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Coupled networks are extremely fragile because a node failure of a network would trigger a cascade of
failures on the entire system. Existing studies mainly focused on the cascading failures and the robustness of
coupled networks when the networks suffer from attacks. In reality, it is necessary to recover the damaged
networks, and there are cascading failures in recovery processes. In this study, firstly, we analyze the
cascading failures of coupled networks during recoveries. Then, a recovery robustness index is presented for
evaluating the resilience of coupled networks to cascading failures in the recovery processes. Finally, we
propose a technique aiming at protecting several influential nodes for enhancing robustness of coupled
networks under the recoveries, and adopt six strategies based on the potential knowledge of network
centrality to find the influential nodes. Experiments on three coupling networks demonstrate that with a
small number of influential nodes protected, the robustness of coupled networks under the recoveries can be
greatly enhanced.

W
ith the rapid development of electronic, engineering, information and network technologies, mod-
ern systems have become more and more complex1–3. Nowadays, many systems show a coupling
property. The functionality of a complex system depends on not only itself, but also its coupled

systems. For instance, a power system is highly coupled with water, oil and transportation systems. The power
system relies on the water system to cool the generator, the oil system to provide the fuel and the trans-
portation system to transmit the power. The water, oil and transportation systems also rely on the power
system to provide the power4–7. The coupling property of networks is important to understand the controll-
ability1, robustness8,9, synchronization10, transport11, spreading12–15, competitive percolation16 and cooperative
evolution17 of complex systems.

The coupling property makes the coupled networks fragile under failures. This is because a failure would trigger
cascading failures in the entire coupled networks. More specifically, nodes failures in one system would trigger
nodes damages of its coupled systems, and the damages in turn result in further nodes failures on the first system8.
The processes above recursively occur, which may lead to the complete collapse of coupled systems5–9,18,19. In
reality, it is inevitable that coupled systems suffer from devastating damages caused by the internal and external
factors (e.g., earthquake, tsunami, hurricane, volcanic eruptions, diseases, short-circuits and human destruction).
These damages often result in the cascading failures of the economy, water, energy, electric power, electronic
circuit and road systems and cause great inconvenience to our daily life. For instance, on 28th September, 2003, a
catastrophic blackout in Italy was caused by the cascading failures between the electrical power system and its
coupled communication system5. Moreover, these damages will impact on many processes of coupled networks,
including influence spreading14, opinion formation20, random walks21, species evolution22, structural balance23

and community division24.
Recent years, it has become a common focus for how to improve the robustness of coupled networks25,26.

Many models have been proposed to enhance the resilience of coupled systems when these systems lose
effectiveness under attacks. A representative model is proposed by Parshani et al8. This model seeks to
decrease the degree of coupling among systems by removing a set of coupled links. With this strategy, the
cascading failures can be greatly reduced by decoupling 40% nodes, and the robustness of coupled systems
under the attacks can be greatly enhanced. However, the functionality of these systems changes during the
process because a few coupled links are removed19. Schneider et al.19 propose a novel model based on the
generation of a few autonomous nodes. The autonomous nodes cannot be triggered damaged when their
coupled nodes are suffering from damages. With this strategy, the degree of coupling is greatly decreased in
coupled systems, and the robustness of coupled networks can be enhanced with the initial functionality
undamaged by establishing 10% autonomous nodes. Moreover, Hu et al.27 theoretically analyze the effect of
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structural inter-similarity of coupled networks on the reduction of
cascading failures. Inter-similarity represents the tendency of con-
nected nodes in one network to be interdependent of connected
nodes in its coupled networks. The theoretical analysis demon-
strates that the cascading failures decrease with the increase in
structural inter-similarity, and that the robustness of coupled net-
works can be enhanced by increasing the inter-similarity. In addi-
tion, Reis et al.28 theoretically analyze the effect of the relation
between the internal structure (e.g., inter-connections) of net-
works and its pattern of inter-network connections on the stability
of coupled networks. As is pointed out, the robustness of coupled
systems can be enhanced by improving the function of connec-
tions of one network to its coupled networks and by maximizing
the size of the maximal mutual part across coupling networks. The
theoretical analysis in Ref. 28 also indicates that the systems of
networks are stable and robust to damages when their inter-con-
nections are provided by hubs and when the degree of conver-
gence of inter-network connections is moderate. Note that, the
work in Refs. 8, 19, 27, 28 can effectively reduce the fragility of
coupled networks to malicious attacks. However, they do not take
into consideration the robustness of coupled networks under their
recoveries.

