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Draft genome sequences of two 
oriental melons, Cucumis melo L. 
var. makuwa
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Suk-Yoon Kwon1,2*

Oriental melon (Cucumis melo L. var. makuwa) is one of the most important cultivated cucurbits, 
and is grown widely in Northeast Asian countries. With increasing interest in its biological properties 
and economic importance, oriental melon has become an attractive model crop for studying various 
horticultural traits. A previous genome sequence of the melon was constructed from a homozygous 
double-haploid line. Thus, individual reference genomes are required to perform functional studies 
and further breeding applications. Here, we report draft genome sequences of two oriental melons, 
Chang Bougi and SW3. The assembled 344 Mb genome of Chang Bougi was obtained with scaffold N50 
1.0 Mb, and 36,235 genes were annotated. The 354 Mb genome of SW3 was assembled with scaffold 
N50 1.6 Mb, and has 38,173 genes. These newly constructed genomes will enable studies of fruit 
development, disease resistance, and breeding applications in the oriental melon.

Background & Summary
The oriental melon (Cucumis melo L. var. makuwa), one of the most important annual diploid crops within the 
Cucurbitaceae family, is grown largely in Northeast Asian countries, including Korea, China, and Japan. It is 
cultivated primarily for its fruit, which generally has a sweet aromatic flavor and contains soluble sugars, organic 
acids, minerals, and vitamins1–3. Traits of the fruit, such as shape, skin color, flesh color, and sugar content, are 
highly variable. Because its economic importance and interest in its biological properties have increased, oriental 
melon has become an attractive model crop for the study of various traits.

Reference genomes from genetically diverse individuals provide insights into genome structures, genome evo-
lution, and diversification within the genus and species. For instance, precise comparison of genome structures 
and analyses about lineage-specific evolution of gene families in the genus Capsicum became possible through the 
completion of multiple reference genomes4. In the case of melon, a previous reference genome was constructed 
from the homozygous DHL92 double-haploid line5, and subsequent improvements to the genome assembly and 
annotations were reported6. To carry out functional studies, evolutionary studies of gene families, link genetic 
markers to desirable traits, and further breeding applications in the oriental melon, multiple reference genomes 
will be required.

Here, we report the construction of draft genomes of two oriental melon types, Chang Bougi and SW3. Chang 
Bougi, a Korean landrace, is a new source for the breeding of resistance to Cucumber Green Mottle Mosaic Virus 
(CGMMV), which causes mosaicism in leaves and deterioration of fruits, leading to severe yield and quality 
losses of cucurbit crops worldwide7. The high-quality breeding line SW3, from NongWoo Bio Company, contains 
deep-yellow and oval-type fruits with high sugar content.

Figure 1 presents an overview of the study. A combination of paired-end (PE) and mate-pair (MP) libraries 
were sequenced to generate 231× and 345× of genomic sequencing data8, respectively, for Chang Bougi and 
SW3 (Table 1). Genome assembly and annotation were then performed (Fig. 1). The assembled genome of Chang 
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Bougi9 comprised 11,309 scaffolds totaling 344 Mb in length, with scaffold N50 of 1.0 Mb. For SW3, 7,202 scaf-
folds totaling 354 Mb in length were assembled10, with scaffold N50 of 1.6 Mb (Table 2). Repeat annotation was 
then carried out (Table 3). K-mer frequencies were calculated to provide information related to low frequencies, 
sequencing depth, level of heterozygosity, and genome size (Fig. 2)11. The estimated genome sizes of Chang Bougi 
and SW3 were 355 Mb and 373 Mb, respectively, which were similar to previously reported genome sizes5. A total 
of 36,235 and 38,173 genes were determined as final genes in Chang Bougi and SW3, respectively (Table 2 and 
Fig. 3). Then functional annotation of final gene models were performed (Table 4 and Fig. 4). Finally, we provide 
new reference genome of oriental melons for further analysis and breeding program.

Methods
DNA extraction and sequencing.  Leaves of two oriental melons were harvested and frozen immediately 
in liquid nitrogen. Genomic DNA was extracted, and paired-end and mate-pair libraries for next-generation 
sequencing were constructed according to the manufacturer’s instructions (Illumina, San Diego, CA, USA). 
The quality of each library was validated using the KAPA SYBR FAST Universal 2× qPCR Master Mix (Kapa 
Biosystems, Boston, MA, USA). Each library was sequenced with the Illumina HiSeq 2500 platform.

Genome assembly.  Pre-processing analyses of raw sequences, using in-house pipeline and genome assem-
bly, were performed as described in previous studies4,12. After pre-processing to remove erroneous sequences 
in raw data, remaining sequences in paired-end libraries were assembled using Platanus13, with parameters for 
Chang Bougi (-k 63 -c 5 -d 0.3 -t 40 -m 220) and for SW3 (-k 91 -c 5 -d 0.3 -t 44 -m 200). The scaffolding process 
was performed with Platanus, using paired-end and mate-pair sequences, with parameters for Chang Bougi (-l 3 
-s 61 -u 0.2 -t 40), and for SW3 (-l 3 -u 0.2 -t 15). Remaining gaps were filled with Platanus and GapCloser version 
1.10 (http://soap.genomics.org.cn/down/GapCloser_release_2011.tar.gz), using reads from the paired-end and 
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Fig. 1  Overview of the pipeline of the study.

