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Abstract: Investigating the effects of load carriage on military soldiers using optical motion capture
is challenging. However, inertial measurement units (IMUs) provide a promising alternative.
Our purpose was to compare optical motion capture with an Xsens IMU system in terms of movement
reconstruction using principal component analysis (PCA) using correlation coefficients and joint
kinematics using root mean squared error (RMSE). Eighteen civilians performed military-type
movements while their motion was recorded using both optical and IMU-based systems. Tasks
included walking, running, and transitioning between running, kneeling, and prone positions. PCA
was applied to both the optical and virtual IMU markers, and the correlations between the principal
component (PC) scores were assessed. Full-body joint angles were calculated and compared using
RMSE between optical markers, IMU data, and virtual markers generated from IMU data with
and without coordinate system alignment. There was good agreement in movement reconstruction
using PCA; the average correlation coefficient was 0.81 ± 0.14. RMSE values between the optical
markers and IMU data for flexion-extension were less than 9◦, and 15◦ for the lower and upper limbs,
respectively, across all tasks. The underlying biomechanical model and associated coordinate systems
appear to influence RMSE values the most. The IMU system appears appropriate for capturing and
reconstructing full-body motion variability for military-based movements.

Keywords: inertial sensors; Xsens; army; joint kinematics; principal component analysis; PCA; root
mean squared error; RMSE; Xsens vs. Vicon

1. Introduction

Load carriage is an important component of typical occupational activities for military soldiers.
When in the battlefield and during training, soldiers wear bulky clothing, stiff armour, and carry heavy
backpacks. The items a soldier carries are lifesaving and operationally-relevant. However, they may
also lead to musculoskeletal injuries over time [1–3] and impair overall performance (e.g., movement
speed and exposure time) [4,5]. To better understand the demands placed on the body by typical
military loads, researchers have studied the effects of load carriage on joint kinematics using optical
motion capture. Operationally-relevant loads increase trunk flexion, lower limb flexion range of motion
(ROM), and walking speed during gait [6,7]. However, optical motion capture is generally confined
to use in a laboratory setting and measuring motion in a more natural working environment is not
typically feasible. Furthermore, optical motion capture requires line of sight between the cameras and
body-mounted markers, which makes it challenging to study the effects of wearing military equipment
as the markers must not be covered.

Inertial measurement units (IMUs) are becoming increasingly popular as a method of measuring
human movement that overcomes some of the barriers of optical motion capture. IMUs are small
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devices that contain sensors to make inertia-based measurements of motion. These may consist of an
accelerometer, gyroscope, and magnetometer that measure linear acceleration, angular velocity, and
variations in the magnetic field, respectively. A range of kinematic and kinetic variables, including
joint angles can be calculated by fusing data from these sensors and incorporating constraints from a
biomechanical model [8,9]. IMUs can be placed directly on the skin, can be covered with clothing, and
are highly transportable, which directly addresses the aforementioned limitations of optical systems.
These benefits of IMU technology allow researchers to study individuals in their natural environment,
while wearing the appropriate clothing and equipment needed to perform a given task.

Growing interest in the potential of IMUs has led to a number of validation studies that aim to
assess the accuracy of joint kinematics calculated using these wearable sensors. Typically, accuracy has
been quantified by comparing joint angles calculated using IMU systems to optical motion capture
through root mean squared error (RMSE) [10,11], correlation coefficients [12,13], and/or Bland-Altman
limits of agreement [14,15]. Efforts have largely been focused on IMU system validation for lower
limb angles during gait [16–18]. However, other activities, including stair climbing, kicking, materials
handling, and skiing [14,19–21] and upper body angles [22,23] have been examined as well. Lower
limb sagittal plane angles have been found to have relatively low RMSE ranging from 2–11◦ [24–27]
and good correlation coefficients from 0.9–1.0 [11,12,28] with optically-derived angles. Errors tend
to be greater and correlations worse for frontal and axial plane angles [12,19,25]. Studies reporting
full-body angles have demonstrated larger errors for upper body angles, compared to lower limb
angles [14,29]. These previous IMU system validation studies were aimed at investigating movements
that target the lower limbs and manual materials handling tasks where there was little translation
by the participant. These are not representative of the prone positions or rapid changes in height
that are typically performed by soldiers. As a result, the validity of using an IMU system to measure
military-based movements remains unclear.

Our larger, overarching goal is to generate morphable models of movement using principal
component analysis (PCA) and linear discriminant analysis. That is, we intend to incrementally
alter and represent military movement patterns between two body-borne load conditions without
actually collecting an intermediate load. This will allow us to simulate a spectrum of body-borne load
conditions that are infeasible to collect. Before this can be accomplished, we must establish an accurate
method of measuring full-body movement during typical military activities in the field while wearing
operationally-relevant loads. The purpose of this investigation was to compare an IMU system (MVN
BIOMECH Link, Xsens, Enschede, the Netherlands) with an optical (OPT) motion capture system
(Vantage V5, Vicon, Oxford, UK) for a variety of operationally-relevant military movements. To be
comparable to previous research, we compared the RMSE of the joint angles calculated using the
IMU system to the OPT system. We calculated joint angles using the IMU data in multiple ways to
determine the differences between systems that could be expected in practice, and to examine any
difference due to the biomechanical models used by each system and the technology itself. We also
examined the agreement of the systems in terms of full-body movement variability as captured using
PCA as this pattern recognition technique will be used in the future to generate morphable models
of movement.

