
Alignment Modulates Ancestral Sequence
Reconstruction Accuracy
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Abstract

Accurate reconstruction of ancestral states is a critical evolutionary analysis when studying ancient proteins and com-
paring biochemical properties between parental or extinct species and their extant relatives. It relies on multiple
sequence alignment (MSA) which may introduce biases, and it remains unknown how MSA methodological approaches
impact ancestral sequence reconstruction (ASR). Here, we investigate how MSA methodology modulates ASR using a
simulation study of various evolutionary scenarios. We evaluate the accuracy of ancestral protein sequence reconstruc-
tion for simulated data and compare reconstruction outcomes using different alignment methods. Our results reveal
biases introduced not only by aligner algorithms and assumptions, but also tree topology and the rate of insertions and
deletions. Under many conditions we find no substantial differences between the MSAs. However, increasing the diffi-
culty for the aligners can significantly impact ASR. The MAFFT consistency aligners and PRANK variants exhibit the best
performance, whereas FSA displays limited performance. We also discover a bias towards reconstructed sequences longer
than the true ancestors, deriving from a preference for inferring insertions, in almost all MSA methodological approaches.
In addition, we find measures of MSA quality generally correlate highly with reconstruction accuracy. Thus, we show
MSA methodological differences can affect the quality of reconstructions and propose MSA methods should be selected
with care to accurately determine ancestral states with confidence.

Key words: ancestral sequence reconstruction, multiple sequence alignment, ancestral protein reconstruction, phy-
logenetic analysis, simulation.

Introduction
Given an ensemble of known sequences, ancestral sequence
reconstruction (ASR) refers to methods used to recover the
genetic sequence character states of their common ancestors.
It has been used to study molecular evolution of photo-
reactive proteins (Chang et al. 2002; Shi and Yokoyama
2003; Ugalde et al. 2004; Yokoyama and Takenaka 2004;
Chinen et al. 2005; Yokoyama et al. 2008; Bickelmann et al.
2015), thermal stability of ancient proteins (Gaucher et al.
2003; Shimizu et al. 2007; Gaucher et al. 2008; Gouy and
Chaussidon 2008; Akanuma et al. 2011; Perez-Jimenez et al.
2011; Akanuma et al. 2015; Busch et al. 2016), and evolution of
viral proteins (Kaiser et al. 2007; Gullberg et al. 2010; Zinn et al.
2015). Extensive reviews of these topics are found in Liberles
(2007), Ogawa and Shirai (2013), and Merkl and Sterner
(2016).

Ancestral reconstruction begins with a hypothesis of how
taxa descend from common ancestors in a tree-based struc-
ture or phylogeny. The taxa are represented as tips of the tree,

progressively connected by branches to their common ances-
tors represented by the internal nodes of the tree. The com-
mon ancestor sequence of the entire sample of taxa is the
root of the tree. Protocols for ASR usually involve four steps
(Merkl and Sterner 2016): 1) selecting extant sequences, 2)
building a multiple sequence alignment (MSA), 3) computing
a phylogenetic tree, and 4) reconstructing ancestral sequen-
ces. Reconstruction quality is likely to depend on the age of
the ancestors, the number of observed descendants and the
use of sufficiently realistic evolutionary models.

Two main paradigms for ancestral state reconstruction
exist: maximum parsimony (MP) and probabilistic methods,
which include maximum likelihood (ML) and Bayesian recon-
structions. Probabilistic methods use an explicit model of
substitution, unlike the implicit model embedded in MP.
These methods can also estimate confidence in each inferred
ancestor, often expressed as the posterior probability of the
data (Ashkenazy et al. 2012). Although ASR algorithms can
tolerate a certain degree of phylogenetic uncertainty
(Hanson-Smith et al. 2010), these methods can also introduce
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biases into reconstructions (Matsumoto et al. 2015). Species
tree-aware models incorporating gene losses and duplica-
tions, and horizontal transfer events, have been shown to
improve the performance of ASR under these conditions
(Groussin et al. 2015).

Established ML reconstruction methods can be divided
into two types: marginal reconstruction and joint reconstruc-
tion. Marginal reconstruction assigns a character state to a
single node on the tree and averages over all possible ances-
tral states at each other node, whereas joint reconstruction
assigns a set of character states to all ancestral inferred
nodes on the tree simultaneously. Marginal reconstruc-
tion can be considered an approximation for joint recon-
struction (Pupko et al. 2000). For “sequence-centric” tasks
such as determining the gene or protein sequence of a
single extinct ancestor, marginal reconstruction can usu-
ally be applied, whereas joint reconstruction has been
recommended for “lineage-centric” tasks such as count-
ing changes at specific sites (Yang 2007).

Multiple sequence alignment is a crucial step in ASR and
can yield two different outcomes: structural or evolutionary
homology (Tan et al. 2015). For evolutionary-based methods,
sequence sites should be related through evolutionary history
with shared direct ancestors. On the other hand, structural
methods align sites involved in similar structural folding pat-
terns even when they lack common evolutionary history
(Westesson et al. 2012). However, the impact of different
MSA tools on ASR is still unknown and seems to have
been overlooked. Previous studies suggest alignment errors
could promote significant biases in evolutionary reconstruc-
tions (Westesson et al. 2012). Consequently, some recon-
struction protocols recommend manual refinement at the
alignment step, such as removing or trimming difficult

sequences to remove gaps in the MSA (Cole et al. 2013).
Depending on the requirements of downstream analysis,
these approaches may solve some problems. However, they
also add subjectivity into the methodology (Anisimova et al.
2010).