Library Type Samples Insert Size (bp) Read Length (bp) Coverage (×)

Paired-end

Chang Bougi

400 150 57.5

800 150 43.7

Mate-pair

2,000 150 54.4

5,000 150 34.6

10,000 150 41.7

Paired-end

SW3

400 150 166.7

800 150 50.3

Mate-pair

2,000 150 55.2

5,000 150 39.8

10,000 150 33.5

Table 1.  Metrics of raw Illumina datasets.
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mate-pair libraries. Finally, 344 Mb of Chang Bougi genomic sequence (96.9% of 355 Mb) and 354 Mb of SW3 
genomic sequence (94.9% of 373 Mb) were assembled (Table 2).

Repeat annotation.  After construction of repeat libraries using the assembled Chang Bougi and 
SW3 genomes, repeat annotation was implemented using RepeatModeler and RepeatMasker (http://www.

Chang Bougi SW3

Number of scaffolds 11,309 7,202

Total length of scaffolds (Mbp) 344 354

N50 of scaffolds (Mbp) 1.0 1.6

Longest scaffold length (Mbp) 6.8 5.6

Number of contigs 43,251 29,154

Total length of contigs (Mbp) 325 346

N50 of contigs (kbp) 15 25

Longest contig length (kbp) 160 214

Number of genes 36,235 38,173

Average/total CDS lengths 1,083/39,426,107 1,107/42,780,742

Average exon/intron lengths 243/346 248/356

Table 2.  Statistics of genome assembly and annotation.

Type

Chang Bougi SW3

Length (Mb) Ratio (%) Length Ratio

DNA elements 39 11 37 10

LINE elements 4 1 5 1

SINE elements 0 0 0 0

LTR/Gypsy 29 8 36 10

LTR/Copia 31 9 34 10

LTR/Caulimoviridae 4 1 5 1

rDNA 0 0 0 0

Simple repeat 6 2 6 2

Others 2 1 3 1

Unclassified 64 19 68 19

Total 179 52 194 54

Table 3.  Statistics of repeat annotation.
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Fig. 2  Distribution of 19-mers in raw sequence data from two oriental melon genomes. Distribution of 19-mers 
for Chang Bougi (blue) and SW3 (orange) are depicted. The x- and y-axes indicate frequency and volume of 
19mers, respectively.

https://doi.org/10.1038/s41597-019-0244-x
http://www.repeatmasker.org


4Scientific Data |           (2019) 6:220  | https://doi.org/10.1038/s41597-019-0244-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

repeatmasker.org). A total of 179 Mb (52% of 355 Mb) and 194 Mb (54% of 373 Mb) of repeat sequences were 
detected in Chang Bougi and SW3, respectively (Table 3).

Genome annotation.  Annotation of the two genomes were performed using the KOBIC annotation pipe-
line (a modified PGA pipeline14), consisting of repeat masking, mapping of different protein sequence sets, and 
ab initio prediction performed by AUGUSTUS v3.2.215. Transcript assembly was performed with the assembled 
genome by a reference-based algorithm using HISAT216 and StringTie17. To generate protein-based gene models 
for consensus modeling, the protein sequences of Arabidopsis thaliana (TAIR10, http://www.arabidopsis.org), 
Citrullus lanatus18, Cucumis melo5, and Cucumis sativus19 were mapped using GeneWise v2.120. AUGUSTUS 
was used for gene prediction in the two oriental melon genomes. To validate the predicted gene models, protein 
sequences from the genomes of C. lanatus, C. melo, C. sativus, and A. thaliana were used as queries in BLASTp, and 
erratic gene models were filtered with a BLASTp cut-off of query coverage ≥0.3. Also, the assembled transcripts 
were validated against the same four sets of protein sequences using tLBASTn, and filtered with cut-off values of 
query coverage ≥0.5 and subject coverage ≥0.3. The GeneWise gene models that remained were reformatted from 
GeneWise format to GFF3 data, and used to determine the consensus gene model via EVM21, which combines ab 
initio gene predictions with protein alignments into weighted-consensus gene structures (ab initio predictions = 1, 
protein alignment = 5, transcript alignment assemblies = 7). Ultimately, the final gene models included a total of 
36,235 consensus genes for Chang Bougi and 38,173 consensus genes for SW3 (Table 2 and Fig. 3).

Fig. 3  Comparisons of gene models for two oriental melon genomes and other genomes. (a) Gene length 
distribution (b) CDS length distribution (c) Exon number distribution (d) Intron length distribution (e) Intron 
number distribution. x-axis stands for length (bp) of gene (a), CDS (b) and intron (d) or numbers of exon (c) 
and intron (e), respectively. y-axis stands for ratio of genes.

