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Abstract: A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild
reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant
in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of
α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The
synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex
natural products.
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1. Introduction

Deoxybenzoin (DOB) motifs are commonly found in many natural products, pharmace-
utically-active molecules and fire-resistant polymers [1–4]. In addition, some DOB deriva-
tives have been sporadically reported to possess activities such as β estrogenic agonist,
antiallergic, anti-inflammatory and antimicrobial activities [5–7]. DOBs are industrially
prepared from arylacetic acid and arenes by AlCl3-catalyzed C–C bond coupling. The
process requires the functionalization of phenylacetic acid to phenylacetyl chloride by stoi-
chiometric PCl3 or SOCl2 prior to the C–C bond coupling [8–12]. Other elegant strategies,
including hydration [13], olefin cleavage [14], benzylic oxidation [15] and C–O bond break-
ing protocols [16–18], have also been developed to access DOBs in recent years (Scheme 1).
However, these methods generally required the prefunctionalization of starting molecules
or, alternatively, the use of expensive substrates [13–16]. Thus, it is highly desirable to
develop practical processes for DOB production using cheap and easy-to-handle feedstocks.
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Scheme 1. Reported methods for the synthesis of DOBs.

On the other hand, benzoins are classically prepared by the cyanide-mediated ben-
zoin condensation of aromatic aldehydes, and, more generally, acyloins have long been
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efficiently synthesized from esters by the acyloin condensation by using dissolving met-
als [19–21]. Most notably, a wide range of benzoins are commercially available and inexpen-
sive. Therefore, the selective dehydroxylation of benzoins is undoubtedly one of the most
powerful and attractive methodologies to access these valuable DOBs products. However,
there are currently few methods for directly transforming acyloins to ketones via a dehy-
droxylation strategy. Moreover, each of the reported methods has limitations, such as the
need for metal catalysis, moisture-sensitive reagents, high temperatures, bases, additives
or expensive reactants, along with low chemoselectivity or unsatisfactory yields [22–30]. In
fact, the selective dehydroxylation of such α-hydroxyl carbonyl compounds is nontrivial,
as the hydroxyl group is a poor leaving group and the adjacent carbonyl moiety is also
susceptible to these reduction conditions. In this context, it is of high interest for developing
efficient, mild and economical methodologies for this useful transformation. In view of
this, we wish to report a practical and selective one-pot method for the dehydroxylation
of benzoins to corresponding DOBs in excellent yields through the in situ chlorination
of alcohols and reductive dechlorination using cheap and easy-to-handle PPh3/NCS and
Na2S·9H2O as a chlorinated reagent and reductant, respectively.

2. Results

Our investigation began with the evaluation of reaction parameters using benzoin (1a)
as the model substrate (Table 1). Given the cheap and easy-to-handle nature of Na2S·9H2O,
it was chosen as the reductant for our model reaction. After systematically screening the
reaction parameters, we found that 1a could be quantitatively converted to ketone 2a in
the presence of NCS/PPh3 at room temperature in one hour when Na2S·9H2O and DMF
were used as the reductant and solvent, respectively (Entry 2). No other side products
were formed under the optimized conditions. Three points should be highlighted. (1) The
screening of solvents showed that the use of N, N-dimethylformamide (DMF) is superior,
as no improvement of yield was observed when the solvent was switched from DMF to
CH2Cl2, toluene, THF or CH3CN (Table 1, Entries 1–5). This might because of the better
solubility of Na2S·9H2O in DMF than in other solvents. (2) When other sulfur-containing
reducing agents, such as Na2S·5H2O, K2S, NaSH, NaSH·H2O or S8, were employed, the
desired product 2a was isolated in relatively lower yields (Entries 6–10). (3) To eliminate
the influence of the alkalinity of Na2S·9H2O on dehalogenation [30], both organic and
inorganic bases, including imidazole, pyridine and NaOH, were all investigated, and they
all give rise to chloride intermediate instead of DOB 2a (Entries 11–13).

