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Abstract

Cancer-associated fibroblasts (CAFs) have emerged as one of the main factors related to

cancer progression, however, the conversion mechanism of normal fibroblasts (NOFs) to

CAFs has not been well elucidated. The aim of this study was to investigate the underlying

mechanism of CAF transformation from NOFs in oral squamous cell carcinoma (OSCC).

This study found that NOFs exposed to OSCC cells transformed to senescent cells. The

cytokine antibody array showed the highest secretion levels of IL-6 and CXCL1 in NOFs co-

cultured with OSCC cells. Despite that both IL-6 and CXCL1 induced the senescent pheno-

type of CAFs, CXCL1 secretion showed a cancer-specific response to transform NOFs into

CAFs in OSCC, whereas IL-6 secretion was eventuated by common co-culture condition.

Further, CXCL1 was released from NOFs co-cultured with OSCC cells, however, CXCL1

was undetectable in mono-cultured NOFs or co-cultured OSCC cells with NOFs. Taken

together, this study demonstrates that CXCL1 can transform NOFs into senescent CAFs via

an autocrine mechanism. These data might contribute to further understanding of CAFs and

to development of a potential therapeutic approach targeting cancer cells-CAFs interactions.

Introduction

Molecular interactions between cancer cells and their surrounding stroma have a crucial role

in carcinogenesis [1,2]. Fibroblasts supporting cancer cells, the most common type of stromal

cells, are termed cancer-associated fibroblasts (CAFs) or tumor-associated fibroblasts [3,4].

We adopted the term of CAFs in this study. The important functions of CAFs include the

deposition of extracellular matrix (ECM), regulation of epithelial differentiation, and cancer

initiation and progression [2,5].

CAFs are considered activated myofibroblasts with expression of alpha-smooth muscle

actin (α-SMA)[6]. These myofibroblastic CAFs potently promote the proliferation of cancer

cells [7,8]. A recent study demonstrated that the myofibroblastic characteristics of CAFs are

mediated by transforming growth factor-β (TGF-β) and stromal cell-derived factor-1 in mam-

mary fibroblasts of breast cancer[9]. Although not all CAFs express α-SMA, CAFs are
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considered activated fibroblasts, as evidenced by increased expression of proinflammatory

genes, such as chemokine (C-X-C motif) ligand 1 (CXCL1, Gro-α), CXCL2 (Gro-β), interleu-

kin 1β (IL-1β), and interleukin 6 (IL-6) [10].

On the other hand, accumulating data have demonstrated that CAFs are regarded as senes-

cent cells and contribute to cancer progression in various human cancers [11–13]. Senescent

cells actively communicate with their microenvironment through cytokines secretion named

as senescence-associated secretory phenotype. With secreted cytokines, senescent fibroblasts

stimulate the growth of preneoplastic and malignant epithelial cells but not of normal epithe-

lial cells [14]. In addition, senescent fibroblasts stimulate the migration and invasion of

immortalized or premalignant epithelial cells [15,16]. Whatever defined as activated or senes-

cent phenotypes of CAFs, it is apparent that CAFs activated by cancer cells express proinflam-

matory cytokines, promoting cancer progression.

In light of the importance of the role of CAFs in carcinogenesis, the investigation of trans-

formation mechanism to CAFs may contribute to the further understanding of interaction

between cancer cells and CAFs and the development of new therapeutic targets in human can-

cer. The aim of this study was to investigate the conversion mechanism of normal fibroblasts

(NOFs) into CAFs in oral squamous cell carcinoma (OSCC). This study demonstrates that

CXCL1 plays a role in transformation of NOFs into CAFs via an autocrine manner.

Materials and methods

Cell isolation and cell cultures

CAFs were obtained from the surgical specimens of 3 OSCC patients, whose ages were 54, 69

and 74 years old, respectively. NOFs were derived from 3 patients who underwent wisdom

tooth extraction without mucosal disease. All of 3 patients were 29 years old. This work has

been carried out in accordance with the Declaration of Helsinki and the informed consent was

received from the patients. These procedures were approved by the Institutional Review Board

(IRB) of Yonsei University College of Dentistry (IRB 2-2012-0027). NOFs and CAFs were then

maintained in culture medium composed of Dulbecco’s modified Eagles medium (Gibco BRL,

NY, USA) and F-12 Ham (Gibco BRL, NY, USA) mixed in a 3:1 ratio, and supplemented with

10% fetal bovine serum and 1% penicillin/streptomycin. The 5th ~ 9th passaged cells were used

for this study. Normal human epidermal keratinocytes (NEK) and two types of OSCC cells

(YD10B, YD38) were also used for this study[17,18]. The details were described in the supple-

mentary materials and methods (S1 Materials and Methods).

Treatments of recombinant proteins, control antibody and neutralizing

antibody

The recombinant human proteins, IgG2B isotype control antibody, and CXCL1 neutralizing

antibody were purchased from R&D Systems, Minneapolis, MN, USA. To evaluate α-SMA

protein expression in NOFs and CAFs, recombinant human TGF-β1 protein (10 ng/ml) was

treated for 48 h. To examine senescent effects of IL-6 and CXCL1, we first carried out prelimi-

nary experiments to check the concentration of each cytokine secreted in mono-cultured or

co-cultured NOFs with OSCC cells for 48 h (S1 Table). Based on these data, the concentration

of recombinant human IL-6 (7 ng/ml) and CXCL1 (5 ng/ml) were applied in NOFs for 48 h.

The concentration of CXCL1 neutralizing antibody (20 μg/ml) was determined by preliminary

data (S1 Table). IgG2B isotype control antibody (20 μg/ml) was also used in transwell invasion

assay. Treatments of recombinant human proteins, IgG2B isotype control antibody, and

CXCL1 neutralizing antibody were conducted in serum-free culture conditions.
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Reverse transcription–polymerase chain reaction (RT-PCR) and real-time

PCR

Total RNA was extracted from each cell using an RNeasy plus mini kit (Qiagen, Hilden, Ger-

many), and complementary DNA was synthesized using 2.5 × RT-&GOTM Mastermix (MP

Biomedicals, Santa Ana, CA, USA) according to the manufacturer’s instructions. Primer

sequences for RT-PCR and real-time PCR are presented in Table 1. In RT-PCR, complemen-

tary DNA was amplified by using Accu Power Hot Start PCR Pre Mix (Bioneer, Daejeon,

South Korea) with conditions of 28 ~ 33 cycles of 30 s at 94˚C, 40 s at 55 ~ 60˚C, and 40 s at

72˚C. The amplified products were separated on 1.5% agarose gel stained with 0.1 μg/ml of

ethidium bromide, and photographed under UV light (Bio-Rad, Hercules, CA, USA). Real-

time PCR was carried out using the SYBR Green I Master (Roche Applied Science, Mannheim,

Germany) and normalized to GAPDH. The result was analyzed by using the LightCycler 480

software (Roche Applied Science, Mannheim, Germany).