2. Materials and Methods

2.1. Participants

Ten male and 10 female civilian participants were recruited for this study. However, due to
technical difficulties caused by both systems, which made the data unusable, only nine males and
nine females were analyzed. Mean age, height, and mass of all participants were 23.7 years (standard
deviation (SD) = 3.44), 175 cm (SD = 7.93), and 71.9 kg (SD = 13.2), respectively; all participants’
demographics are reported in Table 1. All participants read and signed the participant information
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letter, which was approved by the University of Ottawa ethics board (approval number H-06-18-721),
before data collection began.

Table 1. Participant demographics.

Number of Participants
Age (years) Height (cm) Mass (kg)

Mean (SD; Range) Mean (SD; Range) Mean (SD; Range)

All 20 23.7 (3.44; 13.0) 175 (7.93; 30.3) 71.9 (13.2; 42.2)
Female 10 22.3 (2.26; 4.00) 171 (9.23; 26.2) 63.5 (6.80; 11.3)
Male 10 25.1 (3.93; 13.0) 179 (3.91; 11.7) 80.3 (12.8; 36.3)

Note: SD = Standard deviation. Range = maximum value minus the minimum value.

2.2. Participant Preparation and Equipment

Participants were asked to change into athletic shorts and a Lycra® T-shirt that is specifically
designed for the Xsens system. The T-shirt has Velcro® locations on the shoulders to place sensors,
zippers on the back to contain wires, and pockets in the back to host the battery and onboard computer.

Participants were first outfitted with 17 IMU sensors, which were placed on the back of the head,
sacrum, sternum, and bilaterally on the upper arms, forearms, hands, shoulders, thighs, shanks, and
feet. The pelvis, upper limb, and lower limb sensors were affixed to the skin using neoprene bands,
specialty gloves were used for the hand sensors, an elastic headband was used for the head sensor, the
trunk sensors (sternum and shoulders) were placed in the T-shirt described above, and the feet sensors
were placed inside participants’ shoes using a neoprene insert.

A cluster-based optical marker set was then placed atop the IMU system. Passive four-marker
clusters were affixed to the body with Velcro® atop the IMU system’s neoprene bands to be in a similar
locality as the IMU system for each segment. The four-marker cluster placed approximately over the
T10–T12 vertebrae was placed using a neoprene band that wrapped around the abdomen and over
the IMU system’s battery pack and onboard computer; the cluster was placed between the hardware.
A three-marker cluster was taped onto the dorsal aspect of the toe bed of the participants’ shoes and
four individual markers were taped onto the headband. Individual markers were also taped to specific
anatomical landmarks (bilaterally on the medial and lateral malleoli, medial and lateral condyles of
the humerus and femur, greater trochanter of the femur, radial and ulnar styloid processes, PSIS, ASIS,
iliac crests, acromions, and dorsum of the hands and on C7) so a whole-body biomechanical model
could be created.

Participants’ kinematic data were captured simultaneously from both the IMU (MVN BIOMECH,
Xsens, Enschede, the Netherlands) and OPT (Vantage 5, Vicon, Oxford, UK) motion capture systems
at 240 Hz. A common event of hand clapping/floor smacking was used to synchronize both motion
capture systems. A visual representation of the participant setup is displayed in Figure 1.
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Figure 1. Participant setup. A cluster-based optical marker set was worn on top of the Xsens IMU suit. 

2.3. Movement Protocol 

Participants were asked to perform eight operationally-relevant military movements: running, 
walking, kneel-to-prone (KTP), prone-to-kneel (PTK), kneel-to-run (KTR), prone-to-run (PTR), run-
to-kneel (RTK), and run-to-prone (RTP). All tasks were performed three times in a straight line with 
the exception of walking, where participants were asked to walk in a criss-cross pattern measuring 
3.5 m x 2 m twice (i.e., two repetitions of walking forward 3.5 m, turning 135° clockwise to walk on a 
diagonal 4 m, turning 135° counter clockwise to walk forward 3.5 m, and turning 135° counter 
clockwise to walk on a 4 m diagonal to return to the start position). 