Here, we investigate how several popular MSA tools (ta-
ble 1) impact ASR without any manual intervention. Using
simulated evolutionary trees and sequences, we measured the
accuracy of reconstructions derived from each alignment tool
in order to evaluate performance under different scenarios.

Results

Simulated Sequence Data Sets
We simulated protein sequence data sets under a variety of
realistic evolutionary scenarios using a combination of several
simulation parameters. We first generated an ensemble of
phylogenetic trees under the birth-process varying 1) tree
height, 2) sampling fraction, and 3) taxon count. Following
Hanson-Smith et al. (2010), we chose ultrametric trees to add
greater control on ASR conditions, avoiding biases introduced
by different branch lengths since shorter branches could bias
the ancestral state reconstruction. This removes uncertainty
from the problem and makes effects at different depths in the
trees more interpretable. Sampling fraction variation affects
the tree shape (as shown in supplementary fig. S1,
Supplementary Material online) and can be considered as
modeling extinction, such that the sampling fraction is the
probability of any species surviving extinction (Yang and
Rannala 1997), or to model an investigator’s taxon-
sampling strategy (Nee et al. 1994). Sampling fraction values
were chosen to represent a variety of tree shapes covering
realistic cases. A lower sampling fraction yields more “star-

Table 1. Multiple Sequence Alignment Tools.

Name, Version Description Characteristics

Clustal Omega,
v1.2.0

Based on seeded guide trees and HMM profile-profile techniques (Sievers et al.
2011).

Progressive approach;
permits use of guide tree

FSA, v1.15.9 Builds a multiple alignment using only pairwise estimations of homology through a
sequence annealing technique (Bradley et al. 2009).

Consistency-aware approach

MAFFT FFT-NS-2,
v7.294b

Simple progressive method using a distance matrix based on shared k-mers (Katoh
et al. 2002).

Progressive approach

MAFFT E-INS-i,
v7.294b

Implements Fast Fourier Transforms to optimize protein alignments based on
physical properties of the amino acids. This version uses local alignment with
generalized affine gap costs (Altschul). It is applicable to sequences with several
domains (Katoh and Standley 2013).

Consistency-aware approach

MAFFT L-INS-i,
v7.294b

Implements Fast Fourier Transforms to optimize protein alignments based on
physical properties of the amino acids. This version uses local alignment (Smith-
Waterman). It is designed for sequences containing one alignable domain (Katoh
and Standley 2013).

Consistency-aware approach

MUSCLE, v3.8.31 Multiple Sequence Comparison by Log-Expectation that includes a refinement
step where branches of the tree are repeatedly chosen and profiles from either
side realigned (Edgar 2004).

Progressive approach;
permits use of guide tree

PAGAN, v0.61 Phylogeny-aware progressive alignment algorithm that uses graphs to describe the
uncertainty in the presence of characters at certain sequence positions
(Löytynoja et al. 2012).

Phylogeny-aware approach;
permits use of guide tree

PRANK, v150803 Probabilistic multiple alignment that uses evolutionary information for the
placement of gaps and modeling of the substitution process (Löytynoja and
Goldman 2008).

Phylogeny-aware approach;
permits use of guide tree; program

variant þF enforces patterns of
insertions consistent with phylogeny
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like” topologies. Tree height represents the expected number
of substitutions per site from root to tip; we chose a tree
height of 0.8 to reflect realistic cases from amniote tree esti-
mations (derived from Ensembl Compara, Vilella et al. 2009),
and also studied larger heights to show methods’ perfor-
mance beyond this case.

On each tree, protein sequence evolution was simulated
under the WAG model (Whelan and Goldman 2001) using
two different indel rates. Parameter values were selected from
previous studies to represent realistic scenarios of protein
evolution (Whelan et al. 2003; Whelan et al. 2006; Levy
Karin et al. 2015; Md Mukarram Hossain et al. 2015; see
Materials and Methods for details). We tested indel rates of
0.01 and 0.05, inspired by observations in amniote
(Westesson et al. 2012) and mammalian genes (Cooper
et al. 2004). For each simulation, we recorded the simulated
sequences at the tips, the true alignments, and the true an-
cestral sequence for every internal node.

Table 2 shows the range of values of simulation parameters
used. In total, 72 scenarios were analyzed (36 tree configura-
tions under two indel rates), incorporating a gradient of dif-
ficulty for MSA.

Estimated MSAs and Ancestral Sequences
We aligned the tip sequences from the simulated data sets
above using each MSA tool listed in table 1. Aligners allowing
user-specified guide trees were additionally evaluated with
this option using the true tree. We denote such use of an
optional guide tree with an asterisk (e.g., PAGAN*).