Western blots

Cell lysates were separated by SDS-polyacrylamide gel (Bio-Rad, Hercules, CA, USA), trans-

ferred onto a polyvinylidene fluoride membrane (Bio-Rad, Hercules, CA, USA), and then

exposed to the appropriate antibodies: α-SMA (1:100, mouse monoclonal, Dako, Glostrup,

Denmark), and β-actin (1:1000, rabbit polyclonal, Sigma, St. Louis, MO, USA). The mem-

branes were incubated with horseradish peroxidase-conjugated anti-mouse or rabbit antibod-

ies (1:2000, Cell Signaling, Beverly, MA, USA) and were visualized by chemiluminescence

(GenDEPOT, Barker, TX, USA).

Immunocytochemistry

NOFs and CAFs (1.5 × 105) were placed onto 22-mm glass coverslips (Deckglaser, Germany)

for 24 h before staining. The cells were fixed with 95% ethanol for 20 min at room temperature.

Endogenous peroxidase activities were inactivated in 3% hydrogen peroxide solution for 10

min at room temperature, and the cells were blocked with 5% bovine serum albumin (Sigma,

St. Louis, MO, USA) for 30 min at room temperature. The cells were immunostained with

anti-proliferating cell nuclear antigen (anti-PCNA, 1:100; Dako, Glostrup, Denmark) at room

temperature for 1 h. Peroxidase-labeled anti-mouse/rabbit IgG (Dako, Glostrup, Denmark)

was then applied at room temperature for 30 min. The cells were visualized with 3,3-diamino-

benzidine tetrachloride (Dako, Glostrup, Denmark) and counter-stained with Mayer’s hema-

toxylin. Images of 5 random microscopic fields (magnification: X200) were acquired per

sample by a light microscopy (Olympus, Tokyo, Japan). The percentage of PCNA-positive

cells was calculated by dividing the number of positive cells by the total number of cells.

Immunofluorescence staining for α-SMA expression in NOFs and CAFs was described in the

supplementary materials and methods (S2 Materials and Methods).

Table 1. Primer sequences used for RT-PCR and Real-time PCR.

Genes Sense (5’!3’) Antisense (5’!3’)

α-SMA GGCCGAGATCTCACTGACTA AGTGGCCATCTCATTTTCAA

FAP ACTGCCCAGTTCGTTTCAGT AGAGCGACCCTCACATCAAG

Vimentin GACAATGCGTCTCTGGCACGTCTT TCCTCCGCCTCCTGCAGGTTCTT

Groα/CXCL1 TGTGAAGGCAGGGGAATGTA TTAAGCCCCTTTGTTCTAAGCC

GAPDH GAAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTTC

https://doi.org/10.1371/journal.pone.0188847.t001
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Senescence-associated β-galactosidase (SA-β-Gal) staining

In brief, NOFs and CAFs (1.5 × 105) were seeded and incubated overnight in a 6-well plate.

After treatment of IL-6, CXCL1 or co-culture with OSCC cells for 48 h, cells were stained

using a β-Gal staining kit (Cell Signaling, MA, USA) and incubated overnight at 37˚C. The

cells were washed with PBS twice, and 70% glycerol was added. Images of randomly selected 5

microscopic fields (magnification: X200) were acquired per sample (Olympus, Tokyo, Japan).

The percentage of SA-β-Gal-positive cells was calculated by the number of positive cells divid-

ing by the total number of cells.

Frozen cancer tissues samples from OSCC patients

To confirm the in vitro data, SA-β-Gal staining was also performed with frozen surgical cancer

tissues obtained from 5 OSCC patients, and their tumor-free marginal tissues were used as

controls (IRB approval number: 2-2011-0044). This work has been carried out in accordance

with the Declaration of Helsinki and the informed consent was received from the patients.

Cryocut-sectioned tissue was stained using a β-Gal staining kit (Cell Signaling, MA, USA) and

counter-stained with eosin. All frozen tissue sections contained both tumor and stromal por-

tions. The stromal proportion was measured by cellSens standard software (ROI; region of

interest) (Olympus, Australia) in randomly selected 5 fields per slide, and then the stained cells

were counted. The SA-β-Gal-positive cells were calculated per millimeter squared and aver-

aged for each group.

Cytokine antibody array

A RayBio1 Human Cytokine Antibody Array kit (Ray Biotech, Norcross, GA, USA) was used

to screen cytokine secretion in conditioned medium of each culture. The cytokine antibody

array was performed according to the manufacturer’s protocol. In brief, mono-cultured NOFs

and co-culture NOFs with YD10B cells were seeded in 6-well plates. After 48 h incubation, the

conditioned mediums were collected, concentrated and quantified for array. The detail of con-

ditioned medium was described in the supplementary materials and methods (S3 Materials

and Methods). Among 80 cytokines, the relative expression levels of the cytokines were deter-

mined by comparing signal intensities. Image J software (National Institutes of Health,

Bethesda, Maryland, USA) was used for densitometric analysis.

Enzyme-linked immunosorbent assay (ELISA)

ELISA was performed according to the manufacturer’s protocol (R&D systems, Minneapolis,

MN, USA). Preparation of conditioned medium was described in the supplementary data. All

reagents for ELISA were purchased from R&D Systems. Capture antibodies were applied in

8-well NUNC Immuno Modules (Thermo Fisher Scientific, Roskilde, Denmark) and incu-

bated overnight at 4˚C. Wells were blocked with 1% bovine serum albumin (Sigma, St. Louis,

MO, USA) at room temperature for 1 h. The conditioned medium was applied at room tem-

perature for 2 h. Then, detection antibodies were applied at room temperature for 1 h. One

hundred μl of 3,3‘,5,5‘-tetramethylbenzidine (TMB) solution (Sigma, St. Louis, MO, USA) was

added and color reaction was stopped by adding 50 μl of 2M sulfuric acid. The optical density

was measured at 450 nm in a micro-plate reader (Bio-Rad, Hercules, CA, USA). To measure

each secretory cytokine, a standard curve with a range of 0 ~ 2000 pg/ml was prepared by mak-

ing serial dilution of recombinant proteins.
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Measurement of oxidative stress

Reactive oxygen species (ROS) were measured with the fluorescent probe 2’7’-dichlorofluores-

cin diacetate (H2DCFDA) dye (Molecular Probes Inc) according to the instructions. The cells

(2.5 × 105) were exposed to the 10 μM H2DCFDA in PBS in the dark at 37˚C for 20 min,

respectively. H2DCFDA-non treatment served as a negative control and 10 μM H2O2 served as

a positive control. Then, the cells were analyzed by a flow cytometry (Becton Dickinson, Beck-

man coulter, Fullerton, CA, USA) at an excitation and emission wavelength of 485 nm and

535 nm, respectively. Cell-Quest software (BD Biosciences, San Jose, CA, USA) was utilized

for data analysis.