Due to the limited field of view of the OPT system, participants started ~3.5 m outside of the 
capture volume for the RTK and RTP movements and were instructed to transition into kneeling or 
prone in the middle of the capture volume. Conversely, during the KTR and PTR movements, 
participants started in the middle of the capture volume and were instructed to run ~3.5 m outside 
the capture volume. For the running movement, participants started ~3.5 m outside the capture 
volume and were instructed to run through the capture volume, beginning their deceleration ~3 m 
past the capture volume. For movements that began outside the capture volume, participants 
performed the hand clap in the middle of the OPT capture volume, jogged to the start position, 
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2.4. Data Processing 

Three-dimensional (3D) time series marker trajectories from all trials and repetitions were 
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OPT marker trajectories were gap filled and filtered using a 4th order Butterworth filter in Nexus 2.5 
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marker trajectories of virtual markers for the IMU data that are generated based on the pose of each 
segment and their underlying biomechanical model. These were exported in C3D format as well. For 
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S1) were imported into Matlab (2018b The MathWorks, Natick, MA, USA). For the joint angle RMSE 
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Visual3D (C-motion, Germantown, MD, USA) to calculate joint angles using the Visual3D six degrees 
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IMU data following the application of a method to better align the segment anatomical coordinate 

Figure 1. Participant setup. A cluster-based optical marker set was worn on top of the Xsens IMU suit.

2.3. Movement Protocol

Participants were asked to perform eight operationally-relevant military movements: running,
walking, kneel-to-prone (KTP), prone-to-kneel (PTK), kneel-to-run (KTR), prone-to-run (PTR),
run-to-kneel (RTK), and run-to-prone (RTP). All tasks were performed three times in a straight
line with the exception of walking, where participants were asked to walk in a criss-cross pattern
measuring 3.5 m × 2 m twice (i.e., two repetitions of walking forward 3.5 m, turning 135◦ clockwise
to walk on a diagonal 4 m, turning 135◦ counter clockwise to walk forward 3.5 m, and turning 135◦

counter clockwise to walk on a 4 m diagonal to return to the start position).
Due to the limited field of view of the OPT system, participants started ~3.5 m outside of the

capture volume for the RTK and RTP movements and were instructed to transition into kneeling
or prone in the middle of the capture volume. Conversely, during the KTR and PTR movements,
participants started in the middle of the capture volume and were instructed to run ~3.5 m outside the
capture volume. For the running movement, participants started ~3.5 m outside the capture volume
and were instructed to run through the capture volume, beginning their deceleration ~3 m past the
capture volume. For movements that began outside the capture volume, participants performed
the hand clap in the middle of the OPT capture volume, jogged to the start position, performed the
movement, and then hand clapped/floor smacked at the end of the movement. For those movements
ending outside of the OPT capture volume, participants completed the movement then jogged back to
the middle of the capture volume to perform a hand clap.

2.4. Data Processing

Three-dimensional (3D) time series marker trajectories from all trials and repetitions were exported
from the OPT motion capture system to coordinate 3D file format (C3D). Prior to exporting, OPT
marker trajectories were gap filled and filtered using a 4th order Butterworth filter in Nexus 2.5 (Vicon,
Oxford, UK). MVN Analyze (Xsens, Enschede, The Netherlands) provides 64 3D time series marker
trajectories of virtual markers for the IMU data that are generated based on the pose of each segment
and their underlying biomechanical model. These were exported in C3D format as well. For PCA,
only those markers that were similar between systems (N = 30; Supplementary Material Table S1)
were imported into Matlab (2018b The MathWorks, Natick, MA, USA). For the joint angle RMSE
analysis, C3D data from both systems (Supplementary Material Table S2) were imported into Visual3D
(C-motion, Germantown, MD, USA) to calculate joint angles using the Visual3D six degrees of freedom
pose computation algorithm (Figure 2), which were subsequently imported into Matlab for further
analysis (VOPT and VIMU). Joint angles were calculated a second time from the Visual3D IMU data
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following the application of a method to better align the segment anatomical coordinate systems to
those in the optical data model (VIMU-CAL). In this procedure, for each body segment the angular
velocities of adjacent segments were calculated with respect to that body segment for both VOPT and
VIMU models throughout all motion trials. This was used to calculate a transformation matrix between
the anatomical coordinate systems of the two models for each body segment. The transformation matrix
was applied to the coordinate systems in the VIMU model to calculate VIMU-CAL [30]. This enabled a
closer comparison of the two measurement technologies by mitigating error due to coordinate system
alignment [14]. Joint angles were also calculated directly from the IMU data in the MVN Analyze
software and imported into Matlab for comparison (XIMU). All data were synchronized using the peak
acceleration of the hand markers (OPT)/hand segments (XIMU) during the hand clap/floor smack events.
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Figure 2. Example Visual3D model for a representative participant. Visual3D’s 6 degree-of-freedom
model was used for all joint angle calculations. (a) Model built from OPT data (VOPT). (b) Model built
with IMU data (VIMU). Tracking markers used can be found in Supplementary Material Table S2.