For the systems to recover functionality soon, it is necessary to
reconstruct the damaged systems29–35. However, there are also cas-
cading failures in coupled systems during the recovery processes,
which would make it difficult to recover the functionality. To
enhance the robustness of coupled networks during the recovery
processes, four challenges need to be overcome. The first one is that
it is unknown for the model of recovery processes. To address it,
Majdandzic et al.35 propose global recovery processes based on a
general phenomenon. Damaged systems (e.g., human brain and
the financial network) can be spontaneously recovered after an inact-
ive period of time. Note that, in the real world, many complex sys-
tems (e.g., power system and airway system) have little ability to
recover their functionality spontaneously. Moreover, it takes a long
time and consumes much energy for the spontaneous recovery pro-
cesses. In this study, we adopt a targeted recovery model in which the
nodes with high degree are iteratively recovered. This simple strategy
is widely used in practical applications. The second challenge is that
there is no mathematical model that can express the cascading fail-
ures between coupled networks during the recoveries. The third
challenge is how to evaluate the recovery robustness of coupled net-
works. And the last challenge is how to enhance the recovery robust-
ness of coupled networks. Few studies have ever addressed the last
three challenges so far.

In order to address the last three challenges, in this paper, firstly,
we propose a damaged coupling model, and analyze the cascading
failures between coupled networks in the recovery processes.
Secondly, we extend the work in Ref. 19, and propose an index Rrc

to evaluate the robustness of coupled networks under the recoveries.
Finally, a technique based on the protection of several influential
nodes is presented to enhance the robustness of coupled networks
under their recoveries. Thus, the influential nodes can work normally
when they or their coupled nodes suffer from damages. Moreover,
based on the network-specific knowledge, we adopt six strategies to
find the influential nodes. Experiments on three coupling networks
demonstrate that the recovery robustness can be greatly enhanced by
protecting 5% influential nodes.

Results
To demonstrate the performance of our method in enhancing the
robustness of networks under the recoveries, we test our method on
the following three damaged coupling networks.

1) ER-ER coupled system: Many traditional networks show a ran-
dom connection property and they are widely modeled as Erdő-
Rényi (ER) random graphs. In ER random graphs, two nodes
are linked with probability q, and the average degree �k is com-
puted as N ? q, where N is the number of nodes36. It is important
to analyze the robustness of traditional network topology under
attacks by studying on coupled ER-ER networks. We test our
model on a coupling system between a completely damaged ER
network with N 5 10,000 and �k~4 and an ER network with N
5 10,000 and �k~4.

2) ER-SF coupled system: Many modern networks, such as
Internet, scientific collaboration, telephone, power grid and air-
line networks, can be approximated by scale-free (SF) networks
with a power-law degree distribution P(u) 5 k-u, where u is an
exponential factor22 and k represents the nodes degree of net-
works. Moreover, SF networks and ER networks have different
statistic properties and topologies18,37. Therefore, the analysis of
the robustness of coupled ER-SF networks is also of great
importance. The experimental ER-SF network is composed of
a completely damaged ER network with N 5 10,000 and �k~4
and an SF network with N 5 10,000 and u 5 2.5.

3) Power-SF coupled system: ER networks have no modularity
property with which a few nodes connect densely with each
other but link sparsely with the remaining nodes of the net-
work19. Besides, many systems show the modularity property.
Therefore, it is necessary to analyze the robustness of a coupling
network with modularity property. A real U.S. Power Grid net-
work (power) with N 5 4,941 nodes and M 5 6,954 edges shows
a high modularity property38–41, and its coupled systems, e.g.,
communication networks, show the scale free property with u
ranging from 2 to 2.642,43. Hence, a coupling system between a
completely damaged power network and an SF network with N
5 4,941 and u 5 2.2 is analyzed.

All networks are coupled with each other using the model in Refs.
5, 8. This model considers a pair of networks. Each node in one
network is randomly coupled with one in the other network.

Table 1 records the robustness Rrc (l 5 0.5) of the tested networks
under their recoveries. All experimental results are averaged over 50
independent trials, and all algorithms are simulated by MATLAB on
a PC with Intel (R), Core (TM), i3 CPU with 3.2 GHZ, 3 GB memory.

The results in Table 1 show that the ER-ER network is robust while
the ER-SF and Power-SF networks are fragile to cascading failures
under the recoveries. Of the tested networks, the Power-SF network
is the most fragile under the recoveries. This is due to two factors.
Firstly, the power network has the scale-free property37,43. The scale-
free degree distribution property results in the fact that the Power-SF
network is more vulnerable than the ER-ER and the ER-SF networks.
Secondly, the power network has the modularity property40,41 with
which the nodes in the same modules are closely linked together. In
this case, a node failure may trigger further failures on the nodes of
the same module44.