Transwell invasion assay

Inserts containing 8-μm pores in 24-transwell plates (Corning incorporated-Life Sciences,

Tewksbury, MA, USA) were coated with type I collagen (Nitta Gelatin Inc, Osaka, Japan)

(45 μg/30 μl/well) and hardened for 24 h. OSCC cells (1.5 × 104) were placed in the inserts

coated with type I collagen. NOFs or CAFs (1.5 × 104) were added to the lower chamber of the

well. A CXCL1-neutralizing antibody was added to evaluate whether CXCL1 induced the inva-

sive growth of cancer cells. After 48 h, the penetrated cells through the pores of inserts were

fixed, stained with 0.25% crystal violet and counted by light microscopy (Olympus, Tokyo,

Japan).

Statistical analysis

All statistical analyses were performed using SPSS version 20 (SPSS Inc., Chicago, IL, USA).

Mann-Whitney U tests were used to assess the significance of mRNA and protein expressions

between NOFs and CAFs. Mann-Whitney U tests were also used to assess the significance of

SA-β-Gal enzyme activity, ROS generation, and cytokine secretion levels between mono-cul-

ture and co-culture conditions. An analysis of variance (ANOVA) with repeated measure-

ments was used to assess the significance of proliferation and SA-β-Gal enzyme activity

between NOFs and CAFs depending on the passages. Donor age served as a co-variable to

exclude age effect in the repeated measures ANOVA. The results were reported as the

mean ± standard deviation (SD). A value of p< 0.05 was considered statistically significant.

Results

Comparison of the fraction of proliferating and senescent cells between

NOFs and CAFs

First, we examined the expression of myofibroblastic markers. The mRNA expression of α-

SMA and FAP increased in both TGF-β-treated NOFs and CAFs compared with non-treated

cells, whereas vimentin mRNA expression was not altered (S1A–S1E Fig). The basal level of α-

SMA expression showed no statistical difference between NOFs and CAFs. Upon TGF-β treat-

ment in NOFs and CAFs, the expression difference of α-SMA protein exhibited statistical sig-

nificance between CAFs and NOFs (�p< 0.05) (Fig 1A and 1B, S2 Fig). To compare the

proliferation between NOFs and CAFs, immunocytochemical staining for PCNA was per-

formed (S3A Fig) and analyzed by the repeated measures ANOVA using a co-variable (Fig 1C,

S2 Table). Regarding the big age gap of between NOF (all 29 years) and CAF (54, 69 and 74

years) donors, their age served as a co-variable in statistical analysis to exclude age effect.

Donor age served as a co-variable in statistical analysis to exclude age effect. CAFs exhibited a

significantly reduced fraction of PCNA positive cells compared with NOFs overall passage

over from 5th to 9th passage (�p< 0.05). To detect senescent cells, SA-β-Gal staining was
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performed (S3B Fig) and analyzed using the same statistical method (Fig 1D, S3 Table). CAFs

exhibited a significantly higher fraction of SA-β-Gal-positive cells compared with NOFs overall

passage over from 5th to 9th passage (�p< 0.05). Confirming these results, the stromal area

Fig 1. Comparison between NOFs and CAFs. (A, B) α-SMA protein expression according to TGF-β treatment in NOFs and CAFs. β-actin

expression was used as a loading control. (B) Densitometric analysis of α-SMA protein expression in NOFs and CAFs with normalization to

β-actin level. The results are presented as the mean value ± SD in triplicates and were analyzed by the Mann-Whitney U test (�p< 0.05). (C)

The percentage of PCNA-positive cells in NOFs (n = 3) and CAFs (n = 3). Images of randomly selected 5 microscopic fields (magnification:

X200) per sample were selected and then calculated. (D) The percentage of SA-β-Gal-positive cells in NOFs (n = 3) and CAFs (n = 3). Images

of randomly selected 5 microscopic fields (magnification: X200) per sample were selected and then calculated. The results of C and D are

presented as the mean value ± SD and were analyzed by the repeated measures ANOVA (�p< 0.05). (E) Representative microscopic pictures

of SA-β-Gal-positive cells in frozen surgical OSCC specimens and its tumor-free marginal tissues (magnification: X200 and X400, scale bar:

100 μm). (F) The average number of SA-β-Gal-positive cells per square millimeter in frozen surgical OSCC specimens and its tumor-free

marginal tissues. The results are presented as the mean value ± SD and were analyzed by the Mann-Whitney U test (�p< 0.05, ��p< 0.01).

https://doi.org/10.1371/journal.pone.0188847.g001
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surrounding carcinoma cells in OSCC patients exhibited a higher fraction of SA-β-Gal-posi-

tive cells than the area in tumor-free marginal tissues samples (��p< 0.01) (Fig 1E and 1F).

Senescence of NOFs by exposure to cancer cells

To investigate whether NOFs transform to senescent CAFs by exposure to cancer cells, SA-β-

Gal staining was performed after co-culture with NOFs and YD10B OSCC cells at 24, 48, 72

and 96 h time points (Fig 2A and 2B). At 48 h, NOFs co-cultured with YD10B exhibited signif-

icantly increased SA-β-Gal-positive cells compared with mono-cultured NOFs (�p< 0.05). To

confirm the transformation of NOFs into senescent CAFs, the percentage of SA-β-Gal-positive

cells was compared at 48 h. NOFs co-cultured with OSCC cells exhibited a significantly high

percentage of SA-β-Gal-positive cells (�p< 0.05), whereas NOFs co-cultured with NEK exhib-

ited no positive cells, suggesting that senescence of NOFs is attributed to the exposure to can-

cer cells (Fig 2C).

ROS generation in mono-culture and co-culture conditions

To evaluate whether senescence of NOFs by exposure to cancer cells is due to ROS generation

in co-culture condition, we measured ROS. No significant difference in ROS generation was

observed between mono-cultured and co-cultured OSCC cells with NOFs (Fig 2D and S5 Fig).