2.4.1. Principal Component Analysis

For both systems, 3D marker trajectories were synchronized then cropped. For the walk and run
trials, each gait cycle was cropped based on heel strike, while the remaining movement trials were
cropped based on visually-identified start and end points. All trials were then normalized to 101 data
samples using a piecewise cubic Hermite interpolating polynomial (PCHIP). These data were reshaped
from the original 101 × 90 matrix (101 data points × (30 markers * 3 axes)) to a 1 × 9090 vector. For each
movement type, the newly shaped vectors were horizontally concatenated to create a N × 9090 matrix,
where the first N

2 rows were OPT data and the last N
2 rows were IMU data. PCA was applied to each

N × 9090 matrix.
PCA was applied separately for each movement based on the way the participants performed the

movement. The KTP, PTK, PTR, KTR, RTP, RTK, and Run tasks were separated as left or right movers.
For example, for the KTP task, the participants who kneeled with their left leg were considered left
movers versus participants who kneeled with their right leg were right movers, and, therefore, were
analyzed through PCA separately. This right versus left kneeling criteria was used for the prone
transitional tasks as well, as a kneel is a functional movement in the transition into and out of prone.
Run was separated based on either a left or a right gait cycle. Additionally, for the walking task, gait
cycles were separated by left and right sides as well as the four directions that made up the crisscross
pattern (i.e., left gait and right cycles were analyzed separately for the initial forward progression,
both diagonals, and the second forward progression for a total of 8 PCA models). Movements were
analyzed separately based on left and right sides because PCA identifies the greatest modes of variance
within a dataset. Therefore, if both left and right movers were included in the same analysis, PCA
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would identify left versus right as the greatest difference, rather than the variance within the time
series marker trajectories, which is of much greater interest.

For each movement type, the number of principal components (PCs) retained was the minimum
amount to describe >90% of the variance within the marker trajectories. The PC scores for each retained
PC were compared between the OPT and IMU systems using Pearson correlations; Spearman rank
correlations were used for those data that violated parametric assumptions. Correlation coefficients
from left and right sides as well as each walking direction were averaged together to represent one
correlation coefficient for each retained PC for each movement. Correlation coefficients were interpreted
as negligible (0.00 to ± 0.30), low (± 0.30 to ± 0.50), moderate (± 0.50 to ± 0.70), high (± 0.70 to ± 0.90),
and very high (± 0.90 to ± 1.00); direction of the correlation was interpreted as either positive or
negative. Variance explained by each PC from left and right sides were averaged as well.

2.4.2. Root Mean Squared Error

Joint angles calculated through Visual3D and MVN Analyze were imported into Matlab 2018b
where a bias for each joint angle was removed by subtracting the joint angles from a standing calibration
trial that was shared by both systems. Data were synchronized then cropped and normalized to
101 data samples using PCHIP, as described above. Following normalization, the value of the first
frame was subtracted throughout the entire joint angle so that all systems began at 0◦. To ensure
synchronization, flexion-extension data were compared using cross-correlation for all joints between
VOPT and VIMU, VOPT and VIMU-CAL, and VOPT and XIMU. Those trials that had an optimal lag greater
than 10 frames or less than −10 frames were excluded. For each joint, RMSE was calculated four
times: (1) OPT calculated though Visual3D and IMU calculated through MVN Analyze (VOPT vs.
XIMU), (2) both systems calculated through Visual3D (VOPT vs. VIMU), (3) both systems calculated
through Visual3D with the segment coordinate systems alignment procedure for the IMU data (VOPT

vs. VIMU-CAL), and (4) IMU data calculated by both MVN Analyze and Visual3D with coordinate
system alignment (XIMU vs. VIMU-CAL) for each movement trial. VOPT versus XIMU was included
to assess the overall difference between systems. VOPT vs. VIMU compares differences between the
systems when the IMU joint angles are calculated in a way that is more similar to the method used
for the OPT data while not requiring any information from the OPT system. VOPT vs. VIMU-CAL was
included to examine the difference due to technology while mitigating errors arising from differences
in segment coordinate system alignment. XIMU vs. VIMUCAL was included to examine differences
arising between models while controlling for segment coordinate system alignment between MVN
Analyze and Visual 3D with no effect of technology.

3. Results

3.1. Principal Component Analysis

Between 4 and 9 PCs were retained for each movement to explain >90% of the variance for a total
of 48 PCs across all movement types. Of the 48 retained PCs, 38 (79%) had scores with a high or very
high positive correlation (≥ +0.70) between the OPT and IMU systems, 15 (31%) of which had scores
with a very high correlation (≥ +0.90). All correlation coefficients can be found in Table 2. A visual
representation of the average movers obtained by the IMU and OPT systems are in Figure 3.

3.2. Root Mean Squared Error

The magnitude of differences between kinematics calculated using the four methods varied
depending on the type of movement performed (Figure 4). RMSE was lowest for walking trials, with
RMSE values less than 5◦ for all axes and joints for OPT compared to IMU data processed in Visual3D,
with and without the additional coordinate system alignment procedure (VOPT vs. VIMU and VOPT

vs. VIMU-CAL). RMSE was less than 5◦ for all axes and joints for VOPT vs. XIMU with the exception of
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the left elbow axial rotation, which was less than 10◦. Errors were greater for the other tasks, which
involved faster movements and larger ranges of motion.

Table 2. Retained principal component (PC) correlation coefficients. Explained variance is in
parentheses (%).

