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A micromechanics-based analytical 
solution for the effective thermal 
conductivity of composites with 
orthotropic matrices and interfacial 
thermal resistance
Sangryun Lee1, Jinyeop Lee2, Byungki Ryu   3 & Seunghwa Ryu   1

We obtained an analytical solution for the effective thermal conductivity of composites composed 
of orthotropic matrices and spherical inhomogeneities with interfacial thermal resistance using a 
micromechanics-based homogenization. We derived the closed form of a modified Eshelby tensor as a 
function of the interfacial thermal resistance. We then predicted the heat flux of a single inhomogeneity 
in the infinite media based on the modified Eshelby tensor, which was validated against the numerical 
results obtained from the finite element analysis. Based on the modified Eshelby tensor and the 
localization tensor accounting for the interfacial resistance, we derived an analytical expression for 
the effective thermal conductivity tensor for the composites by a mean-field approach called the Mori-
Tanaka method. Our analytical prediction matched very well with the effective thermal conductivity 
obtained from finite element analysis with up to 10% inhomogeneity volume fraction.

Due to their exceptional effective thermal conductivity, reinforced composites are widely used in various applica-
tions, such as electronic devices1,2, thermal energy storage3,4, and thermoelectric devices5. For example, the ther-
mal conductivities of epoxy reinforced with silicon6, graphite7,8, or aluminium nitride9 are significantly improved 
compared to pure epoxy. These highly conductive composites have been investigated for use as efficient thermal 
heat sinks in the electronic packaging design10–12. Meanwhile, composites made of low conductive materials can 
serve as good insulators13,14. To efficiently design and use these composites, it is essential to understand and be 
able to predict the effective thermal conductivity of the composites.

Numerous previous studies have focused on the effective material properties of composites based on numer-
ical simulations and theories15–26. The effective thermal conductivities of macroscale composites have been com-
puted by finite element analysis (FEA) as a function of the shape and orientation of their inhomogeneities15,16,27. 
Molecular dynamics simulations were used to predict the effective thermal conductivities of composites possess-
ing nanoscale inhomogeneities23,26. However, multiple calculations are required to obtain statistically meaningful 
values of effective conductivity by changing the positions, numbers, and the orientation distributions of the inho-
mogeneities in a simulation cell16,28. For example, when the thermal conductivity of a spherical inhomogeneity 
is twenty time larger than that of a matrix, an FEA study based on a representative volume element (RVE) con-
taining ten inhomogeneities showed that the standard deviation of thermal conductivity became as large as 10% 
of the predicted thermal conductivity16. Sufficiently large RVE calculations result in smaller statistical errors, but 
they consume significant computational resources.

Alternatively, homogenization theories have been applied to predict the effective thermal conductiv-
ity of reinforced composites with a relatively low (<20%) volume fraction of inhomogeneities4,21,22,24,25. In a 
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micromechanics-based approaches to elasticity, the effective stiffness of a composite can be computed when the 
Eshelby tensor of a given inclusion is known29. The Eshelby tensor relates eigenstrain and constrained strain in 
the single inclusion problem, and can be applied to solve inhomogeneity problems by considering the equivalent 
eigenstrain. The Eshelby tensor has been theoretically calculated for a variety of inclusion shapes, including pro-
late spheroids, oblate spheroids, spheres, and cylinders in the case of an isotropic matrix30. The eigen-intensity 
problem in heat conduction is mathematically analogous to the eigenstrain problem in elasticity22,30 (See 
Supplementary Table 1). Hence, the Eshelby tensor is constant for the ellipsoidal inclusion in heat conduction in 
the absence of an interfacial resistance, as it is constant for analogous elasticity problems. The effective thermal 
conductivity of the composites with multiple inhomogeneities can be expressed in terms of the Eshelby tensor 
and the localization tensor (analogous to the stress concentration tensor in elasticity), based on homogenization 
approaches such as Mori-Tanaka or self-consistent methods21,22,24,25.