Co-cultured NOFs showed higher ROS generation than mono-cultured cells, but no signifi-

cant difference was observed between NOFs co-cultured with NEK and OSCC cells (Fig 2E

and S5 Fig).

Cytokine profiles of NOFs in co-culture with OSCC cells

To elucidate the soluble factors to induce senescence of NOF, a cytokine antibody array was

performed (S4 Fig). Sixteen cytokines exhibited greater than 1.5-fold increases in co-cultured

NOFs with YD10B cells compared with mono-cultured NOFs, of which IL-6 and CXCL1

exhibited the highest secretion levels (Fig 3A). IL-6 and CXCL1 exhibited a 24.25-fold and

19.94-fold increase, respectively (Table 2).

Specificity of CXCL1 in co-culture condition with OSCC cells

Based on the cytokine antibody array results, the senescent effects of IL-6 and CXCL1 were

examined. Upon treatment with IL-6 or CXCL1 recombinant proteins, a significantly

increased percentage of SA-β-Gal-positive cells was detected in treated cells compared with

non-treated NOFs (�p< 0.05) (Fig 3B and 3C, S6A and S6B Fig). To evaluate whether these

cytokines are released by stimulation of cancer cells or by simple co-culture effect, IL-6 and

CXCL1 secretion levels were measured in conditioned medium from mono-culture, co-culture

with NEK, and co-culture with OSCC cells. In co-culture conditions, regardless of whether

with OSCC cells or NEK, IL-6 and CXCL1 cytokine were highly secreted compared with

mono-cultured condition (�p< 0.05) (Fig 3D and 3E). However, CXCL1 level specifically

increased in co-culture with NOFs and OSCC cells compared with co-culture with NOFs and

NEK (Fig 3D). IL-6 level showed no significant difference between co-culture with OSCC cells

and with NEK (Fig 3E). These results indicated that secretion of CXCL1 in CAFs was triggered

specifically by cancer cells.

To identify the main source of CXCL1, real-time PCR and ELISA were conducted. CXCL1

mRNA exhibited the highest expression in co-cultured NOFs with OSCC cells (Fig 3F). Like-

wise, CXCL1 secretion was highly detected in NOFs treated with conditioned medium

obtained from OSCC cells (�p< 0.05). In contrast, CXCL1 secretion was minimally detected
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Fig 2. Comparison of senescent NOFs between mono-culture and co-culture. (A) Representative microscopic pictures of SA-

β-Gal positive cells at 24, 48, 72, and 96 h (magnification: 200X, scale bar: 100 μm). (B) The SA-β-Gal positive cells were

normalized by dividing the total cells and are presented as % of SA-β-Gal positive cells. The results are presented as the mean

value ± SD in triplicates and were analyzed by the Mann-Whitney U test (�p< 0.05). (C) The number of SA-β-Gal-positive cells

among co-cultures with NEK, OSCC cells at 48 h. The results are presented as the mean value ± SD in triplicates and were

analyzed by the Mann-Whitney U test (�p< 0.05). (D, E) Measurement of oxidative stress in mono-culture and co-culture

conditions. Flow cytometry analysis of positive cell stained H2DCFDA dye for detection of ROS generation. (D) Quantitative

analysis of ROS generation in mono-cultured and co-cultured OSCC cells with NOFs. The results are presented as the mean
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PLOS ONE | https://doi.org/10.1371/journal.pone.0188847 January 23, 2018 8 / 17

https://doi.org/10.1371/journal.pone.0188847


in mono-cultured NOFs, mono-cultured OSCC cells, and OSCC cells treated with conditioned

medium from NOFs (Fig 3G). These results indicated that CXCL1 is specifically secreted when

exposed to OSCC cells in an autocrine manner.

Effects of CXCL1 inhibition in CAF senescence and OSCC invasion

To confirm the induction role of senescence by CXCL1, a CXCL1-neutralizing antibody was

treated in co-culture conditions with NOFs and OSCC cells. The number of SA-β-Gal-positive

cells was significantly decreased by treatment with CXCL1-neutralizing antibody (�p< 0.05)

(Fig 4).

To determine whether CAFs are involved in the induction of cancer cell invasion, transwell

invasion assays were performed in the presence of NOFs or CAFs in the lower chamber.

OSCC cells co-cultured with CAFs exhibited higher invasive activity than co-cultured with

NOFs (�p< 0.05, ��p< 0.01) (S7 Fig). With CXCL1-neutralizing antibody, the invasiveness of

OSCC cells was markedly reduced compared with controls (��p< 0.01, ���p< 0.001) (Fig 5),

suggesting that CXCL1 is involved in CAF-induced OSCC cell invasion.

Discussion

CAFs have various functions in the induction of cancer development and progression [2,19].

However, the conversion mechanism of NOFs into CAFs has not been clearly elucidated to

date. This study revealed that NOFs in OSCC are transformed to senescent CAFs mediated by

CXCL1 in an autocrine manner.

CAFs have been revealed to be myofibroblasts with α-SMA expression [5,20]. In our study,

we could not find statistical difference in the basal level of α-SMA expression between NOFs

and CAFs, because of individual variation, supporting the previous data that α-SMA expres-

sion are diverse per cell [21]. The individual variation of α-SMA expression appeared greater

in CAFs than in NOFs. TGF-β-treated CAFs exhibited significantly increased α-SMA protein

expression compared with TGF-β-treated NOFs, confirming myofibroblastic differentiation of

CAFs by TGF-β [9]. Accumulating evidence demonstrates that CAFs have a senescent pheno-

type in several cancers [12,22]. In our in vitro results, CAFs showed the higher portion of

senescent cells than NOFs overall passage over, confirming that CAFs are senescent cells. Con-

sistent with in vitro findings, OSCC patient tissues exhibited an increased fraction of SA-β-

Gal-positive cells compared with tumor-free marginal tissues, confirming that CAFs are senes-

cent cells.

According to our results, upon co-culturing NOFs with OSCC cells for 48 h, NOFs can be

transformed into senescent cells. To confirm whether this phenomenon was a specific

response to co-culture between NOFs and OSCC cells, SA-β-Gal positivity of NOFs was com-

pared in co-culture with NEK and with OSCC cells. SA-β-Gal-positive cells were not detectable

in NOFs co-cultured with NEK, indicating that senescent process of NOFs may not be attrib-

uted to simply co-culture condition, but be attributed to exposure by cancer cells. Taken

together, NOFs co-cultured with OSCC cells in vitro for 48 h can be educated to CAFs.