The character states at ancestral nodes were reconstructed
from each aligner’s MSA using FastML (Ashkenazy et al.
2012). The true alignment of sequences at the tips, as simu-
lated, was used to establish a baseline. We specify the true
tree, substitution model and rates used in the simulation
during reconstruction in order to isolate the influence of
MSA tools and avoid biases introduced by, for example, in-
accuracies in phylogenetic inference methods (note this is
independent of the use of the true tree as guide tree in
MSA tools, which is evaluated separately).

Reconstruction Accuracy on Different Scenarios
The accuracy of an internal node’s reconstructed se-
quence to its corresponding true sequence was measured
using a score based on the method of Paten et al. (2008).
The score ranges from zero to one, representing the pro-
portion of pairwise aligned sites that are correctly aligned;
a perfect match has a score of one (see Materials and
Methods for further details).

We first analyzed the overall accuracy trends of each MSA
tool for each scenario. Figure 1 shows distributions of accu-
racies for tree heights 0.8 and 1.0, recorded for each tool over
all reconstructed internal nodes and including all sequences
and trees replicates (100 replicates for each scenario, com-
prising ten tree replicates with ten alignments simulated for
each tree). Therefore, the number of nodes in each distribu-
tion is equal to the number of internal nodes in the rooted
tree (#taxa—1) multiplied by 100. We found many conditions
where ASR scored with high accuracy (distributions

concentrated to the right on the x-axis) and few differences
between methods. At sampling fraction 0.99, all methods
have excellent and virtually equal performance (P value
< 0.01, supplementary table S1, Supplementary Material on-
line). Reducing the sampling fraction to 0.25 decreases the
overall accuracy slightly, but results are still similar compared
with the baseline (reconstruction using the true alignment).
Differences become evident with sampling fraction of 0.01,
indel rate of 0.05, and tree height of 1.0, and particularly when
these difficult conditions are combined. In such cases, we start
to observe clear differences between tools, with accuracies
from estimated MSAs considerably lower than the true align-
ment, and some tools presenting particularly low accuracies
for some ancestral nodes, especially FSA.

Under more challenging simulation conditions, we noticed
the intensification of trends induced by each MSA tool.
Figure 2 shows the accuracy distributions for simulations
with tree heights of 1.2 and 2.0, where we find methods
performing poorly. In the most difficult cases (e.g., indel
rate 0.05, tree height 2.0, and sampling fraction 0.01), we
see accuracies generally below 0.3 for all MSA methods, con-
siderably below the baseline values obtained using the true
alignment (P value< 0.01, supplementary table S1,
Supplementary Material online). In general, we observe sim-
ulations with sampling fraction of 0.99 (later divergences) are
more easily solvable: even in the most challenging situations
(indel rate 0.05 and tree height> 1.0), reconstruction accu-
racies are high (>0.7 on average). A lower indel rate of 0.01
also results in good performance (except when combined
with the most difficult tree height of 2.0 and sampling fraction
of 0.01), as does lower tree height. Increasing the number of
taxa leads to a modest improvement in accuracies overall.

Accuracy as a function of individual parameter choices,
summarized over all other conditions and all aligners, is
shown in supplementary figure S3, Supplementary Material
online. Taken in combination with figures 1 and 2, these
confirm our expectations about which features make a given

Table 2. Parameters for Data Simulations.

Parameter Value

Number of taxaa 16 j 32 j 64
Tree sampling fractiona 0.01 j 0.25 j 0.99
Tree heighta 0.8 j 1.0 j 1.2 j 2.0
Birth-death tree ratesa Birth: 6 Death: 3
Indel rateb,c 0.01 j 0.05
Root lengthb 408 aa
Substitution modelb WAG þ C (a ¼ 1.8, 4 categories)d

Indel length distributionb Power law with constant factor of
1.7 and maximum length of 20

NOTE.—Data simulations were performed using the 72 combinations of the given
parameters. Parameters separated by “j” represent values used in different combi-
nations. For each combination, ten trees were generated using evolver (Yang 2007)
and, for each tree, ten sequence data sets were generated using INDELible (Fletcher
and Yang 2009).
aBD kernel density parameters for phylogenetic tree simulation (evolver).
bParameters for protein sequence simulation (INDELible).
cRates of insertion and deletion are relative to an average substitution rate of 1.
Insertion and deletion rates are equal.
dþC: including rate variation as described by the gamma distribution (Yang 1994).
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ASR problem more of less difficult. Given the increased infor-
mation available from having more extant sequences, trees
with more taxa display a slightly higher reconstruction accu-
racy. The sampling fraction drastically affects accuracy, with a
higher fraction (later divergences) yielding more accurate
reconstructions. This reflects closeness of the internal nodes
and leaf sequences making alignment easier. Tree height is
also a critical variable, with longer trees (more divergent
sequences) presenting more difficult scenarios and lower re-
construction accuracies. The lower indel rate of 0.01 pro-
duced higher accuracies than the rate of 0.05: sequences

with few indels are clearly easier to align, in turn leading to
better ASR performance.

Pairwise comparisons between MSA methods allowed us
to calculate the number of scenarios under which the MSA
tools differed significantly, providing an overview of their per-
formance across multiple conditions (fig. 3). In instances
where differences were observed, reconstructions using the
true alignment (baseline) led to better results (higher median
accuracies) than MSA tools (fig. 3, top row). Among the MSA
tools, PRANK using the guide tree (PRANK* and
PRANKþ F*) achieved the best results by this measure,

FIG. 1. Reconstruction accuracies of MSA tools for simulated scenarios under tree heights of 0.8 and 1.0. Plots show the overall accuracy
distribution for each parameter combination using tree heights of 0.8 and 1.0. Blue dots indicate the median, and red dots indicate the mean.