Table 1. Optimization of the dehydroxylation of benzoin (1a) (a).
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Entry Reductant Solvent Yield [%] (b)

1 Na2S·9H2O CH2Cl2 32
2 Na2S·9H2O DMF 93
3 Na2S·9H2O toluene 64
4 Na2S·9H2O THF 72
5 Na2S·9H2O CH3CN 80
6 Na2S·5H2O DMF 78
7 K2S DMF 45
8 NaSH DMF 28
9 NaSH·H2O DMF 88

10 S8 DMF trace
11 (c) Imidazole DMF -
12 (c) Pyridine DMF -
13 (c) NaOH DMF -

(a) Reaction conditions: 0.5 mmol of benzoin (1a), 0.5 mmol of N-chlorosuccinimide (NCS), 0.5 mmol of triph-
enylphosphine (PPh3), 0.5 mmol of reductant and 2 mL of mentioned solvents at room temperature for one hour.
(b) Isolated yields. (c) Only chlorinated intermediate was determined by GC–MS.
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The preliminary results show that the Na2S·9H2O as reductant is a good supplement
to many of the conventional reductants, such as Zn [22], Sn [23], P [24], P(OEt)3 [25] and
TMSI [26], for the dehydroxylation of benzoin (Table 2) in terms of the economy and safety
of the reagent, as well as the gentleness and efficiency of the reaction.

Table 2. Comparison of different reductants for the dehydroxylation of benzoin.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 8 
 

 

10 S8 DMF trace 

11 (c) Imidazole DMF - 

12 (c) Pyridine DMF - 

13 (c) NaOH DMF - 
(a) Reaction conditions: 0.5 mmol of benzoin (1a), 0.5 mmol of N-chlorosuccinimide (NCS), 0.5 mmol 

of triphenylphosphine (PPh3), 0.5 mmol of reductant and 2 mL of mentioned solvents at room 

temperature for one hour. (b) Isolated yields. (c) Only chlorinated intermediate was determined by 

GC–MS. 

The preliminary results show that the Na2S·9H2O as reductant is a good supplement 

to many of the conventional reductants, such as Zn [22], Sn [23], P [24], P(OEt)3 [25] and 

TMSI [26], for the dehydroxylation of benzoin (Table 2) in terms of the economy and safety 

of the reagent, as well as the gentleness and efficiency of the reaction. 

Table 2. Comparison of different reductants for the dehydroxylation of benzoin. 

 

Reductant Equivalent Temperature Time [Hour] Yield [%] 

Na2S·9H2O 1.0 RT 1 93 

Zn 1.0 120 °C 8 82 

Sn 1.8 100 °C 24 88 

P 0.4 80 °C 1 80 

P(OEt)3 1.2 180 °C 10 42 

TMSI 3.0 RT 4 55 

3. Discussion 

With an optimized set of reaction conditions established, the scope of 

dehydroxylation was investigated (Scheme 2). The substituents of fluoro, chloro and 

methoxy at the para position of the benzoyl ring could be well tolerated and they reacted 

smoothly under the standard conditions, providing the corresponding DOB products 

with 88–95% yields (1b–1d). Similarly, the introduction of either electron-withdrawing or 

electron-donating substituents on the phenyl ring did not alter the reaction efficiency as 
demonstrated by the chloro and methyl substituents (1f–1g). To our delight, one 

representative heteroaromatic furan-derived 1e was well tolerated enough to afford the 
corresponding product 2e a 84% yield. Moreover, the dehydroxylation of 1h and 1i 

bearing two substituents on the benzoyl and phenyl rings also worked efficiently. 