Considering that ROS play a major role in aging process and senescent CAFs [23], we mea-

sured ROS generation among mono-cultured and co-cultured conditions. Co-cultured fibro-

blasts with NEK or OSCC cells showed higher ROS generation than mono-cultured cells, but

not significant difference in co-culture between with NEK and with OSCC cells, suggesting

value ± SD in triplicates and were analyzed by the Mann-Whitney U test. (E) Quantitative analysis of ROS generation in mono-

cultured and co-cultured NOFs with OSCC cells or NEK. The results are shown as mean value ± SD in triplicates and were

analyzed by the Mann-Whitney U test (�p< 0.05).

https://doi.org/10.1371/journal.pone.0188847.g002
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Fig 3. CXCL1 secretion by an autocrine manner in CAFs. (A) A cytokine antibody array was used to measure the secretion of 80 factors in

conditioned medium from mono-cultured NOFs and co-cultured NOFs with OSCC cells for 48 h. The arrays were scanned and quantified by

densitometry using Image J software. The levels were normalized to internal positive controls present in each membrane. The heat map shows
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that senescent change of NOFs to CAFs by exposure to cancer cells may not be attributed to

ROS.

In our study, the proliferating activity of CAFs, as shown in Fig 1C and 1D, rapidly reduced

over the passages compared with NOFs, eventuating in arrested proliferation rate. In contrast,

the senescence of CAFs rapidly increased compared with NOFs. According to our previous

study [5], the higher portion of CAFs caused the poorer prognosis. We also showed that CAFs

can proliferate approximately 1.5 fold by stimulation of OSCC cells, lending support that

CAFs proliferation can aggravate cancer progression by inducing the larger amount of cyto-

kine secretion from the more number of CAFs. Regarding that cytokine secretion of senescent

CAFs has been acknowledged to play a critical role in cancer progression, we focused on eluci-

dating the transforming mechanism of NOFs to senescence cells.

We found that IL-6 and CXCL1 showed the highest secretory factors by co-culture of NOFs

and OSCC cells. IL-6 is a multifunctional cytokine that regulates cell proliferation, survival,

senescence, and differentiation and promotes tumorigenesis [24]. In addition, IL-6 is a molec-

ular modulator of cellular adjustment to an altered environment [25]. CXCL1 contributes to

cancer cell transformation, growth and invasion [26,27]. In our data, we found that both IL-6

and CXCL1 induced senescence of CAFs. However, CXCL1 secretion appeared to be cancer

specific, whereas IL-6 did not.

Accumulating data demonstrated that the control of senescence in CAFs may give an

insight to develop a new cancer therapy targeting tumor microenvironment. In cervical

upregulated cytokines in co-culture with NOFs and OSCC cells using the MeV 4.9.0 program. (B,C) The number of SA-β-Gal positive cells by

CXCL1 (B) and IL-6 treatment (C). The results are presented as the mean value ± SD in triplicates and were analyzed by the Mann-Whitney U
test (�p< 0.05). (D,E) The amount of secreted CXCL1 (D) or IL-6 (E) was measured by ELISA in conditioned medium (CM) from NOFs,

OSCC cells, co-cultures of NOFs and NEK, and co-cultures of NOFs and OSCC cells. CXCL1 secretion was quantified by a standard curve

prepared by serial dilution of recombinant proteins. The results are presented as the mean value ± SD in triplicates and were analyzed by the

Mann-Whitney U test (�p< 0.05). (F,G) CXCL1 expressions were measured by real-time PCR (F) and ELISA (G) in mono-culture NOFs,

OSCC cells, NOFs co-cultured with OSCC cells, and OSCC cells co-cultured with NOFs. (F) The mRNA expressions were normalized to

GAPDH. (G) The amount of secreted CXCL1 in mono-culture NOFs, OSCC cells, NOFs treated with CM from OSCC cells, and OSCC cells

treated with CM from NOFs. The results are presented as the mean value ± SD in triplicates and were analyzed by the Mann-Whitney U test

(�p< 0.05).

https://doi.org/10.1371/journal.pone.0188847.g003

Table 2. A Cytokines list over a 1.5-fold increases in co-culture with NOFs and YD10B OSCC cells compared with

mono cultured NOFs.

Order Target Fold-increase

1 IL-6 24.25

2 CXCL1 19.94

3 IL-7 7.66

4 MCP-2 6.68

5 ENA-78 6.54

6 GRO 5.96

7 MCP-3 5.85

8 IL-8 5.26

9 Angiogenin 4.72

10 GM-CSF 3.71

11 Osteoprotegerin 3.15

12 MCP-1 2.81

13 GCP-2 2.61

14 GCSF 2.51

15 VEGF 2.49

16 Eotaxin 1.75

https://doi.org/10.1371/journal.pone.0188847.t002
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tumorigenesis, the activated IL-6 and STAT-3 induced senescence of fibroblasts in high-risk

Human Papilloma Virus-infected cervical cancer. The suppression of STAT-3 pathway

reduced tumor burden, suggesting the possibility of cancer therapy targeting senescence pro-

gram of CAFs [12]. As another possibility of cancer therapy, NF-κB acts as a master regulator

of senescence associated secretory phenotype. The controls of NF-κB pathway contributes to

the outcome of cancer therapy [28].

CXCL1 was derived from NOFs by exposure to OSCC cells, suggesting that senescent pro-

cess of CAFs occurs in an autocrine manner in our study model. The previous studies demon-

strated that CAFs-derived CXCL1 can be a therapeutic target in cancer therapy. In ovarian

cancer, RAS-induced CXCL1 can be a potent inducer of senescence in stromal fibroblasts,

showing the possibility of diagnostic marker and therapeutic target of CXCL1 [11,29].

Fig 4. Reduction of SA-β-Gal positive cells by CXCL1-neutralizing antibody. (A,C) Representative microscopic pictures of SA-β-Gal

positive cells in co-cultured NOFs with YD10B (A) or YD38 cells (C) after treatment with neutralizing antibody (Ab). (magnification: 200X,

Scale bar: 100 μm). (B,D) The percentage of SA-β-Gal-positive cells was normalized by dividing the total cells. The results are presented as

the mean value ± SD in triplicates and were analyzed by the Mann-Whitney U test (�p< 0.05).

https://doi.org/10.1371/journal.pone.0188847.g004
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Regarding an analogy in paracrine interactions between epithelial and stromal fibroblasts in

both wound healing and carcinogenesis, the blockage of IL-6, IL-8 and CXCL1 released from

stromal fibroblasts may attenuate epithelial differentiation [11,29]. In addition, CAFs-derived

CXCL1 mediated radioresistance in esophageal squamous cell carcinoma, providing that

CXCL1 can be an attractive target to reverse tumor radioresistance [30]. In our study, the

treatment of CXCL1-neutralizing antibody significantly reduced invasive growth in OSCC

cells, supporting the usefulness of target therapy for CAFs-derived CXCL1. Taken together,

these data might contribute to the further understanding of CAFs and to the development of a

therapeutic target modulating cancer cells and CAFs interactions.