Vialle et al. . doi:10.1093/molbev/msy055 MBE
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showing significant differences when compared with the
baseline in 48 of the 72 scenarios simulated (67%). PRANK
without a guide tree (PRANK and PRANKþ F) and the
MAFFT aligners performed similarly to PRANK* variants.
Clustal Omega performed worst, showing differences in 57
of 72 scenarios (79%); FSA, PAGAN and MUSCLE gave similar
results to Clustal.

Applying the same comparisons between results from dif-
ferent MSAs indicated that methods were more similar to

each other than they were to the baseline reconstruction
using the true alignment (fig. 3). Different variants of the
same MSA tool tended to perform similarly (notably,
PRANK* and PRANKþ F* differed in only 1 scenario, and
MUSCLE and MUSCLE* in only 2). We also found similarities
between tools; for example, MAFFT E-INS-i showed signifi-
cantly different accuracy from PRANKþ F in only 19 scenar-
ios (�26%). However, when these differences were present,
MAFFT was better in 18 of them. The same was observed

FIG. 2. Reconstruction accuracies of MSA tools for simulated scenarios under tree heights of 1.2 and 2.0. Plots show the overall accuracy
distribution for each parameter combination using tree heights of 1.2 and 2.0. Blue dots indicate the median, and red dots indicate the mean.
Highlighted plot (red box) indicates the scenario with 64-taxon trees, tree height 1.2, sampling fraction 0.01, and indel rate 0.05, further explored in
figures 4–6 and 8.
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with other combinations. Generally, MAFFT’s INS-i variants
and PRANK variants performed better than other tools; FSA
performed worst. Finally, some tools displayed balanced
trends; for instance, MAFFT FFT-NS-2 and MUSCLE were
significantly different in 34 scenarios (�47%), and each tool
was better in half of them.

Reconstruction Accuracy Variation along Trees
To further explore method performance, we concentrated on
a single set of simulation conditions that exhibited contrast-
ing results, with some good reconstructions but substantial
differences between MSA tools. We examined simulations
with 64-taxon trees, tree height 1.2, sampling fraction 0.01,
and indel rate 0.05 (fig. 2, highlighted plot). Figure 4 shows
reconstruction accuracy as in the corresponding summary
plot within figure 2, but now stratified along the true tree,
according to each node’s distance from the root (the corre-
sponding figures for other simulation conditions are available
in the supplementary additional file S1, Supplementary
Material online). Analyzing the accuracies of all reconstructed
internal nodes (fig. 4A), we observed that FSA, PRANKþ F,
PRANK, PAGAN, and MAFFT FFT-NS-2 exhibited highest
variation in reconstruction accuracy with more dispersed ac-
curacies along trees (supplementary table S2, Supplementary
Material online). Supplying the true tree as the guide tree to
tools permitting this option (PRANK*, PRANKþ F*,
PAGAN*, Clustal Omega*, and MUSCLE*) reduced this
variation.

Comparing the average accuracy along the tree for each
MSA tool (fig. 4B), we observed that, with the exception of

FSA, all aligners performed similarly well for ancestors close to
the tips of the tree (to the right of x-axis) compared with
reconstruction using the true alignment (baseline). The accu-
racies decrease moving along the tree (moving left on the x-
axis, i.e., towards the root)—deeper ancestors are harder to
reconstruct accurately—but tend to increase again near the
root (with the exception of Clustal Omega* and PAGAN*).
This increase is explained by the influence of the information
conveyed by the denser-sampled nodes concentrated in the
root region, which is a consequence of the sampling fraction
of 0.01 (for sampling rates of 0.25 and 0.99, the accuracy
decreased monotonically nearer to the root; see supplemen-
tary fig. S4, Supplementary Material online).

Overall, the differences between MSA tools observed in
figure 4B showed MAFFT E-INS-i and MAFFT L-INS-i to have
the best performance in nodes close to the root with an
accuracy of approximately 0.8; MUSCLE*, MUSCLE, PRANK*
and PRANKþ F* have accuracies around 0.7; PRANK,
PRANKþ F, Clustal Omega and MAFFT FFT-NS-2 have ac-
curacies near 0.6. For intermediate depth nodes (slope change
region, around distance 0.4), we see accuracies ranging from
0.5 to over 0.6 for most of the MSA tools, except for FSA
(accuracy of approximately 0.2), PAGAN (0.4) and MAFFT
FFT-NS-2 (around 0.45). For nodes close to the tips (distance
to root 1.0–1.2), nearly all tools performed well, with accura-
cies higher than 0.8. MUSCLE variants were slightly worse,
with accuracies around 0.05 below other tools in this region,
and FSA had the worst results, rapidly decreasing in accuracy
to below 0.6. These differences show not only how each tool
behaves in relation to the cumulative error introduced in
each level along the tree (from root to tip, along the x-axis
of fig. 4), but also the capability of correction from the recon-
struction method in the final stages when there is more in-
formation available. Despite overall similar performances at
initial nodes near the tips, the discrepancy caused by the MSA
tool in the most ancestral nodes is shown to be considerable.

