of the As-BN
monolayer, as shown in Figure 1(b1,b2).
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tion effect of the As-BN monolayer on SO2F2 gas molecules is particularly strong. In gen-
eral, we consider that an adsorption energy of less than −0.6 eV is chemical adsorption. 
This means that the adsorption time and detection time of an As-BN monolayer for SO2F2 
gas molecules will reach a good balance. The other two gases may be desorbed from the 
As-BN monolayer without an electrical signal display. This proves the specificity of the 
As-BN monolayer for SO2F2 adsorption. From a geometrical point of view, the As-BN 
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electrical signal response of the As-BN monolayer. It is worth mentioning that the shortest 
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Figure 1. The geometric structures of (a1,a2) h−BN monolayer, (b1,b2) As−BN monolayer, (c1,c2)
SO2F2 adsorption system, (d1,d2) H2O adsorption system, (e1,e2) CO2 adsorption system.

Three gases (SO2F2, H2O, and CO2) were close to the As-BN monolayer from different
orientations and positions to obtain the optimal adsorption configuration, as shown in
Figure 1(c1–e2). In order to quantify the adsorption of As-BN monolayer on various
gases, the adsorption energies (Eads), the nearest distance of gas molecules to the substrate
(dsub/gas), and the transfer charge (∆Q) were calculated.