Supporting information

S1 Fig. Comparison of myofibroblastic markers between NOFs and CAFs. (A,B) α-SMA,

FAP, and vimentin mRNA expression according to TGF-β treatment in NOFs (A) and CAFs

(B). The graphs are presented as the mean value ± SD in triplicates. (C, D, E) Densitometric

Fig 5. The invasive growth of CXCL1 in CAFs. YD10B (A,B) or YD38 (C,D) cells in serum-free media were placed in the upper well of a

24-transwell plate with collagen-coated filters (8 μm pore). CAFs were added into the lower well. The invasive cells were compared after

treatment with control antibody or CXCL1-neutralizing antibody. The invasive cells were counted after 48 h by light microscopy. (A,C)

Representative microscopic pictures of invading OSCC cells (magnification: 100X, scale bar: 200 μm). (B,D) Comparison of invasiveness

after treatment of CXCL1-neutralizing antibody. The number of invasive cells was normalized by dividing by the number of total cells and

presented as the percentage of invasion. The results are presented as the mean value ± SD in triplicates and were analyzed by the Mann-

Whitney U test (���p< 0.001, ��p< 0.01, �p< 0.05).

https://doi.org/10.1371/journal.pone.0188847.g005

CXCL1 induces senescence of cancer-associated fibroblasts via autocrine manner

PLOS ONE | https://doi.org/10.1371/journal.pone.0188847 January 23, 2018 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188847.s001
https://doi.org/10.1371/journal.pone.0188847.g005
https://doi.org/10.1371/journal.pone.0188847


analysis of mRNA for α-SMA (C), FAP (D), and vimentin (E) were carried out with a loading

control of GAPDH expression. The results are presented as the mean value ± SD in triplicates

and were analyzed by the Mann-Whitney U test (�p< 0.05).

(TIF)

S2 Fig. Representative immunofluorescent pictures of α-SMA in NOFs and CAFs. Images

are shown the basal levels of α-SMA in NOFs(upper) and CAFs(lower). Merged staining was

shown (DAPI(blue), α-SMA(Green)). (magnification: X200, scale bar: 100μm).

(TIF)

S3 Fig. Representative microscopic pictures of PCNA and SA-β-Gal staining in NOFs and

CAFs. (A) The positive cells for PCNA show the brown to black colored nuclei. (B) The posi-

tive cells for SA-β-Gal show the blue colored cytoplasm and nuclei. (magnification: X 200,

scale bar: 100μm).

(TIF)

S4 Fig. Cytokine antibody array using mono-cultured NOFs and co-cultured NOFs with

YD10B OSCC cells. (A) The RayBio Human Cytokine Antibody Array Map. A total of 80

antibodies against cytokines, negative control (Neg), and positive control (Pos) were included

in the array (B) Representative pictures of cytokine antibody array in mono-culture NOFs and

co-cultured NOFs with YD10B OSCC cells. IL-6 (identified by red empty squares) and CXCL1

(identified by blue empty squares) are the highest secretion in conditioned medium from co-

culture with NOFs and YD10B OSCC cells compared to mono-cultured cells.

(TIF)

S5 Fig. Measurement of oxidative stress in mono-culture and co-culture conditions. Flow

cytometry analysis of positive cell stained H2DCFDA dye for detection of ROS generation in

mono-culture and co-culture condition. (A) Negative (H2DCFD-non treatment) and positive

(10 μM H2O2 treatment) control (B) mono-cultured OSCC cells and OSCC cells co-cultured

with NOFs (C, D, E) mono-cultured NOFs and NOFs co-cultured with OSCC cells.

(TIF)

S6 Fig. Representative microscopic pictures of SA-β-Gal positive cells in NOFs treated

with recombinant proteins. The treatment with CXCL1 (A) and IL-6 recombinant protein

(B) (magnification: 200X, Scale bar: 100 μm).

(TIF)

S7 Fig. Comparison of invasiveness between NOFs and CAFs by transwell assay. YD10B

(A,B) or YD38 (C,D) cells in serum-free media were placed in the upper well of a 24-transwell

plate with collagen-coated filters (8 μm pore). NOFs or CAFs was added into the lower well to

induce invasion. The invasive cells were counted after 48 h by light microscopy. (A,C) Repre-

sentative microscopic pictures of invading YD10B or YD38 OSCC cells (magnification: 100X,

scale bar: 100 μm). (B,D) The number of invasive cells was normalized by dividing by the num-

ber of total cells and presented as the percentage of invasion. The results are presented as the

mean value ± SD in triplicates and were analyzed by the Mann-Whitney U test (��p< 0.01,
�p< 0.05).

(TIF)

S1 Table. The preliminary study for optimal concentration of IL-6, CXCL1 and CXCL1

neutralizing antibody. The preliminary tables indicated to check the concentration of each

cytokine secreted in mono-cultured or co-cultured NOFs with OSCC cells for 48 h. For follow-

ing experiments, the optimal concentration of recombinant human IL-6 (7 ng/ml; Top table)
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and CXCL1 (5 ng/ml; Middle table) were applied in NOFs for 48 h. The optimal concentration

of CXCL1 neutralizing antibody (20 μg/ml; bottom table) was determined as the most effective

reduction of CXCL1 secretion.

(DOCX)

S2 Table. The percentage of PCNA-positive cells in NOFs and CAFs according to passages.

Images of randomly selected 5 microscopic fields (magnification: X200) were acquired per

sample (Olympus, Tokyo, Japan). The average (%) was indicated with standard deviation.

(DOCX)

S3 Table. The percentage of SA-β-Gal-positive cells in NOFs and CAFs according to pas-

sages. Images of randomly selected 5 microscopic fields (magnification: X200) were acquired

per sample (Olympus, Tokyo, Japan). The average (%) was indicated with standard deviation.

(DOCX)

S1 Materials and Methods. Cell culture.

(DOCX)

S2 Materials and Methods. Immunofluorescence.

(DOCX)

S3 Materials and Methods. Preparation of conditioned medium.