Using the true tree as guide tree for MSA led to intriguing
results. For PRANK variants, using the guide tree consistently
improved the accuracy along all trees (Mann–Whitney–
Wilcoxon, P value< 0.01). In contrast, MUSCLE and
MUSCLE* gave virtually the same results, showing no consid-
erable differences when using the guide tree. For Clustal and
PAGAN the use of the guide tree improved accuracies in
almost all regions, but worsened performance considerably
for nodes close to the root.

Biases for Insertion and Deletion in Reconstructed
Sequences
We analyzed the contribution of insertion and deletion errors
to the accuracy measure to discover specific biases in the
MSA tools. Insertion and deletion errors are included in the
accuracy measure (see Materials and Methods) and represent
the percentage of residues present (insertion) or not present
(deletion) in the reconstructed ancestral node compared
with the true sequence. Recall that correct ASR would result
in insertion and deletion error scores of 0 (see above). Again,
concentrating on simulation conditions where the MSA
methods had contrasting results (64 taxa, tree height 1.2,

FIG. 3. Number of scenarios with statistically significant differences in
overall accuracy between each MSA. The reconstruction accuracies
obtained by each MSA tool in 72 scenarios with varying parameter
configurations were compared pairwise using a Mann–Whitney–
Wilcoxon test. Figure shows counts of scenarios with significant dif-
ferences (FDR adjusted P value< 0.01), where the entry in the i-th
row and j-th column shows the number of times method i was better
than method j (higher median accuracy).
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sampling fraction 0.01, and indel rate 0.05), we discovered
biases in all tools, including reconstructions based on the
true alignment (fig. 5). Deletion errors (plotted on the y-
axis) were low for most of the tools, with PRANK variants
showing worst results. PRANKþ F had slightly higher per-
centage of error attributed to deletions compared with
PRANK, and using the guide tree resulted in similar distribu-
tions. PAGAN* also showed deletion errors marginally higher
than other tools, but lower than PRANK.

For insertion errors (fig. 5, x-axis), we observed considerable
biases in some tools. By this measure, PRANKþ F*, PRANK*,
PRANKþ F, MUSCLE variants, and MAFFT’s INS-i variants
showed best results, all with overall insertions errors below
0.2 (with differences in dispersion). Other MSA tools dis-
played a strong bias towards insertions, particularly FSA,
which yielded insertion errors of >0.8 (i.e., 80% of pairwise
alignment length composed by gaps in true sequence).

The bias towards insertions results in longer reconstructed
sequences (fig. 6A). However, looking at the multiple align-
ment lengths from each tool from all scenario replicates (100
replicates: ten trees, and ten sequences for each tree), the
impact of any balance between insertions and deletion errors
is unclear (fig. 6B). Although virtually all MSA tools

overestimate the number of insertions compared with dele-
tions, alignment lengths do not show correlation with an-
cestral sequence lengths. Overall, shorter than expected
alignments, such as those from Clustal, MUSCLE and
MAFFT, did not induce shorter reconstructions. Such differ-
ences may be due to a given method’s tendency to balance
two types of error: too many insertions and overalignment.
Under such conditions, sparse alignments are expected (see
true alignment, supplementary fig. S5, Supplementary
Material online) and PRANK, PAGAN, and FSA display
this property. However, FSA gap regions may be a conse-
quence of how it penalizes overalignments. Since FSA (by
default) stops aligning characters when the probability that
a character is aligned is equal to the gapped probability, it
leads to incorrect indel placement (resulting in underalign-
ments). In this context, alignments from PRANK variants
were more consistent with simulations.

Although the alignment length may give some insights
into the performance and utility for downstream analyses
of different MSA methods, its accurate estimation has no
particular value itself. Rather, the ability of the MAFFT
INS-i, PRANK, and MUSCLE variants to give individual
inferred ancestral sequences with lengths most closely

FIG. 4. Reconstruction accuracy by distance to root. Reconstruction accuracy at different distances from the root using simulation parameters of
64 taxa, tree height 1.2, sampling fraction 0.01 and indel rate 0.05. (A) Scatter plots of accuracies for each MSA. (B) Combined chart showing the
locally weighted scatterplot smoothing (LOESS) of average reconstruction accuracy by distance to root for each MSA tool.
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FIG. 5. Distributions of insertion and deletion error metrics. Scatterplots show insertion and deletion error metrics for different MSA methods,
based on the simulation parameters: 64 taxa, tree height 1.2, sampling fraction 0.01, and indel rate 0.05. Insertions are shown on the x-axis, deletions
on the y-axis. Density distribution for each axis is also plotted.
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resembling true values is an important measure of their
superior performance.