Theoretical studies for the isotropic matrix and ellipsoidal inclusion without interfacial thermal resistance 
have well been established19,21,30. However, in realistic composites, interfacial thermal resistance arises from many 
reasons, such as relative roughness, lattice mismatch, and poor chemical or mechanical adhesion31,32, which 
results in a temperature jump across the interface. Such interfacial thermal resistance, the so-called Kapitza resist-
ance, reduces the thermal conductivity of the composites17,20,33. Another complexity arises because the thermal 
conductivity of a matrix is anisotropic, i.e., thermal conductivity changes with the direction of the heat flux 
applied to matrix. For example, single-crystal metals and ceramics in a tetragonal or hexagonal crystal lattice 
have transversally isotropic thermal conductivity where the conductivities along two directions are identical but 
different to the conductivity along the other direction34–36. Polymer matrices synthesized through extrusion and 
drawing processes can also have transversally isotropic conductivity because the polymer chains are aligned along 
one direction37. They have different axial and lateral physical properties depending on processing conditions, such 
as the processing temperature and extrusion rate37–39. Orthorhombic crystals such as cementite40, titanium alloy41, 
and tin selenide (SnSe)42 have three independent material constants in the thermal conductivity tensor43. Crystal 
families with less symmetry can have non-zero off-diagonal components in the thermal conductivity tensor, i.e., 
the direction of heat flow may not be exactly same as the direction of temperature gradient. There are several 
experimental studies on the thermal conductivity of composite materials with anisotropic matrices44,45. However, 
existing theoretical studies consider either anisotropic matrices with zero interfacial resistance46, or isotropic 
matrices with finite interfacial resistance22. To the best of the authors’ knowledge, there exists no theoretical study 
simultaneously considering the anisotropy of matrix and the interfacial thermal resistance.

In this work, we derive, for the first time, an analytical expression for the effective thermal conductivity of 
composites composed of spherical inhomogeneities and orthotropic matrices by accounting for the effect of inter-
facial thermal resistance. In the first half of the remainder of this paper, we obtain the analytical expression of 
the Eshelby tensor for an eigen-intensity problem when the matrix is an orthotropic material in the absence of 
the interfacial resistance. Based on the Eshelby tensor, we compute the heat flux within a single inhomogeneity 
and the effective modulus of composite. In the second half, we obtain a modified Eshelby tensor that accounts for 
the interfacial thermal resistance. For the single inhomogeneity problem, theoretical predictions of the heat flux 
within the inhomogeneity under external heat flux, and the amount of the temperature jump at the interface, are 
validated against numerical calculations based on FEA for a wide range of interfacial thermal resistances. We then 
apply a micromechanics-based homogenization method to derive an analytical solution of the effective thermal 
conductivities along three axes for the particle-reinforced composites with orthotropic matrices. The effective 
thermal conductivity prediction correctly converges to that of a porous matrix at the infinite interfacial resistance 
limit and that of perfect interface solution in the zero interfacial resistance limit. We show that our analytical 
prediction matches very well with the FEA results for an RVE of particle-reinforced composites.

Results and Discussion
Effective Thermal Conductivity in the Absence of Interfacial Resistance.  In the steady state, the 
governing equation for heat conduction is written as,
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where g is a heat source, T is temperature field, and K0 is a symmetric second order thermal conductivity tensor. 
The repeated small letter indices represent the dummy indices that imply summation over all the values from 1 to 
3. The Green’s function G(x − y) in the steady state heat conduction equation is defined as the temperature field at 
a position x in the presence of a unit heat source at another position y in an infinite medium,
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By solving the equation, the Green’s function is obtained as,
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(See Supplementary Note 1 for the details). For the isotropic materials δ=( )K kij ij0 , the Greens’ function reduces 
to a well-known function that is inversely proportional to the distance, .
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thermal resistance, the Green’s function is introduced to derive the Eshelby tensor Sik of an eigen-intensity prob-
lem that relates the intensity field = −∇e T  and the eigen-intensity field e* within the inclusion as30,47,

∫=
∂
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= ⁎x x y yS

x
G

y
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(4)
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i V j
j ij j0jk

where V is the volume of an inclusion whose thermal conductivity is identical to the matrix (see Fig. 1(a)). The 
eigen-intensity field e* can be considered as a fictitious temperature gradient field produced without external heat 
flux for an isolated inclusion, and the intensity field e is the temperature gradient within the inclusion when it is 
embedded in the matrix. With the Eshelby tensor, we can solve the eigen heat flux problem, which relates the heat 
flux within the inclusion q and eigen heat flux q* as,

= .⁎q C q (5)i ij j

where the C is known as the conjugate Eshelby tensor,
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By adopting the classical potential theory and the mathematical analogy with electrostatics48 (See Appendix B in 
the reference), one can simplify Eq. (4) for an ellipsoidal inclusion as
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 is a diagonal matrix with its diagonal elements being the half the length of the prin-

cipal axes of an ellipsoidal inclusion whose volume is defined as ∑ ≤={ }x x x( , , ): 1i
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2
. For example, for the 

spherical inclusion, a can be expressed as δ=a Rij ij, where R is the radius of inclusion.
In this study, we consider the Eshelby tensor for a spherical inclusion in the orthotropic matrix with three 

independent thermal conductivity coefficients. The thermal conductivity tensors of matrix (K0) and inhomoge-
neity (K1) are defined as follows,