Task PC1
(%)

PC2
(%)

PC3
(%)

PC4
(%)

PC5
(%)

PC6
(%)

PC7
(%)

PC8
(%)

PC9
(%)

RTK 0.948
(75.5)

0.770
(10.1)

0.744
(4.24)

0.939
(3.46) - - - - -

RTP 0.937
(71.5)

0.701
(13.7)

0.810
(5.72)

0.988
(3.28) - - - - -

KTR 0.903
(50.2)

0.702
(13.6)

0.792
(9.27)

0.970
(6.78)

0.923
(4.45)

0.849
(3.13)

0.586
(2.59)

0.612
(2.13)

0.744
(1.92)

PTR 0.829
(39.7)

0.774
(27.6)

0.678
(11.6)

0.865
(4.54)

0.882
(3.21)

0.735
(2.74)

0.887
(2.85) - -

KTP 0.963
(48.7)

0.961
(17.6)

0.936
(10.9)

0.884
(5.10)

0.509
(4.14)

0.702
(2.84)

0.923
(2.05) - -

PTK 0.867
(48.7)

0.931
(27.0)

0.962
(7.80)

0.643
(4.54)

0.710
(2.97)

0.954
(2.30)

0.848
(1.83) - -

Run 0.541
(61.3)

0.616
(27.3)

0.874
(2.97)

0.864
(2.58) - - - - -

Walk 0.819
(60.0)

0.485
(22.8)

0.924
(13.7)

0.867
(6.69)

0.635
(3.95)

0.644
(1.60) - - -

Note: RTK = run-to-kneel; RTP = run-to-prone; KTR = kneel-to-run; PTR = prone-to-run; KTP = kneel-to-prone;
PTK = prone-to-kneel.
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Prone-to-kneel (PTK); (f) Run-to-kneel (RTK); (g) Run-to-prone (RTP); (h) Running. 

3.2. Root Mean Squared Error 

The magnitude of differences between kinematics calculated using the four methods varied 
depending on the type of movement performed (Figure 4). RMSE was lowest for walking trials, with 
RMSE values less than 5° for all axes and joints for OPT compared to IMU data processed in Visual3D, 
with and without the additional coordinate system alignment procedure (VOPT vs. VIMU and VOPT vs. 
VIMU-CAL). RMSE was less than 5° for all axes and joints for VOPT vs. XIMU with the exception of the left 
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Figure 3. Military Movements. Blue represents an average OPT mover; orange represents average
IMU mover (a) Kneel-to-prone (KTP); (b) Kneel-to-run (KTR); (c) Prone-to-run (PTR); (d) Walking;
(e) Prone-to-kneel (PTK); (f) Run-to-kneel (RTK); (g) Run-to-prone (RTP); (h) Running.

Comparing OPT angles calculated in Visual3D with IMU angles calculated in MVN Analyze
(VOPT vs. XIMU; Table 3) for all tasks, the mean RMSE across all joints was 10.2◦ (SD = 4.27) for
flexion/extension, 9.30◦ (SD = 5.54) for ab/adduction, and 17.8◦ (SD = 15.7) for axial rotation. RMSE
values for this comparison were typically greater than the other comparisons. Axial rotation for the
upper limb differed considerably between the two methods, with a mean RMSE of 35.6◦ (SD = 25.1).
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Figure 4. Joint flexion/extension angle RMSE values for each task for joint angles calculated from
optical data using Visual3D (VOPT), IMU data using Visual3D (VIMU), IMU data using Visual3D with
calibration to align anatomical coordinate systems with optical model (VIMU-CAL), and IMU data
using MVN Analyze (XIMU). Presented data are averaged between left and right sides across all
participants and repetitions for each trial. RTK = run-to-kneel; RTP = run-to-prone; KTR = kneel-to-run;
PTR = prone-to-run; KTP = kneel-to-prone; PTK = prone-to-kneel.

Table 3. Mean RMSE values VOPT vs. XIMU.

Root Mean Squared Error (◦)

Joint Flexion-Extension
Mean (SD)

Ab/Adduction Mean
(SD)

Axial Rotation Mean
(SD)

Right Ankle 6.59 (1.76) 6.67 (1.37) 7.16 (2.58)
Left Ankle 7.34 (2.22) 6.11 (1.14) 5.90 (1.84)
Right Knee 7.52 (3.20) 4.73 (1.28) 6.44 (1.95)
Left Knee 7.15 (3.03) 4.97 (2.08) 7.62 (3.12)
Right Hip 8.07 (4.24) 3.95 (1.20) 3.87 (1.04)
Left Hip 8.38 (3.82) 4.07 (1.37) 4.22 (1.44)
Right Shoulder 19.1 (15.0) 15.2 (8.75) 31.0 (26.0)
Left Shoulder 16.5 (11.73) 15.6 (8.51) 31.9 (25.2)
Right Elbow 10.9 (5.30) 14.7 (7.00) 40.5 (27.6)
Left Elbow 10.1 (4.84) 17.1 (8.79) 39.2 (21.4)
Overall Mean 10.2 (4.27) 9.30 (5.54) 17.8 (15.7)

Note: Mean RMSE is calculated across all movement tasks. SD = standard deviation.