 

Reductant Equivalent Temperature Time [Hour] Yield [%]

Na2S·9H2O 1.0 RT 1 93
Zn 1.0 120 ◦C 8 82
Sn 1.8 100 ◦C 24 88
P 0.4 80 ◦C 1 80

P(OEt)3 1.2 180 ◦C 10 42
TMSI 3.0 RT 4 55

3. Discussion

With an optimized set of reaction conditions established, the scope of dehydroxylation
was investigated (Scheme 2). The substituents of fluoro, chloro and methoxy at the para
position of the benzoyl ring could be well tolerated and they reacted smoothly under
the standard conditions, providing the corresponding DOB products with 88–95% yields
(1b–1d). Similarly, the introduction of either electron-withdrawing or electron-donating
substituents on the phenyl ring did not alter the reaction efficiency as demonstrated by the
chloro and methyl substituents (1f–1g). To our delight, one representative heteroaromatic
furan-derived 1e was well tolerated enough to afford the corresponding product 2e a 84%
yield. Moreover, the dehydroxylation of 1h and 1i bearing two substituents on the benzoyl
and phenyl rings also worked efficiently.
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Moreover, our dehydroxylation strategy could be scaled up the Gram-scale smoothly,
providing a new and practical way for the synthesis of high value-added ketone 2h from
the cheap substrate 1h at a 86% yield under mild conditions (Scheme 3). The price of ketone
2h is 38 times higher than that of the start material [31].
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Scheme 3. Gram-scale reaction.

To avoid the problem of the use of stoichiometric Ph3P possibly causing the tedious
separation of the phosphine-derived byproduct from the desired products, a modified
one-pot procedure which includes the triphenylphosphine oxide-catalyzed chlorination
reaction of the alcohol 1a to afford chloride [32] and then dechlorination using Na2S·9H2O
as reductant in MeOH has been established. As shown in Scheme 4, this modified and
atom-efficient procedure provides a convenient purification, delivering the product at a
good yield.
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Scheme 4. Catalytic triphenylphosphine oxide (Ph3PO) mediated reaction.

To further explore the scope of our system, other types of α-hydroxyl carbonyl com-
pounds have also been evaluated (Scheme 5). Firstly, the primary alcohol (1k) in positions
α of a ketone group under our conditions reacted well, yielding the corresponding ace-
tophenone 2k in a moderate yield. Unexpectedly, the secondary alcohols (1l and 1m)
also facilitated this transformation, more efficiently than that of primary alcohol (1k) un-
der same conditions. In addition, the tertiary alcohol (1r) could also be converted to the
corresponding dehydroxylation product at a 73% yield, which indicates that the steric
effect of substituents in the α-positions of a ketone group had a marginal influence on
the yield. Aside from simple phenylacetyl group (1l), a broad range of α-hydroxyl car-
bonyl compounds bearing the aliphatic (1o), cyclic (1p) and dicarbonyl groups (1q) also
reacted smoothly.
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Scheme 5. Substrate scope of versatile α-hydroxy carbonyl compounds. Reaction conditions:
0.5 mmol of α-hydroxy carbonyl compounds (1), 0.5 mmol of N-chlorosuccinimide (NCS), 0.5 mmol
of triphenylphosphine (PPh3), 0.5 mmol of Na2S·9H2O and 2 mL of DMF at room temperature in
one hour. Isolated yields. (a) 1.0 mmol of NCS, 1.0 mmol of PPh3, and 1.0 mmol of Na2S·9H2O.
(b) Reaction time: 2 h.
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Pleasingly, the desired dehydroxylation strategy could be extended to other carbonyl-
based electron-withdrawing groups, including the ester (1s), amide (1t) and imide groups
(1u), as shown by the conversion of these commercially available start materials to give the
desired products in good yields (73–87%). In the case of substrate bearing a nitrile group
(1v) [33,34], the reaction system afforded the dehydroxylation product efficiently, albeit
with the requirement of a relatively longer reaction time. Interestingly, as shown in the
conversion of a trans-3,4-dihydroxypyrrolidine-2,5-dione derivative 1u into the correspond-
ing 2u, double dehydroxylation was possible by using the 2.0 equiv. of NCS/PPh3 and
Na2S·9H2O.