Figure 1.  Schematic of (a) an eigen-intensity problem, (b) a single inhomogeneity problem and (c) interfacial 
thermal resistance. (d) The temperature jump at the interface.
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Now, we derive a closed form expression of Sij for a spherical inclusion by plugging the thermal conductivity 
tensor K0 into the Eq. (7) with δ=a Rij ij as,
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where for the last equality, we set ′ =s sk R/I
2. Because both kI and >R 02 , range of integration does not change 

(See Supplementary Note 2 for the details). The repeated capital indices I and J, are not summed over. We note 
that S is a diagonal matrix because K0 is a diagonal matrix. By defining the anisotropy factors of the matrix as 

= =A k k B k k/ , /I L I M with ≠ ≠I L I M, , and ≠L M, we can simplify the Eshelby tensor as
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2  is elliptic integral of the 2nd kind (See Supplementary Note 3 for the 

details). For example, when = =I J 2, either = =L M1, 3 or = =L M3, 1 is used for calculating the S22 com-
ponent, and either L, M combination results in the same result. We note that, at the limit → →B A A B(or ), the 
Eshelby tensor reduces to the transversely isotropic matrix result in a closed form solution (See Supplementary 
Note 3). At the limit →A B, 1, the Eshelby tensor converges to an isotropic matrix case such that δ=Sij ij

1
3

 22,30
, 

(see Supplementary Fig. S1). The three independent values (S11, S22, S33) are plotted in terms of k k/1 2 and k k/1 3, and 
we validate our analytical solutions against the numerical evaluation of Eq. (4) (see Supplementary Fig. S1).

It has been proven that the heat flux qinh within an ellipsoidal inhomogeneity embedded in an infinite matrix 
under the presence of a constant external far field heat flux qext is uniform, and so is the Eshelby tensor S, regard-
less of the materials symmetry of the matrix29,30 (see Fig. 1(b)). Heat fluxes, qinh and qext, are related by the locali-
zation tensor B22,30 as =q Bqinh ext, where = + −− − −

B I CK K K[ ( )]0 1
1

0
1 1

. Using the Eshelby tensor in the 
orthotropic matrix in Eq. (10), we predict the heat flux within the inhomogeneity with any arbitrary thermal 
conductivity tensor K1. For an inhomogeneity with isotropic or cubic symmetry whose thermal conductivity 
tensor is given as κδ=K ij1ij

, the heat flux expression can be simplified as
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Our solution is validated against the numerical calculations based on FEA where we consider a single inho-
mogeneity surrounded by an orthotropic medium in a cubic shape. We set the edge of the medium to be 15 times 
larger than the diameter of the inhomogeneity to reasonably describe the infinite medium22 as depicted in Fig. 2. 
The FEA is performed by COMSOL software with a total of 416,606 tetrahedral quadratic elements in the matrix 
and inhomogeneity. In this simulation, the unit heat flux boundary conditions are considered in the x, y, and z 
directions to study the effect of the anisotropy ( = =q q1 W/m , 0I J

ext 2 ext  with ≠I J). We carry out the calcula-
tions using = = =k k k1, 2, 31 2 3  and κ = 10 (W/mK). As expected, the calculated heat flux within the inho-
mogeneity is uniform and dependent on the external heat flux direction (see Fig. 2(b)), and matches very well 
with the theoretical prediction (see Fig. 3).

The effective thermal conductivity of a composite with multiple inhomogeneities can be predicted by consid-
ering the interaction between the inhomogeneities. In a mean field approach, as in the Mori-Tanaka method, the 
heat flux within the inhomogeneity is related to the average heat flux within the matrix. The Mori-Tanaka model 
is known to predict effective properties well at a relatively low inhomogeneity volume concentration (<20%) and 
is more convenient than the self-consistent method, which relies on a nonlinear implicit equation. In the absence 
of the interfacial resistance, the effective thermal conductivity based on the Mori-Tanaka method can be obtained 
as19,30
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here, c0 and c1 refer to volume concentrations of the matrix and inhomogeneity, respectively; thus, + =c c 10 1 .

Effective Thermal Conductivity in the Presence of Interfacial Resistance.  We now turn our atten-
tion to the realistic system, where interfacial thermal resistance is present31,32. The interfacial thermal resistance 
α is defined as

α− = − ⋅q nT T (13)out in
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Figure 2.  (a) The mesh configuration for a single inhomogeneity and the matrix used in FEA. (b) Heat flux 
distribution within the matrix and the inhomogeneity at x, y, zplane for three different heat flux directions. The 
thermal conductivities used for the results are = = =k k k1, 2, 31 2 3 and κ = 10 (W/mK).