From the perspective of adsorption energy, the adsorption energy of the three adsorp-
tion systems is negative, and the adsorption effect of the As-BN monolayer on SO2F2 gas
molecules is significantly stronger than that of the other two gas molecules. This indicates
that the three adsorption reactions are exothermic and spontaneous, and the adsorption
effect of the As-BN monolayer on SO2F2 gas molecules is particularly strong. In general,
we consider that an adsorption energy of less than −0.6 eV is chemical adsorption. This
means that the adsorption time and detection time of an As-BN monolayer for SO2F2 gas
molecules will reach a good balance. The other two gases may be desorbed from the As-BN
monolayer without an electrical signal display. This proves the specificity of the As-BN
monolayer for SO2F2 adsorption. From a geometrical point of view, the As-BN monolayer
adsorption of SO2F2 gas molecules is more obvious than the change in H2O gas molecules
and CO2 gas molecules, as shown in Figure 1(c1–e2). Before and after adsorption, the bond
lengths of SO2F2, H2O, and H2O molecules changed from 1.613 Å of S-F bond length to
3.724 Å, 0.97 Å of H-O bond length to 0.972Å, and 1.176 Å of C=O bond length to 1.175 Å,
respectively. It can be found that the change of bond angle is also similar, and the geometric
configuration change of the SO2F2 gas molecule is more obvious than that of the other
two gases. At the same time, the shortest distance between SO2F2 gas molecules and the
substrate is also smaller. This indicates that the adsorption of SO2F2 gas molecules on
the As-BN monolayer is closer and stronger, which may lead to a more obvious electrical
signal response of the As-BN monolayer. It is worth mentioning that the shortest distance
between the three gas molecules and the substrate is the shortest distance between an atom
of the gas molecule and an As atom. This indicates that doping an As atom to replace an N
atom will significantly improve the gas-sensing adsorption capacity of the substrate. From
the perspective of transfer charge, the transfer charge of the SO2F2 gas adsorption system
is 40 and 80 times that of the other two adsorption systems. This will make the electrical
signal response of the As-BN monolayer before and after the adsorption of different gases
show obvious differences. Therefore, from the above point of view, compared with CO2
gas molecules and H2O gas molecules, the As-BN monolayer can achieve good specificity
detection for SO2F2 gas molecules.
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In order to further explore the electronic behavior of each model, we calculated their
total density of states (TDOS), electron localization-focusing function (ELF), and charge
difference density (CDD), as shown in Figure 2. Figure 2a describes the TDOS of the
substrate before and after doping. It can be seen that the As atom doped As-BN monolayer
TDOS overall moves to the lower left energy direction, but the change of the peak size is
relatively small, indicating that the doped As atoms have no significant effect on the crystal
structure of the substrate. Continuous TDOS means that the As-BN monolayer has good
conductivity. The TDOS of the As-BN monolayer has an obvious peak at the Fermi level,
indicating that the energy gap of the As-BN monolayer doped with an As atom instead of
an N atom is smaller than that of the h-BN monolayer, which makes electrons more prone
to transition. Therefore, the doping of As atoms is beneficial to improving the conductivity
of the h-BN monolayer. At the same time, there are different degrees of hybridization
and overlap in some energy levels, which shows that As atoms can form a stable doping
structure with an h-BN monolayer.
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Figure 2(b1,c1,d1) shows the TDOS of three gas adsorption systems. Compared with
the other two adsorption systems, the change of TDOS in the SO2F2 gas adsorption system
before and after adsorption is more obvious, as shown in Figure 2(b1). Near the Fermi level,
TDOS changes significantly, which enhances the electron co-ownership movement around
SO2F2 gas molecules and enhances the electron transition ability between the valence band
and conduction band. The electrical conductivity of the system was significantly improved.
At the same time, TDOS increases significantly at the far Fermi level, which may also
contribute to conductivity. However, the TDOS of the other two adsorption systems did
not change significantly before and after adsorption, especially near the Fermi level. This
indicates that it is difficult to monitor the adsorption of H2O or CO2 molecules on the
As-BN monolayer surface. Even if there are new peaks or some changes in TDOS far away
from the Fermi level, the contribution to conductivity is negligible. This is also consistent
with the small adsorption energy of these two gas molecules in the adsorption process.
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The above analysis was also confirmed in the ELF and CDD of the three adsorption
systems, as shown in Figure 2(b2,b3). The fusion of orange and green regions indicates that
the F atom and As atom of the SO2F2 gas molecule have strong mutual attraction, and the
electron density increases significantly, but the two are obviously not completely fused.
Combined with the adsorption effect in the SO2F2 adsorption system previously analyzed,
the adsorption between SO2F2 gas molecules and As-BN monolayer is more likely to be
between physical adsorption and chemical adsorption. Figure 2(c2,d2) showed that the
ELF of the H2O adsorption system and CO2 adsorption system also tend to converge, but
this trend is weaker than that of the SO2F2 adsorption system. Therefore, combined with
the previous adsorption energy, transfer charge, and geometric configuration parameters,
the adsorption between the H2O gas molecule and the CO2 gas molecule and the As-
BN monolayer were determined as physical adsorption. In the CDD of the SO2F2 gas
adsorption system, there are dense electron concentration areas and electron dissipation
areas around gas atoms and As atoms, as shown in Figure 2(b3). This indicates that the
adsorption reaction of the two is accompanied by intense charge transfer. This is also
very consistent with the previously calculated charge transfer (−0.832 e). At the same
time, the atoms of SO2F2 gas molecules are more surrounded by electron concentration
areas, which is also consistent with the negative charge transfer calculated previously. The
SO2F2 gas molecule is an electron acceptor, and the As-BN monolayer is an electron donor.
However, the electron-dissipation region and electron-aggregation region of the other two
adsorption systems are not obvious at the same isosurface value as the SO2F2 adsorption
system. This proves that the charge transfer between H2O and CO2 molecules interacting
with the As-BN monolayer is very small. This is consistent with the previous calculation
of charge transfer; that is, the charge transfer of the H2O adsorption system and the CO2
adsorption system is much smaller than that of SO2F2. Therefore, in the three adsorption
systems, the adsorption and electronic behavior of the As-BN monolayer on SO2F2 gas
molecules are particularly strong.