(DOCX)

Author Contributions

Conceptualization: Eun Kyoung Kim, Xianglan Zhang, Jin Kim.

Data curation: Eun Kyoung Kim, Xianglan Zhang, Jin Kim.

Formal analysis: Eun Kyoung Kim.

Funding acquisition: Jin Kim.

Investigation: Eun Kyoung Kim, Sook Moon, Do Kyeong Kim.

Methodology: Eun Kyoung Kim, Do Kyeong Kim.

Project administration: Xianglan Zhang, Jin Kim.

Resources: Jin Kim.

Visualization: Do Kyeong Kim, Jin Kim.

Writing – original draft: Eun Kyoung Kim, Jin Kim.

Writing – review & editing: Do Kyeong Kim, Jin Kim.

References

1. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;

1: 119–150. https://doi.org/10.1146/annurev.pathol.1.110304.100224 PMID: 18039110

2. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006; 6: 392–401. https://doi.org/10.

1038/nrc1877 PMID: 16572188

3. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts

present in invasive human breast carcinomas promote tumor growth and angiogenesis through ele-

vated SDF-1/CXCL12 secretion. Cell. 2005; 121: 335–348. https://doi.org/10.1016/j.cell.2005.02.034

PMID: 15882617

CXCL1 induces senescence of cancer-associated fibroblasts via autocrine manner

PLOS ONE | https://doi.org/10.1371/journal.pone.0188847 January 23, 2018 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188847.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188847.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188847.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188847.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0188847.s013
https://doi.org/10.1146/annurev.pathol.1.110304.100224
http://www.ncbi.nlm.nih.gov/pubmed/18039110
https://doi.org/10.1038/nrc1877
https://doi.org/10.1038/nrc1877
http://www.ncbi.nlm.nih.gov/pubmed/16572188
https://doi.org/10.1016/j.cell.2005.02.034
http://www.ncbi.nlm.nih.gov/pubmed/15882617
https://doi.org/10.1371/journal.pone.0188847


4. Kunz-Schughart LA, Knuechel R. Tumor-associated fibroblasts (part I): Active stromal participants in

tumor development and progression? Histol Histopathol. 2002; 17: 599–621. https://doi.org/10.14670/

HH-17.599 PMID: 11962761

5. Bae JY, Kim EK, Yang DH, Zhang X, Park YJ, Lee DY, et al. Reciprocal interaction between carcinoma-

associated fibroblasts and squamous carcinoma cells through interleukin-1alpha induces cancer pro-

gression. Neoplasia. 2014; 16: 928–938. https://doi.org/10.1016/j.neo.2014.09.003 PMID: 25425967

6. Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Can-

cer. 2004; 4: 839–849. https://doi.org/10.1038/nrc1477 PMID: 15516957

7. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibro-

blasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999; 59: 5002–

5011. PMID: 10519415

8. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to invasive

breast carcinoma transition. Cancer Cell. 2008; 13: 394–406. https://doi.org/10.1016/j.ccr.2008.03.007

PMID: 18455123

9. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-beta and stromal

cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofi-

broblasts. Proc Natl Acad Sci U S A. 2010; 107: 20009–20014. https://doi.org/10.1073/pnas.

1013805107 PMID: 21041659

10. Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipi-

ent Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner.

Cancer Cell. 2010; 17: 135–147. https://doi.org/10.1016/j.ccr.2009.12.041 PMID: 20138012

11. Yang G, Rosen DG, Zhang Z, Bast RC Jr., Mills GB, Colacino JA, et al. The chemokine growth-regu-

lated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian

tumorigenesis. Proc Natl Acad Sci U S A. 2006; 103: 16472–16477. https://doi.org/10.1073/pnas.

0605752103 PMID: 17060621

12. Ren C, Cheng X, Lu B, Yang G. Activation of interleukin-6/signal transducer and activator of transcrip-

tion 3 by human papillomavirus early proteins 6 induces fibroblast senescence to promote cervical

tumourigenesis through autocrine and paracrine pathways in tumour microenvironment. Eur J Cancer.

2013; 49: 3889–3899. https://doi.org/10.1016/j.ejca.2013.07.140 PMID: 23953057

13. Dean JP, Nelson PS. Profiling influences of senescent and aged fibroblasts on prostate carcinogenesis.

Br J Cancer. 2008; 98: 245–249. https://doi.org/10.1038/sj.bjc.6604087 PMID: 18182995

14. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell

growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001; 98:

12072–12077. https://doi.org/10.1073/pnas.211053698 PMID: 11593017

15. Parrinello S, Coppe JP, Krtolica A, Campisi J. Stromal-epithelial interactions in aging and cancer:

senescent fibroblasts alter epithelial cell differentiation. J Cell Sci. 2005; 118: 485–496. https://doi.org/

10.1242/jcs.01635 PMID: 15657080

16. Liu J, Xu K, Chase M, Ji Y, Logan JK, Buchsbaum RJ. Tiam1-regulated osteopontin in senescent fibro-

blasts contributes to the migration and invasion of associated epithelial cells. J Cell Sci. 2012; 125:

376–386. https://doi.org/10.1242/jcs.089466 PMID: 22302986

17. Illeperuma RP, Kim DK, Park YJ, Son HK, Kim JY, Kim J, et al. Areca nut exposure increases secretion

of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int J

Cancer. 2015; 137: 2545–2557. https://doi.org/10.1002/ijc.29636 PMID: 26076896

18. Lee EJ, Kim J, Lee SA, Kim EJ, Chun YC, Ryu MH, et al. Characterization of newly established oral can-

cer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells. Exp

Mol Med. 2005; 37: 379–390. https://doi.org/10.1038/emm.2005.48 PMID: 16264262

19. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle.

2006; 5: 1597–1601. https://doi.org/10.4161/cc.5.15.3112 PMID: 16880743

20. Zhou B, Chen WL, Wang YY, Lin ZY, Zhang DM, Fan S, et al. A role for cancer-associated fibroblasts in

inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. J Oral

Pathol Med. 2014; 43: 585–592. https://doi.org/10.1111/jop.12172 PMID: 24645915

21. Chaudhri VK, Salzler GG, Dick SA, Buckman MS, Sordella R, Karoly ED, et al. Metabolic alterations in

lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol

Cancer Res. 2013; 11: 579–592. https://doi.org/10.1158/1541-7786.MCR-12-0437-T PMID: 23475953

22. Taddei ML, Cavallini L, Comito G, Giannoni E, Folini M, Marini A, et al. Senescent stroma promotes

prostate cancer progression: the role of miR-210. Mol Oncol. 2014; 8: 1729–1746. https://doi.org/10.