Figure 3.  Normalized uniform heat flux values ((a) q1/q0, (b) q2/q0, (c) q3/q0) within the inhomogeneity as a 
function of anisotropy factors where q0 is the magnitude of the heat flux at the boundary. The isotropic thermal 
conductivity of a single inhomogeneity is 10 (W/mK).
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where T out and T in refer to temperatures at the outer and inner surfaces of the interface, respectively, q is the heat 
flux at the interface, and the n is the outward surface normal vector (see Fig. 1(c,d)). The SI unit of interfacial 
thermal resistance α is [m2K/W].

The interfacial resistance augments an additional surface integration term in the eigen-intensity problem, as 
follows,
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It has been found that the heat flux within a spherical inclusion is uniform in the presence of interfacial 
thermal resistance22. Although a previous study22 claims that the heat flux within an elliptical inclusion is also 
uniform in the presence of interfacial thermal resistance, our numerical tests reveal that it is non-uniform (See 
Supplementary Note 4). Because the intensity field in the spherical inclusion is uniform, we can simplify Eq. (14) 
as follows:
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Where the colon in Eq. (16) is a double dot product. We also find that the Eq. (16) can be further simplified (See 
Supplementary Note 5 for details), as follows:
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Unlike the single inhomogeneity problem without interfacial thermal resistance, the modified localization tensor 
BM should be obtained by decomposing the original problem into three independent problems22. We obtain the 
relationship between the heat flux qinh within a spherical inhomogeneity and the far field heat flux qext as 

=q qBMinh ext, where = + −− − − −
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0 1
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. CM is the modified conjugate Eshelby tensor 
which is given as = − +−C K S K IM M

0 0
1 . After substituting the conjugate Eshelby tensor and the modified con-

jugate Eshelby tensor into the modified localization tensor equation, the heat flux within the inhomogeneity in 
the presence of interfacial thermal resistance can be obtained as follows,
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The theoretical predictions of heat fluxes along three directions match very well with the FEA calculation 
results with the same boundary conditions for a wide range of interfacial thermal resistance α, as shown in Fig. 4. 
At the limit of zero resistance, i.e., α → 0, the heat flux within the inhomogeneity converges to the zero interfacial 
resistance case depicted in Fig. 3. At the opposite limit, as α → ∞, the heat flux within the inhomogeneity reduces 
to zero, which implies that the infinite interfacial thermal resistance is equivalent to a void or a perfect thermal 
insulator as an inhomogeneity. Hence, the effective conductivity approaches that of a porous medium.

We then derive a closed form solution for the effective thermal conductivity based on a mean field microme-
chanics model, the Mori-Tanaka method. Following the previous study22, the effective thermal conductivity of a 
composite with interfacial thermal resistance can be determined by
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 and R is the radius of the inhomogeneity. The effective 

thermal conductivity of the composite is finally obtained in the closed form as

κ ακ κ
ακ ακ κ

=
+ − + −

+ − + −
K k S c R k

k R S c R k
[ (1 ) ((1 / ) )]

[ (1 / ) ((1 / ) )] (20)I
I II I

I II I

eff 0

0



www.nature.com/scientificreports/

7Scientific ReportS | (2018) 8:7266 | DOI:10.1038/s41598-018-25379-8

Although we consider a thermally isotropic inhomogeneity in the final solution for the sake of simplicity, the 
effective thermal conductivity with anisotropic inhomogeneity can be easily predicted by using an anisotropic K1.

We plot the effective thermal conductivities, K1
eff , K2

eff  and K3
eff , as a function of the inhomogeneity’s volume 

fraction c1 and the interfacial thermal resistance α, as shown in Fig. 5. At the limit of zero interfacial resistance, 
i.e., α → 0, Eq. (20) becomes identical to Eq. (12), where we assumed no interfacial resistance. At the opposite 
limit of α → ∞, because no heat flux is permitted within the inhomogeneity, the effective conductivity tensor 
converges to that of a porous medium,

Figure 4.  Normalized heat flux within the inhomogeneity with respect to the interfacial thermal resistance in a 
single inhomogeneity problem. The isotropic thermal conductivity of the inhomogeneity is 10 (W/mK).