Comparison of Reconstruction Accuracy and MSA
Quality Measures
We compared reconstruction accuracy with measures of
MSA quality. MSA quality measures were calculated using
the devol measure from MetAl (Blackburne and Whelan
2012) and the following scores from Q-Score (Edgar 2004):
Developer score (also called the SP-score, for sum-of-pairs),
Modeler score, Total Column score, and Cline Shift score. As
the MetAl score represents an error metric (ranging from 0,
representing no error, to 1, maximum error), values were
subtracted from 1 to produce an accuracy measure, more-
readily related to the other metrics. Figure 7 shows plots of
reconstruction accuracy against the measures of MSA quality
for all 72 simulation conditions. For each scenario, we con-
sidered the average reconstruction accuracy (covering all
nodes within all scenario replicates) and the average MSA

quality of all replicates. Overall the MSA quality measures
produced similar results, showing good correlation with re-
construction accuracy with coefficient of determination val-
ues (r2) typically higher than 0.75 for most of MSA tools and
quality measures. An exception was the TC score, which
showed lower correlation (r2 around 0.60) when compared
with other quality measures.

Only small differences were observed for specific align-
ers. The most notable of these is the Modeler score, which
yielded anomalously high values for FSA when compared
with other measures and aligners (fig. 7, FSA plot). This
specific discrepancy is a consequence of how the Modeler
score is normalized, favoring situations of underalign-
ment and neglecting indel regions for normalization. As
FSA produces long and sparse alignments, even a few
correctly inferred homologies, when divided by few
aligned regions, leads to higher scores. For this reason,
the Modeler score is usually combined with the SP-
score (Developer) (Wang and Dunbrack 2004).

FIG. 6. Reconstructed sequence lengths and alignment lengths. Distributions of sequence and alignment lengths for each alignment method
(simulation parameters: 64 taxa, tree height 1.2, sampling fraction 0.01, indel rate 0.05). (A) Distribution of ratios of reconstructed to true sequence
lengths measured for all reconstructed nodes. Values higher than one represent reconstructed sequences longer than expected. (B) MSA length
distributions for each method measured for each scenario replicate (100: ten trees, and ten alignments for each tree).
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Despite the generally good overall correlations between
MSA quality measures and reconstruction accuracy within
specific MSA tools, the comparison between metrics over
different alignment tools, especially in contrasting scenarios,
shows some alignment quality metrics orthogonal to reliable
reconstruction. Figure 8 shows the average reconstruction
accuracy and MSA quality measures for simulations with
64-taxon trees, tree height 1.2, sampling fraction 0.01 and

indel rate 0.05 (the same parameters studied previously,
figs. 4–6). We observed differences in reconstruction accuracy
amongst tools (in blue) are not captured for some quality
metrics (in pink). Other than the Modeler/FSA discrepancy,
other differences can be discerned, especially the TC-score
presenting unexpected results for many MSA tools. Such
differences show how well each quality metric can capture
the differences observed with the reconstruction accuracies.

FIG. 7. Relationship between reconstruction accuracy and MSA quality metrics. Average reconstruction accuracy and average MSA quality scores
calculated for each simulated scenario (72 scenarios) using each MSA tool. MSA quality metrics described in the text are computed by comparing
the MSA with the true simulated alignment. MetAl was used under the devol metric which corresponds to a dissimilarity score, so values were
subtracted from 1 for ease of comparison. (r: Pearson’s correlation; r2: coefficient of determination).
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Thus, under these simulation conditions (considered chal-
lenging for reconstruction), the TC-score yields the worst
predictions of ASR accuracy (correlation of 0.26), whereas
the MetAl (1 � devol) and SP-score measures performed
best (correlation> 0.85).

Alternative Indel Parameters
In our primary analysis, we simulated sequences using indel
rate parameters of 0.01 and 0.05. However, analyses of mam-
malian and bacterial orthologs from the OrthoMam (Douzery

et al. 2014) and COG (Tatusov et al. 2003) databases suggest
an indel rate of 0.02 and a power law distribution constant of
1.125 for mammalian proteins. Estimates from COG suggest
an indel rate of 0.125 and power law distribution constant of
1.3 (Levy Karin et al. 2015). Therefore, we simulated data with
these indel rates on 32-taxon trees, tree height of 1.0 and
sampling fraction of 0.01 and 0.99 (supplementary mate-
rial—additional file S2, Supplementary Material online). The
maximum indel length allowed was 50 amino acid residues.
The results for the mammalian rates were similar to those

FIG. 8. MSA quality scores compared with reconstruction accuracy over different MSA tools. Differences of quality measures between MSA tools
under simulation parameters of 64 taxa, tree height 1.2, sampling fraction 0.01, and indel rate 0.05. MSA quality scores (pink) represent values for
each scenario replicate (ten trees and ten alignments for each tree). In all plots, reconstruction accuracies (blue) are shown for comparison,
representing the expected behavior in terms of differences between tools. Values of reconstruction accuracies were measured as averages of all
reconstructed node accuracies in each replicate, and are the same in each chart. MSA tools are ordered by reconstruction accuracy means (best to
worst). Spearman rho correlations between MSA quality scores and reconstruction accuracies are shown for each metric. MetAl scores are shown
as 1 � devol, to produce a similarity measure.
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obtained with the parameters of indel rate of 0.05, with
slightly better accuracies. The indel parameters estimated
from COG orthologs represent far more challenging condi-
tions. No MSA tool achieved good reconstruction accuracies
using the higher indel parameter value (0.125), with accura-
cies in most ancient nodes below 0.2. Accurate reconstruc-
tions were obtained near the tips. The high indel rate inferred
by COG could be due its generalist aspect, which, by defini-
tion, includes several groups of orthologs (Trachana et al.
2011; Douzery et al. 2014). Therefore, reliable reconstructions
of the most ancestral nodes are not possible; this does not
represent a viable case for ASR of proteins.