Comparing both OPT and IMU joint angles calculated through Visual3D (VOPT vs. VIMU; Table 4)
for all tasks, the mean RMSE across all joints was 9.61◦ (SD = 2.04) for flexion/extension, 7.28◦ (SD = 3.06)
for ab/adduction, and 9.33◦ (SD = 4.84) for axial rotation. RMSE was less for lower limb joints than
upper limb joints.

For the VOPT vs. VIMU-CAL comparison (Table 5), the mean RMSE across all joints for all tasks was
8.74◦ (SD = 1.25) for flexion/extension, 5.42◦ (SD = 1.52) for ab/adduction, and 7.18◦ (SD = 2.69) for axial
rotation. The procedure to better align the anatomical coordinate systems in the IMU data with those
of the OPT biomechanical model reduced the RMSE values compared to VOPT vs. VIMU, as expected.
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Table 4. Mean RMSE values VOPT vs. VIMU.

Root Mean Squared Error (◦)

Joint Flexion-Extension Ab/Adduction Axial Rotation

Right Ankle 6.50 (1.99) 6.21 (1.42) 6.21 (2.18)
Left Ankle 7.35 (2.37) 5.46 (0.83) 5.93 (1.74)
Right Knee 9.83 (4.51) 4.90 (1.29) 6.52 (1.84)
Left Knee 9.17 (3.63) 5.17 (2.13) 7.77 (2.99)
Right Hip 8.43 (4.29) 4.23 (1.14) 4.03 (1.04)
Left Hip 8.57 (3.89) 4.18 (1.35) 4.35 (1.43)
Right Shoulder 11.0 (6.46) 8.79 (3.16) 11.5 (6.62)
Left Shoulder 13.4 (8.44) 10.6 (3.52) 15.1 (10.9)
Right Elbow 10.6 (4.45) 11.8 (4.06) 16.7 (7.25)
Left Elbow 11.3 (5.36) 11.5 (3.85) 15.2 (6.72)
Overall Mean 9.61 (2.04) 7.28 (3.06) 9.33 (4.84)

Note: Mean RMSE is calculated across all movement tasks. SD = standard deviation.

Table 5. Mean RMSE values VOPT vs. VIMU-CAL.

Root Mean Squared Error (◦)

Joint Flexion-Extension Ab/Adduction Axial Rotation

Right Ankle 6.50 (2.09) 5.68 (1.35) 5.98 (2.13)
Left Ankle 7.23 (2.41) 5.34 (1.00) 5.90 (1.69)
Right Knee 9.91 (4.62) 4.89 (1.42) 5.38 (1.23)
Left Knee 9.30 (3.65) 4.57 (1.20) 6.07 (1.82)
Right Hip 8.36 (4.11) 3.72 (0.89) 3.97 (1.17)
Left Hip 8.64 (4.00) 4.09 (0.99) 4.06 (1.43)
Right Shoulder 9.86 (6.39) 4.67 (2.04) 8.64 (3.94)
Left Shoulder 10.6 (7.52) 5.21 (2.20) 11.0 (7.68)
Right Elbow 8.40 (3.77) 7.29 (3.46) 10.5 (3.83)
Left Elbow 8.60 (3.49) 8.73 (4.34) 10.3 (4.46)
Overall Mean 8.74 (1.25) 5.42 (1.52) 7.18 (2.69)

Note: Mean RMSE is calculated across all movement tasks. SD = standard deviation.

Calculating joint angles from the IMU data in MVN Analyze versus Visual3D with the coordinate
system alignment procedure (XIMU vs. VIMU-CAL; Table 6) resulted in mean RMSE across all joints for
all tasks of 6.09◦ (SD = 4.31) for the flexion/extension axis, 7.45◦ (SD = 7.91) for ab/adduction, and 11.9◦

(SD = 13.2) for axial rotation. While errors in lower limb angles were generally relatively small, the
different biomechanical models used to calculate the angles resulted in large difference in the upper
limb joint angles, especially in the ab/adduction and axial rotation axes.

Table 6. Mean RMSE values XIMU vs. VIMU-CAL.

Root Mean Squared Error (◦)

Joint Flexion-Extension Ab/Adduction Axial Rotation

Right Ankle 4.44 (1.43) 4.03 (1.27) 4.17 (2.00)
Left Ankle 6.17 (2.40) 3.85 (1.43) 4.33 (1.86)
Right Knee 3.80 (2.49) 0.84 (0.28) 1.12 (0.52)
Left Knee 3.58 (2.03) 0.78 (0.23) 1.22 (0.59)
Right Hip 1.83 (0.72) 0.73 (0.23) 0.79 (0.23)
Left Hip 1.95 (0.87) 0.67 (0.16) 0.85 (0.27)
Right Shoulder 15.2 (10.1) 12.1 (6.10) 22.8 (22.4)
Left Shoulder 11.9 (5.97) 11.1 (5.58) 21.1 (16.4)
Right Elbow 5.36 (2.52) 19.7 (9.86) 29.7 (23.2)
Left Elbow 6.75 (3.10) 20.7 (9.87) 33.2 (20.0)
Overall Mean 6.09 (4.31) 7.45 (7.91) 11.9 (13.2)