Figure 5.  Effective thermal conductivity of composite ((a) K11
eff , (b) K22

eff , (c) K33
eff) having interfacial thermal 

resistance as a function of volume fraction of inhomogeneity. The thermal conductivities of the matrix and 
inhomogeneity are = = =k k k1, 2, 31 2 3  and κ = 10 (W/mK), and the radius of the particle is 1 (mm).
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Here, the right-hand side is identical with the zero interfacial resistance solution, Eq. (12), with κ = 0 (i.e., porous 
medium solution)
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Figure 6.  Effective thermal conductivity ((a)K1
eff , (b)K2

eff , (c)K3
eff) of particle reinforced composite for different 

interfacial thermal resistances. The radius of the particle used in (a), (b) and (c) is 1 (mm). The effective thermal 
conductivity ((d)K1

eff , (e)K2
eff , (f)K3

eff) as a function of radius of the particle under fixed volume fraction of 5%. 
The thermal conductivities of the orthotropic matrix and inclusion are = = =k k k1, 2, 31 2 3  and κ = 10 (W/
mK) respectively.
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These two limiting cases of α → 0 and α → ∞ define the upper bound and the lower bound of the thermal con-
ductivity values, respectively. In plotting Fig. 5, we set = = =k k k1, 2, 3 (W/mK)1 2 3 , κ = 10 (W/mK), and 

=R mm1 . Because the inhomogeneity is more conductive than the matrix (κ > k k k, ,1 2 3), the effective thermal 
conductivity increases with the volume fraction in the range where the interfacial thermal resistance is low. 
However, at high enough interfacial thermal resistance, the effective thermal conductivity decreases with the 
volume fraction because the heat flux through the inhomogeneity is significantly limited. We calculate the critical 
interfacial thermal resistance that makes the effective thermal conductivity of the composite KI

eff  identical to the 
thermal conductivity of the matrix kI, as follows:

α
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.R

k
1 1

(23)I
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When the interfacial thermal resistance is higher than the critical value, the effective thermal conductivity of the 
composite decreases as the volume fraction increases, even though the inhomogeneity is thermally more con-
ductive than the matrix. We note that the critical interfacial resistance decreases for smaller particles, because the 
interface area increases with the decreasing size of the inhomogeneity for a given volume fraction.

We validate our analytical solution presented in Eq. (20) by comparing it with the effective thermal conduc-
tivity calculated numerically by FEA, as depicted in Fig. 6. We obtain the effective conductivity by averaging the 
results from 10 independent RVEs, each containing multiple spherical inhomogeneities that are randomly dis-
tributed within a cube (see Fig. 7). We assign a uniform temperature boundary condition at two parallel surfaces 
while applying a periodic boundary conditions along the other two directions. We then compute the heat flux to 
obtain the effective thermal conductivity of each RVE. As shown in Fig. 6(a–c), the FEA results match very well 
with our solution for up to 10% of the inhomogeneity volume fraction for a wide range of interfacial thermal 
resistances. We also investigate the effect of the inhomogeneity’s size at a fixed volume fraction of 5% and an 
interfacial thermal resistance (10−3 m2 K/W), as depicted in Fig. 6(d–f). When the interfacial resistance is absent, 
both theoretical predictions and numerical results find that the effective conductivity is independent of the size 
of inhogeneity. In contrast, in the presence of interfacial resistance, the effective thermal conductivity decreases 
as the radius of inhomogeneity decreases, because the interface fraction is bigger for smaller inhomogeneities for 
a fixed volume.

Conclusion
In conclusion, we have investigated the heat conduction problem of composites with orthotropic matrices and 
a spherical inhomogeneities in the presence of interfacial thermal resistance. We derive the modified Eshelby 
tensor of the eigen-intensity problem as well as the effective thermal conductivity based on a micromechanics 
approach by considering the interfacial thermal resistance effect, and validate our solution against FEA calcu-
lation results. We also demonstrate that the effective conductivity solution has the correct limiting behaviour at 
both the zero and infinite interfacial thermal resistance limit. The solution in the present paper is applicable to 
the composites with either transversely isotropic or isotropic matrices and an inhomogeneity with an arbitrary 
thermal conductivity tensor. We plan to extend the present study by considering the size effects of nanoscale 
inclusions for nanocomposites49 in obtaining an analytic solution and by coupling molecular dynamics simu-
lations of ceramic composites or polymer composites with the analytic solution. We believe that our study can 
provide an effective and accurate way of predicting the thermal conduction of composites, and it can be applied to 
better design technologically important materials such as polymer-based composite and thermoelectric materials.

Figure 7.  Mesh configuration of inhomogeneities in representative volume element for FEA. The volume 
fraction is 5% and the particle radius is 1 (mm).
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