Database

Chang Bougi SW3

Annotated 
Number

Annotated 
Percent (%)

Annotated 
Number

Annotated 
Percent (%)

NR 39,521 98.86 41,997 98.74

InterPro 27,198 68.03 28,996 68.17

GO 18,777 46.97 19,849 46.67

KEGG 1,884 4.71 1,563 3.67

Annotated 39,524 98.87 42,007 98.76

Total 39,977 — 42,535 —

Table 4.  Functional annotation of genes.
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Further functional annotations were performed using the program Blast2Go22, including InterPro23, NR from 
NCBI, Kyoto Encyclopedia of Genes and Genomes (KEGG)24. Functional annotation of the final gene models 
(Table 4 and Fig. 4) predicted 2,093, 3,703, and 493 genes as hypothetical protein, uncharacterized protein, and 
unknown function, respectively, in the Chang Bougi genome. In the SW3 genome, respectively 2,245, 3,827, and 
570 genes were predicted as hypothetical protein, uncharacterized protein, and unknown function.

Data Records
All of the raw sequence reads produced by Illumina HiSeq 2500 have been deposited at NCBI Sequence 
Read Archive (SRA) under BioProject number PRJNA531526 (accession SRP191487)8 and BioSample from 
SAMN11368505 to SAMN11368524 (SAMN11368505 ~ SAMN11368515 for Chang Bougi; SAMN11368516 ~ 
SAMN11368524 for SW3). The Whole Genome Shotgun project of Chang Bougi have been deposited at DDBJ/
ENA/GenBank under the accession number SSTD000000009 under PRJNA531576 and SAMN11370205. The 
Whole Genome Shotgun project of SW3 have been deposited at DDBJ/ENA/GenBank under the accession num-
ber SSTE0000000010 under BioProject number PRJNA531478 and BioSample SAMN11381272.

Technical Validation
Detection and filtration of misannotated genes.  EvidenceModeler predicted 39,977 and 42,535 con-
sensus genes for Chang Bougi and SW3, respectively. We investigated these to detect misannotated genes, as 
recommended by NCBI GenBank, including genes containing internal stop codons, genes lacking a stop codon, 
frame-shifted genes, or erroneous start codons. A total of 3,742 and 4,362 misannotated genes were detected and 
masked in Chang Bougi and in SW3, respectively. Thus, 36,235 genes remained in the Chang Bougi genome, and 
38,173 genes remained in SW3.

Evaluation of genome annotation using BUSCO.  BUSCO v3.0.225 provides an assessment of assem-
bled genome completeness based on the orthologous group, with single-copy genes from OrthoDB (http://
www.orthodb.org), and using a hidden Markov model to profile amino acid alignments. For genome annotation 
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Fig. 4  Venn diagram of the number of genes having functional annotation in Chang Bougi and SW3 genomes 
using multiple public databases. Functional annotation of Chang Bougi (a) and SW3 (b) were primarily 
performed using Blast2Go. For genes that remained unassigned by Blast2Go, we used NR, GO, KEGG, and 
InterPro to assign gene function.
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assessments, we used 1,440 gene sets of orthologs conserved in embryophyta (Table 5). The results showed that 
nearly all of these core genes/orthologs were present in the genomes of Chang Bougi (85.28%) and SW3 (86.81%).

Comparison of gene sets in the genomes of oriental melons Chang Bougi and SW3 with those 
in the genomes of melon (DHL92 v3.6.1) and cucumber.  To compare gene sets between oriental 
melons and previously reported cucurbit genomes, orthologous and paralogous genes were detected in melon 
genome (DHL 92 v3.6.1), Chang Bougi, SW3, and cucumber (C. sativus) using the program OrthoFinder26. A 
total of 113,006 sequences were clustered into 30,738 groups, with 3,475 and 4,469 singleton genes detected in 
Chang Bougi and in SW3, respectively (Fig. 5). Fewer singleton genes might be expected in the two oriental mel-
ons than in the melon genome, which was constructed from a homozygous DHL92 double-haploid line, derived 
from a cross between Korean landraces of oriental melon (Songwhan Chamoe, PI 161375) and melon (Piel de 
Sapo). In addition, 2,213 genes were determined as common among melon and the two oriental melons, and 
12,983 genes were detected in all four genomes. Functional investigation of singleton genes of Chang Bougi and 
SW3 indicated that 869 and 1,112 of genes were functionally unknown genes, respectively.

Code availability
The sequence data were generated using software provided by the sequencing platform manufacturer, and 
were processed with publicly available software and recommended settings, as cited in this report. No custom 
computer codes were generated in this work.
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Chang Bougi SW3

Complete BUSCOs (C) 1228 1250

Complete and single-copy BUSCOs (S) 1199 1220

Complete and duplicated BUSCOs (D) 29 30

Fragmented BUSCOs (F) 103 87

Missing BUSCOs (M) 109 103

Table 5.  The presence and completeness of universally conserved single-copy genes in Chang Bougi and SW3 
(BUSCO) genomes.
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Fig. 5  Distribution of orthologous gene families of Cucumis melo (DHL92 v3.6.1), Cucumis sativus, Chang 
Bougi, and SW3 genomes. A total of 113,006 sequences were clustered into 30,738 groups. Each panel shows the 
number of clustered genes for that genome.
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