Discussion
We tested the impact of MSA tools on ancestral state recon-
struction accuracy using amino acid sequences simulated un-
der various realistic conditions (tables 1 and 2). We found
undemanding conditions (low indel rate, high birth-death
process sampling probability, and low tree height) result in
effectively no differences between any alignment methods,
with reconstruction accuracy as good as using the true align-
ment, frequently permitting near-perfect ASR (fig. 1).
Increased taxon sampling does improve accuracy.

However, we found the choice of MSA method can impact
on ASR under more demanding conditions. Our analyses re-
veal that some factors, like tree topologies and indel rates,
have a more significant impact on ASR than others (e.g.,
number of taxa). Altering tree shape by lowering the sampling
fraction, increasing the number of substitutions per site and
increasing indel rates all reduce reconstruction accuracy; in
these difficult cases, differences between MSA tools were
revealed (figs. 1 and 2). MAFFT consistency aligners
(MAFFT E-INS-i and MAFFT L-INS-i) and PRANK variations
performed best overall, frequently with indistinguishable re-
construction accuracies. No one method performed uni-
formly better over all conditions tested. There were also
differences in the MSA tools’ ability to reconstruct ancestral
sequences at different depths within phylogenies (figs. 3
and 4). The MAFFT consistency algorithms do not employ
an explicit model of indels when aligning sequences but this
does not negatively impact the resulting reconstruction ac-
curacy of sequences simulated under a high indel rate. The
progressive aligners MUSCLE, Clustal Omega and MAFFT
FFT-NS-2 had lower accuracy performance. PAGAN per-
formed poorly in some cases, especially at lower indel rate,
but using a guide tree improved reconstruction accuracy. FSA
performed worst in most contexts, particularly in the more
challenging cases. We found FSA was especially sensitive to
indel rate.

There was a notable bias towards insertions by all aligners
(fig. 5). A slight tendency to overestimate insertions, even
when using the true alignment, suggests some influence of
the FastML ASR algorithm. Only PRANK variations (specifi-
cally PRANK*, PRANKþ F, and PRANKþ F*) demonstrated
an ability to balance insertions and deletions and to estimate
ancestral sequences of approximately correct length (fig. 6).
However, the insertion bias we revealed was considerable

among all other aligners, especially FSA. This inherent bias
may underlie its poor performance in ASR accuracy. Since
FSA by default tries to maximize specificity, indel events are
inferred through a maximum parsimony interpretation that
minimizes “gap openings” leading to underalignment
(Bradley et al. 2009). In contrast, phylogeny-aware methods
like PRANK and PAGAN deal much more carefully with this
issue; indel events are treated using the phylogenetic infor-
mation (Löytynoja and Goldman 2005). It was expected that
this approach would invariably lead to better reconstructions.
However, the good performance obtained by progressive and
consistency aligners (typically prone to overalignment) in
comparison to phylogeny-aware approaches exposes the ro-
bustness of the ancestral reconstruction method.

The problem between overalignment and underalign-
ments has been extensively discussed (Löytynoja and
Goldman 2005; Schwartz and Pachter 2007; Löytynoja and
Goldman 2008; Bradley et al. 2009; Redelings 2014; Katoh and
Standley 2016). We observed methods that tended to over-
align (Clustal, MAFFT, MUSCLE), to underalign (FSA,
PRANKþ F) or were largely unbiased (PAGAN, other
PRANK variants). The optimal approach will depend on mul-
tiple factors, including the final purpose of analysis, similarities
between sequences and computational costs. When gapped
regions are not of interest (e.g., BAliBASE: Bahr et al. 2001),
filtering methods and manual intervention are usually applied
(Castresana 2000; Capella-Guti�errez et al. 2009; Penn et al.
2010; Chang et al. 2014). Many studies of ASR take this ap-
proach (Perez-Jimenez et al. 2011; Cole et al. 2013; Gumulya
and Gillam 2017) which is not recommended due the intro-
duction of subjectivity into the analysis (Anisimova et al.
2010). In our study, we used controlled simulation scenarios,
and evaluated the ability of MSA tools to deal with homol-
ogous sequences without any additional interference. Under
such conditions, we noticed the reconstruction algorithm
deals better with overalignment than underalignment con-
ditions. Also, the robustness of reconstructions regarding
other factors such as taxon sampling (Randall et al. 2016)
was confirmed in our simulations.

Multiple sequence alignment quality scores can assist
researchers when choosing algorithms and tools for ASR ac-
curacy. We tested five different alignment quality scores and
showed they were highly correlated with reconstruction ac-
curacy across different scenarios (fig. 7). However, some met-
rics did not capture the complexity within specific scenarios.
The TC and Modeler scores were less useful than other meas-
ures to inform on reconstruction accuracy. On the other
hand, MetAl devol and SP-score achieved good correlation
overall (fig. 8).