To further demonstrate the synthetic value of our methodology, the dehydroxylation
protocol has been applied for the synthesis of bioactive molecules and the late-stage
modification of natural products (Scheme 6). For example, flavanone is a natural plant
flavonoid found to inhibit tumor cells in vitro [35,36]. The 3-hydroxyflavanone 1w could
be easily transformed into flavanone under our standard reaction conditions. Additionally,
cortexolone 1x could be deoxygenated in a selective manner without affecting the tertiary
hydroxyl group. The latter case represents an advantage over the competing SmI2-mediated
dehydroxylation reaction [28], as the enone moiety is compatible in our case. These
examples further demonstrated that our strategy represents an efficient and versatile
method for the dehydroxylation of α-hydroxyl carbonyl compounds under mild conditions.
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Scheme 6. Synthetic applications.

In order to confirm the role of Na2S·9H2O, substituted acetophenones bearing various
leaving groups at the α-position have been evaluated. As shown in Scheme 7, benzoin
derivatives bearing chloro (3a), bromo (3b) or methanesulfonate (3c) groups at the α-
position all reacted smoothly under the standard conditions, providing DOB 2a at 91–98%
yields. These results demonstrate that α-chloro acetophenone might be the plausible
intermediate. The use of air atmosphere or adding a radical scavenger, such as 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO), to the reaction had almost no effect on the yield.
Considering that the reaction could work smoothly in air or with TEMPO, it seems unlikely
that the radical process might be involved in our transformation. Furthermore, when the
load of Na2S·9H2O was decreased to 0.5 equiv., the reaction could also proceed smoothly
to give 2a at an 85% yield. As a comparison, the use of BnCl as the substrate only led to
the isolation of BnSBn under our standard reaction conditions, indicating the essential role
of the α-carbonyl group for activating the substrate for the reaction. Apparently, further
studies are necessary to shed light on the reaction mechanism.

Moreover, an α-chloroacetophenone-bearing phenylsulfonyl (3d) group proved to be
a competent substrate, affording the desired dechlorination product 2j at an 82% yield
under the standard reaction conditions. These results revealed that the leaving group at
the α-position of the carbonyl compounds was not limited to Cl, others such as Br- and
OM-substituted analogues also worked well in our hand.
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4. Materials and Methods

Unless otherwise noted, the reactions were carried out in oven-dried glassware or a
sealed tube under ambient atmosphere. N, N-Dimethylformamide (DMF) was distilled
from calcium hydride. Tetrahydrofuran (THF) was dried and distilled from sodium. Reac-
tions were monitored by analytical thin-layer chromatography (TLC) on Merck silica gel
60 F254 plates (0.25 mm), visualized by ultraviolet light (254 nm) or by staining with ceric
ammonium molybdate. 1H NMR spectra were obtained on a Bruker AVANCE 400 MHz
spectrometer at ambient temperature. Data were reported as follows: chemical shift on the
δ scale using residual proton solvent as internal standard [δ TMS: 0.00 ppm], multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets),
integration and coupling constant (J) in hertz (Hz). 13C NMR spectra were obtained with
proton decoupling on a Bruker AVANCE (100 MHz) spectrometer and were reported in
ppm with residual solvent for internal standard [δ 77.0 (CHCl3)].

5. Conclusions

In summary, an efficient and mild method for the selective dehydroxylation of α-
hydroxyl carbonyl compounds was developed using a one-pot strategy, which includes
the successive chlorination and reductive dechlorination with NCS/PPh3 and Na2S·9H2O,
respectively. The easy-to-handle protocol provides facile, rapid and chemoselective access
to DOBs at room temperature without the need for hazardous reagents or expensive metals.
The synthetic utility of the methodology has been demonstrated by the facile synthesis of
the bioactive molecule, the late-stage dehydroxylation of the complex natural product and
Gram-scale transformation into a high value-added chemical.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154675/s1. References [15,18,37–49] are cited in the
Supplementary Materials. 1H and 13C NMR spectra of the products synthesized in this work are
available online.
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