1016/j.molonc.2014.07.009 PMID: 25091736

23. Hassona Y, Cirillo N, Lim KP, Herman A, Mellone M, Thomas GJ, et al. Progression of genotype-spe-

cific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative

CXCL1 induces senescence of cancer-associated fibroblasts via autocrine manner

PLOS ONE | https://doi.org/10.1371/journal.pone.0188847 January 23, 2018 16 / 17

https://doi.org/10.14670/HH-17.599
https://doi.org/10.14670/HH-17.599
http://www.ncbi.nlm.nih.gov/pubmed/11962761
https://doi.org/10.1016/j.neo.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25425967
https://doi.org/10.1038/nrc1477
http://www.ncbi.nlm.nih.gov/pubmed/15516957
http://www.ncbi.nlm.nih.gov/pubmed/10519415
https://doi.org/10.1016/j.ccr.2008.03.007
http://www.ncbi.nlm.nih.gov/pubmed/18455123
https://doi.org/10.1073/pnas.1013805107
https://doi.org/10.1073/pnas.1013805107
http://www.ncbi.nlm.nih.gov/pubmed/21041659
https://doi.org/10.1016/j.ccr.2009.12.041
http://www.ncbi.nlm.nih.gov/pubmed/20138012
https://doi.org/10.1073/pnas.0605752103
https://doi.org/10.1073/pnas.0605752103
http://www.ncbi.nlm.nih.gov/pubmed/17060621
https://doi.org/10.1016/j.ejca.2013.07.140
http://www.ncbi.nlm.nih.gov/pubmed/23953057
https://doi.org/10.1038/sj.bjc.6604087
http://www.ncbi.nlm.nih.gov/pubmed/18182995
https://doi.org/10.1073/pnas.211053698
http://www.ncbi.nlm.nih.gov/pubmed/11593017
https://doi.org/10.1242/jcs.01635
https://doi.org/10.1242/jcs.01635
http://www.ncbi.nlm.nih.gov/pubmed/15657080
https://doi.org/10.1242/jcs.089466
http://www.ncbi.nlm.nih.gov/pubmed/22302986
https://doi.org/10.1002/ijc.29636
http://www.ncbi.nlm.nih.gov/pubmed/26076896
https://doi.org/10.1038/emm.2005.48
http://www.ncbi.nlm.nih.gov/pubmed/16264262
https://doi.org/10.4161/cc.5.15.3112
http://www.ncbi.nlm.nih.gov/pubmed/16880743
https://doi.org/10.1111/jop.12172
http://www.ncbi.nlm.nih.gov/pubmed/24645915
https://doi.org/10.1158/1541-7786.MCR-12-0437-T
http://www.ncbi.nlm.nih.gov/pubmed/23475953
https://doi.org/10.1016/j.molonc.2014.07.009
https://doi.org/10.1016/j.molonc.2014.07.009
http://www.ncbi.nlm.nih.gov/pubmed/25091736
https://doi.org/10.1371/journal.pone.0188847


stress and TGF-beta. Carcinogenesis. 2013; 34: 1286–1295. https://doi.org/10.1093/carcin/bgt035

PMID: 23358854

24. Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, et al. IL-6 promotes prostate tumorigenesis

and progression through autocrine cross-activation of IGF-IR. Oncogene. 2011; 30: 2345–2355. https://

doi.org/10.1038/onc.2010.605 PMID: 21258401

25. Son HK, Park I, Kim JY, Kim do K, Illeperuma RP, Bae JY, et al. A distinct role for interleukin-6 as a

major mediator of cellular adjustment to an altered culture condition. J Cell Biochem. 2015; 116: 2552–

2562. https://doi.org/10.1002/jcb.25200 PMID: 25939389

26. Opdenakker G, Van Damme J. The countercurrent principle in invasion and metastasis of cancer cells.

Recent insights on the roles of chemokines. Int J Dev Biol. 2004; 48: 519–527. https://doi.org/10.1387/

ijdb.041796go PMID: 15349826

27. Bandapalli OR, Ehrmann F, Ehemann V, Gaida M, Macher-Goeppinger S, Wente M, et al. Down-regu-

lation of CXCL1 inhibits tumor growth in colorectal liver metastasis. Cytokine. 2012; 57: 46–53. https://

doi.org/10.1016/j.cyto.2011.10.019 PMID: 22129625

28. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associ-

ated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity.

Genes Dev. 2011; 25: 2125–2136. https://doi.org/10.1101/gad.17276711 PMID: 21979375

29. Kolar M, Szabo P, Dvorankova B, Lacina L, Gabius HJ, Strnad H, et al. Upregulation of IL-6, IL-8 and

CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochem-

ical and transcriptomic analyses. Biol Cell. 2012; 104: 738–751. https://doi.org/10.1111/boc.201200018

PMID: 23043537

30. Zhang H, Yue J, Jiang Z, Zhou R, Xie R, Xu Y, et al. CAF-secreted CXCL1 conferred radioresistance by

regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carci-

noma. Cell Death Dis. 2017; 8: e2790. https://doi.org/10.1038/cddis.2017.180 PMID: 28518141

CXCL1 induces senescence of cancer-associated fibroblasts via autocrine manner

PLOS ONE | https://doi.org/10.1371/journal.pone.0188847 January 23, 2018 17 / 17

https://doi.org/10.1093/carcin/bgt035
http://www.ncbi.nlm.nih.gov/pubmed/23358854
https://doi.org/10.1038/onc.2010.605
https://doi.org/10.1038/onc.2010.605
http://www.ncbi.nlm.nih.gov/pubmed/21258401
https://doi.org/10.1002/jcb.25200
http://www.ncbi.nlm.nih.gov/pubmed/25939389
https://doi.org/10.1387/ijdb.041796go
https://doi.org/10.1387/ijdb.041796go
http://www.ncbi.nlm.nih.gov/pubmed/15349826
https://doi.org/10.1016/j.cyto.2011.10.019
https://doi.org/10.1016/j.cyto.2011.10.019
http://www.ncbi.nlm.nih.gov/pubmed/22129625
https://doi.org/10.1101/gad.17276711
http://www.ncbi.nlm.nih.gov/pubmed/21979375
https://doi.org/10.1111/boc.201200018
http://www.ncbi.nlm.nih.gov/pubmed/23043537
https://doi.org/10.1038/cddis.2017.180
http://www.ncbi.nlm.nih.gov/pubmed/28518141
https://doi.org/10.1371/journal.pone.0188847