Note: Mean RMSE is calculated across all movement tasks. SD = standard deviation.
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Visual representations of the average waveforms across all movements for VIMU, VIMU-CAL, XIMU,
and VOPT can be found in Figure 5.Sensors 2020, 20, x FOR PEER REVIEW 11 of 15 

 

 
Figure 5. Average waveforms across all movements. Blue represents data captured through OPT 
(VOPT); red represents data captured through IMU (XIMU); black represents IMU data processed 
through Visual3D (VIMU); magenta represents IMU data processed through Visual3D with the 
coordinate system alignment procedure (VIMU-CAL). Shaded areas represent one standard deviation 
from the mean trajectory and are displayed in the same colour. 

 

Figure 5. Average waveforms across all movements. Blue represents data captured through OPT (VOPT);
red represents data captured through IMU (XIMU); black represents IMU data processed through
Visual3D (VIMU); magenta represents IMU data processed through Visual3D with the coordinate
system alignment procedure (VIMU-CAL). Shaded areas represent one standard deviation from the
mean trajectory and are displayed in the same colour.
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4. Discussion

The purpose of this investigation was to validate an IMU system against a gold standard OPT
system for military-based movements using PCA and joint angle RMSE. Overall, the OPT and IMU
systems produced PC scores that were highly positively correlated; the average correlation coefficient
was 0.81 (SD = 0.14) across all 48 retained PCs (Table 2). This result instills confidence that both the OPT
and IMU systems are reconstructing whole-body movement patterns similarly. Lower limb RMSEs
for joint angles calculated using the IMU data for all methods compared to the OPT system were less
than 10 degrees for all axes (Tables 3–6), while differences were greater between the systems for the
shoulder and elbow angles. The angles measured using the OPT and IMU systems were most similar
for walking trials, and RMSE tended to be greater for more rapid motions involving larger ranges of
motion. RMSE was generally smaller for lower limb joint angles compared to upper limb angles.

Previous validation research of the Xsens IMU system against a gold standard OPT system during
over ground walking [11,19,25] and stair ascent [19] reported lower limb joint angle RMSE values less
than 5◦ [25], 4◦ [19], and 6◦ [11] in the flexion axis and less than 8◦ [19,25] and 10◦ [11] for the other
axes. In the current study, for over ground walking, we observed joint angle RMSE values of less than
5◦ for the lower limbs across all axes when comparing VOPT vs. XIMU. Across all tasks studied, we
observed VOPT vs. XIMU RMSE values of less than 8◦ for the lower limbs across all axes. Our results
are also comparable to [14] who reported RMSE values less than 8◦ for the lower limbs and shoulder
axial rotation RMSE up to 40◦ during a manual materials handling task versus the 31.5◦ reported
here. Robert-Lachaine et al. [14] did report smaller differences for the knee (flexion RMSE 3.2◦ vs. 7.3◦

presented here) and elbow (axial rotation RMSE 12.2◦ vs. 39.9◦ presented here) compared to the present
study. However, the higher RMSE values presented here may be attributed in part to the nature of the
movements studied (i.e., material handling vs. rapid changes in height and large ranges of motion).

We used multiple methods in calculating joint angles from the IMU data to provide some insight
into the sources of differences between the IMU and OPT systems. The VOPT vs. XIMU comparison is
what would be expected during a typical analysis session, where overall differences are a result of
coordinate system alignment, biomechanical model constraints, and the measurement technology used
between the two systems. We found that the overall RMSEs between VOPT vs. XIMU were less than 9◦

for the lower limbs but up to 40.5◦ for the upper limbs. The VOPT vs. VIMU comparison was included
to investigate the differences between the systems using a similar underlying biomechanical model
for calculating joint angles, which resulted in an average reduction in RMSE values for the upper
limb angles of 9.3◦ (21.6◦ vs. 12.3◦) across all axes compared to the VOPT vs. XIMU comparison, while
slightly increasing the error in the lower limb angles (<2.5◦ for knee flexion and <0.5◦ for all others).
To further mitigate the error associated with coordinate system definition and focus on differences due
to technology alone, we used an alignment procedure based on segment angular velocities [14,30].
The VOPT vs. VIMU-CAL comparison further reduced the RMSE between the OPT and IMU systems,
especially in the upper limbs where RMSE values decreased on average by 13.0◦ (21.6◦ vs. 8.65◦) across
all axes compared to VOPT vs. XIMU. Robert-Lachaine et al. [14] used this method previously and found
differences between OPT and IMU systems due to measurement technology alone to be less than 4◦ for
most angles. While, we observed RMSEs of similar magnitude during walking, across all tasks, RMSEs
were close to 10◦ for many of the angles studied. Finally, we examined RMSE arising from model
differences, while controlling for coordinate system alignment between systems (XIMU vs. VIMU-CAL).
We observed that model differences contributed to a significant portion of the error, with RMSE values
for the elbows up to 33.2◦, while lower limb RMSE values were lower, indicating the lower limb
model constraints and structure were more closely aligned between the two systems. However, model
differences even when a coordinate system alignment procedure is applied made a large contribution
to the overall error between the systems. Overall, the differences in the model and the constraints
therein appear to influence RMSE values to a greater extent than the technology itself as whole-body
ab/adduction and axial rotation, as well as upper limb flexion RMSE values were considerably lower in
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the VOPT vs. VIMU-CAL (system error with coordinate system alignment) than in the XIMU vs. VIMU-CAL