Our results are, of course, limited by the simulations we
could perform. Alternative tree topologies may change MSA
behavior: for example, very unbalanced trees could amplify
biases. In addition, other ASR methods and different runtime
configurations may impact the outcome. We measured re-
construction accuracy using a “neutral” character comparison
that did not account for amino acids’ properties or other
evolutionary trends. The MSA methods themselves use a va-
riety of amino acid substitution matrices during the
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alignment process. Therefore, using an accuracy score that
utilised a particular amino acid substitution matrix could bias
the results—a neutral measure does not seem better or worse
than other criteria. There are many complex evolutionary
processes at work in real data. For example, gene tree/species
tree discordance, gene gain and loss, horizontal gene transfer,
and unequal rates and sizes of insertions and deletions could
all complicate MSA and ASR methods. In principle, MSA
methods accounting for these phenomena could improve
their performance, not least with respect to ASR. In our
simulations, we were specifically interested in the effects of
MSA on ASR and, therefore, avoided other complicating fac-
tors. In summary, results such as ours can help to identify
parameter combinations that delineate reliable and accurate
reconstruction limits. Although certain MSA tools introduce
bias, some biases may not be relevant for common use cases
(e.g., easily solvable scenarios). In more-challenging situations,
MSA methods must be chosen with caution to provide reli-
able reconstructions of ancestral states.

Materials and Methods

Simulating Phylogenetic Trees
Ultrametric phylogenetic trees were simulated using evolver
from the PAML suite (Yang 2007) under a birth-death process
(Yang and Rannala 1997). Trees with 16, 32, and 64 taxa were
generated with sampling fraction of 0.01, 0.25, and 0.99 and
tree heights of 0.8, 1.0, 1.2, and 2.0 (table 2). In total, we used
36 combinations of parameters and simulated ten trees for
each combination, resulting in 360 phylogenetic trees.

Simulating Protein Sequences
For each tree, ten sets of amino acid sequences were simu-
lated using INDELible (Fletcher and Yang 2009; option
“AMINOACID 1”). The length of the ancestral sequence at
the root of the trees was 408 sites, and substitutions were
modelled using the WAG substitution model (Whelan and
Goldman 2001) with gamma-distributed among-site rate var-
iation (a ¼ 1.8 and 4 categories) (Yang 1994). Insertion and
deletion length distributions were specified as Zipfian (i.e., a
power law distribution) with the constant factor of 1.7, in
accord with empirical estimations (Benner et al. 1993; Gu and
Li 1995; Zhang and Gerstein 2003; Yamane et al. 2006;
Cartwright 2009), and not permitting indels longer than 20
amino acid residues (Md Mukarram Hossain et al. 2015).

Multiple Sequence Alignment Tools
We evaluated aligners that use a variety of different
approaches, comprising the progressive aligners Clustal
Omega (Sievers et al. 2011), MUSCLE (Edgar 2004), and
MAFFT FFT-NS-2 (Katoh et al. 2002); the consistency aligners
FSA (Bradley et al. 2009), MAFFT E-INS-i and MAFFT L-INS-i
(Katoh and Standley 2013); and the phylogenetically aware
aligners PAGAN (Löytynoja et al. 2012) and PRANK
(Löytynoja and Goldman 2008) (table 1). We evaluated all
aligners with their default parameters. PRANK was evaluated
with and without the “permanent insertions” option
(Löytynoja and Goldman 2008), denoted PRANKþ F and

PRANK, respectively. MSA tools allowing the stipulation of
a guide tree were additionally evaluated with this option us-
ing the true tree.

Reconstructing Ancestral Sequences
We calculated ASRs using FastML (Ashkenazy et al. 2012).
Marginal reconstruction was used to simulate cases of inter-
est in reconstructing ancestral roots as advised by Pupko et al.
(2000). We used the true tree and branch lengths, WAG
substitution model and among-site rate variation in accor-
dance with simulation conditions. Indel reconstruction was
calculated using maximum likelihood, and we used the de-
fault indel probability cut-off (i.e., the most likely character
states in the ancestral nodes were reported only in positions
inferred to be nongapped with probability� 0.50).

Measuring Reconstruction Accuracy
Reconstruction accuracy was evaluated as in Paten et al.
(2008). Reconstructed internal node sequences were pairwise
aligned with the corresponding true ancestral sequences us-
ing MUSCLE. Three error scores were calculated:

(1) Insertion error: the number of residues present in the
reconstructed sequence but absent in the true se-
quence, divided by the length of the alignment.

(2) Deletion error: the number of residues present in the
true sequence but absent in the reconstructed se-
quence, divided by the length of the alignment.

(3) Substitution error: the number of mismatched residues
divided by the length of alignment.

All error measures range from 0 to 1, with error equal to 0
being the ideal case with no differences between recon-
structed and true sequences according to the metric.
Subtracting the sum of these error scores from 1 provides a
measure of overall accuracy, representing the proportion of
the pairwise alignment sites at which a correctly aligned res-
idue appears (e.g., see supplementary fig. S2, Supplementary
Material online). Note we are not inferring evolutionary
events here—there will have been true indels and substitu-
tions in the evolutionary histories—but using the terms in-
sertion, deletion, and substitution errors to describe
differences between actual and inferred ancestral sequences.
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