For resistive gas sensors, it is necessary to detect SO2F2 gas molecules when the con-
ductivity changes properly. Band energy has a significant correlation with the conductivity
of the system. When the band gap increases, the conductivity of the system decreases; when
the band gap decreases, the conductivity of the system increases. The larger the band gap,
the harder it is for electrons to enter the conduction band. Reflected in the macro are the
current or voltage changes. It can be seen from Figure 3a,b that the band gap of the As-BN
monolayer doped with As atoms decreased significantly from 4.658 eV to 3.695 eV. The
decrease in the band gap means that the electron transition will be easier, and the change
in the conductivity of the material may be more obvious. As shown in Figure 3b–f, after
the adsorption of the SO2F2 gas molecules, the energy gap value of the system changes
significantly and is significantly different from that of the other two adsorption systems,
and the band gap energy decreases by nearly 50%. The absolute values of the band gap
energy changes of the other two adsorption systems are less than 0.6%, which is very
difficult in the actual detection. The specificity of the As-BN monolayer for SO2F2 gas
molecular detection was also proved. At the same time, we consider that SF6 is more likely
to decompose into characteristic gases such as SO2F2 under the condition of micro-water.
Therefore, the distinguishing detection of H2O and SO2F2 gas molecules are particularly
important in SF6 decomposition gas detection. Therefore, the As-BN monolayer is very
suitable for the detection of SF6 decomposition gases.

In order to further explore the practical potential of the As-BN monolayer gas sensor,
the sensitivity (S) and recovery time (τ) of three adsorption systems were calculated.
Sensitivity is an important performance index of gas sensors, which is closely related to
the change of band energy gap of the system. Recovery time is an important parameter
to describe the desorption rate of the gas sensor to the target gas, which is closely related
to the adsorption energy when the gas sensing material interacts with the measured gas.
Figure 4a shows the recovery time of three adsorption systems. The results showed that
the recovery time was from 44.7 s to 0.862 s at the temperature of 358 K to 398 K. This was
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because the adsorption and desorption of the As-BN monolayer and SO2F2 gas were easier
with the increase in temperature due to the addition of external energy. At the same time,
the recovery time of the other two adsorption systems is shorter. This makes it impossible
for the As-BN monolayer to effectively adsorb and respond to H2O or CO2 gas molecules
in practical applications. This is very useful for the specific detection of SO2F2 gas. As
shown in Figure 4b, the SO2F2 gas adsorption system shows high sensitivity at various
temperatures. The sensitivity is 4.38 × 1014 at room temperature (298 K). At 398 K, the
sensitivity of the As-BN monolayer gas sensor can also reach 9.17 × 1010. This means that
in the early stage of PD, the As-BN monolayer gas sensor can detect SO2F2 gas in time,
which provides the possibility for early warning. In conclusion, the As-BN monolayer has
great potential for the detection of SF6 decomposition gases.
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appropriate and significantly different from those of the other two adsorption systems, 
which ensures the specificity of the As-BN monolayer for the detection of SO2F2 gas mol-
ecules. At the same time, at multiple temperatures. The detection of SO2F2 gas molecules 
by the As-BN monolayer can ensure high sensitivity and short recovery time. Therefore, 
this study not only provides a theoretical basis for the preparation of As-BN monolayer 
gas sensors for SF6 decomposition gas monitoring but also provides a convenient way for 
the development of other sensors. 
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4. Conclusions

In this study, the h-BN monolayer, As-BN monolayer, and three gas molecular models
(SO2F2, H2O, and CO2) were established, and the optimal adsorption structures of the three
gases were obtained through calculation and analysis. On this basis, by calculating the ad-
sorption energy, geometric structure parameters, transfer charge, adsorption energy, TDOS,
ELF, CDD, band structure, recovery time, and sensitivity of each system, the possibility of
an As-BN monolayer as a sensitive layer to detect the important characteristic gas SO2F2
in SF6 decomposition gases was analyzed. The calculation results show that in the three
adsorption systems, the parameters of the SO2F2 adsorption system are more appropriate
and significantly different from those of the other two adsorption systems, which ensures
the specificity of the As-BN monolayer for the detection of SO2F2 gas molecules. At the
same time, at multiple temperatures. The detection of SO2F2 gas molecules by the As-BN
monolayer can ensure high sensitivity and short recovery time. Therefore, this study not
only provides a theoretical basis for the preparation of As-BN monolayer gas sensors for
SF6 decomposition gas monitoring but also provides a convenient way for the development
of other sensors.
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