comparison (model difference while controlling for coordinate system alignment).
Typical use of the Xsens system (VOPT vs. XIMU) results in differences in joint angles and time

series marker trajectories compared to an OPT system. However, these differences are relatively low for
the lower limbs (RMSE of less than 8◦ across all axes) and whole-body time series marker trajectories
have similar modes of variance between systems (average correlation coefficient of 0.81 across the
48 retained PCs). Upper limb joint angle RMSE values are quite high (RMSE of 21.6◦ across all axes).
However, if upper limb joint angles are of great interest, these values can be decreased by mitigating
differences in biomechanical models with (VOPT vs. VIMU-CAL; RMSE of 8.7◦ across all axes) or without
(VOPT vs. VIMU; RMSE of 12.3◦ across all axes) a coordinate alignment procedure. The coordinate
system alignment procedure requires simultaneous collection of optical motion capture, which may
negate some of the advantages of using an IMU system. However, the results of this comparison
demonstrate that, particularly in the upper limbs, a large portion of the differences between the systems
(VOPT vs. XIMU) is a result of the biomechanical model, as opposed to differences in the actual measured
position and orientation of body segments. Strictly looking at time series marker trajectories, PCA
identified similar modes of variance between OPT data and virtual markers projected by the IMU
system, with high or very high (≥0.70) PC score correlation coefficients in 38 of the 48 comparisons.
This shows that time series marker trajectories can be reconstructed similarly between data derived
from the Xsens IMU and the Vicon OPT systems. The RMSE values (average of 8.7◦ across all joints,
axes, and tasks for VOPT vs. VIMU) provide an indication of the differences, compared to an OPT
system that could be expected if the reconstructed markers are to be used for joint angle calculations.
Whether this is acceptable will depend on the application. However, it indicates that joint angles
similar to that of an OPT system can be calculated without the inherent line of sight and laboratory
constrictions. The presented RMSE values in addition to the highly correlated PC score values show
that the Xsens system is appropriate for our future purposes of creating morphable movement patterns.
Users interested in other applications should be aware of the presented errors and make an informed
decision if they are within an appropriate range for their intended purposes.

The present study has limitations. Although we have used the OPT system as a ‘gold standard’
for comparison, there are also errors associated with these systems. Therefore, the RMSEs we have
calculated represent the observed differences between the two systems, as opposed to the difference
between the IMU system and the ‘true’ movement. Due to the limited capture volume of the OPT
system, for some movements participants were instructed to start/end their movement outside of the
calibrated capture volume. Entering and exiting the calibrated space may cause higher sources of
measurement error in the OPT system. Additionally, all OPT systems are limited by skin artefact,
which would alter joint angle calculations, especially for more dynamic movements. IMU systems,
when collecting for long periods of time, experience positional drift. It was also noted that upper
arm segments would become misaligned over time (i.e., when the participants touched their hands
together one hand of the Xsens avatar would go through the other). Although, the Xsens avatar
was realigned between movement trails, positional and segmental drift could contribute to lower
correlation coefficients for some PCs and contribute to the higher RMSE values for the upper arm
joints. Additionally, we realized some large anecdotal improvements with the Xsens tracking after
discussing with their technology team who suggested: (1) a hand clap during the walking calibration
process to improve upper limb tracking, and (2) to start and end all collections with the participant in
standing. Unfortunately, this information was learned after this data collection ceased so it could not
be implemented. However, we believe that these would improve the PC score correlation coefficients
and reduce RMSE values in future work.

5. Conclusions

Overall, the IMU and OPT systems reconstructed the military-based movements in a similar
fashion, represented by an average high positive correlation coefficient of 0.81 across the 48 retained
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PCs. RMSE values were the lowest in all axes for the lower limb joint angles and highest in the upper
limb joint angles. The differences between the systems were due, in part, to the different biomechanical
models used. While joint angles were most similar between the systems for over ground walking,
the two technologies compared favourably for more dynamic movements as well. The IMU system
compares well with the OPT system and appears appropriate for capturing and reconstructing full-body
motion variability for military-based movements. Users interested in other applications should be
aware of the presented errors and if they lie within an appropriate range for their intended purposes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/15/4280/s1,
Table S1: OPT and Xsens time series marker trajectories used for PCA, Table S2: OPT and Xsens tracking markers
used for Visual 3D biomechanical model.
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