We compare six strategies to select the 5% influential nodes:
Random, Degree45, Betweenness45, PageRank46, LeaderRank47 and

Table 1 | Comparisons of the recovery robustness Rrc (l 5 0.5) obtained by protecting 5% influential nodes with different strategies

Networks No Random Degree Betweenness LeaderRank Local PageRank

ER-ER 0.3652 0.4026 0.4319 0.4479 0.4328 0.4489 0.4302
ER-SF 0.2220 0.2521 0.4709 0.4755 0.4703 0.3242 0.4707
Power-SF 0.0317 0.0320 0.4561 0.5054 0.4562 0.4225 0.4560
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Local48 choice, for the experimental networks, and the corresponding
results are also recorded in Table 1. The results show that the recov-
ery robustness of coupled networks can be greatly enhanced, espe-
cially for the Betweenness protection strategy. More specifically, the
improvement of recovery robustness can reach 22.65% for the ER-ER
network, 114.2% for the ER-SF network and 1,494% for the Power-SF
network. Moreover, compared with the random protection, the tar-
geted protections make the ER-ER network more robust to cascading
failures during the recoveries. The results also show that the Degree,
the PageRank and the LeaderRank protection strategies can get sim-
ilar results since for the ER and SF networks these three criteria are
highly correlated19,49. It is notable that the Betweenness and the Local
protection strategies have similar results in the ER-ER network.
However, the Local strategy obtains much smaller Rrc values than
the Betweenness strategy in the ER-SF and Power-SF networks. This
is because the Betweenness criterion reflects the global nodes

information of networks while the Local criterion evaluates the local
nodes information. It is in the ER networks rather than the SF and
Power networks that the global connections can be reflected by the
local information of nodes.

In order to further analyze the fragility of experimental networks
during the recoveries, we analyze the variations of the remaining
fraction of nodes frc(p) in the largest connected parts with the fraction
of recovered nodes p in Fig. 1. It shows that without protection
strategies, the experimental networks undergo a discontinuous per-
colation transition where the frc(p) value abruptly changes from zero
to a finite value. More specifically, the ER-ER network, the ER-SF
network and the Power-SF network begin to recover their function-
ality when close to 43%, 63%, and 97% nodes are recovered, respect-
ively. With the protection strategies, especially for the Betweenness
protection strategy, the experimental networks begin to recover their
functionality when few nodes are recovered. The results in Fig. 1

Figure 1 | Variations of the fraction of remaining nodes frc(p) in the largest connected parts with the fraction of recovered nodes p for (a) the ER-ER

network, (b) the ER-SF network and (c) the Power-SF network. It can be seen that the recovery robustness can be greatly enhanced by protecting 5%

influential nodes. We choose the 5% influential nodes in six different ways: Random (blue dotted line), high Degree (brown dotted line), high

Betweenness (black dotted line), high LeaderRank (green dotted line), high Local (light green dotted line) and high PageRank (purple dotted line). Results

are averaged over 50 independent trials.
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further demonstrate the effectiveness of the proposed protection
strategies on the enhancement of the recovery robustness of coupled
networks.

Fig. 2 shows the influences of the mixing parameter l and the
coupling degree on the recovery robustness of the Power-SF net-
works. As shown in Fig. 2, Rrc has negative relation with the coupling
degree and the parameter l. For a strong coupling network, say 90%
coupling, the Rrc value is less sensitive to the parameter l. This is
because the fraction of surviving nodes in one network is close to that
of the ones in its coupled network. However, for a weak coupling
network, say 10% coupling, Rrc has negative relation with l. This is
because the cascading failures in a weak coupling network are
decreased and the damages on the SF network are smaller than those
on the power network during the recoveries.

In order to compare the computational performances of the six
protection strategies, we employ them on the ER networks with
different scales and record the consumed time in Fig. 3. When the
scale of the ER network is small, the six protection strategies can find
the influential nodes quickly. When the scale of the ER network is
large, it is hard for the LeaderRank and the Betweenness protection
strategies to evaluate the importance of nodes in a short period of
time. Many systems (e.g., Internet and communication systems)
have millions of nodes and links. The LeaderRank and the
Betweenness protection techniques cannot tackle it well. Moreover,
the Random and Local protection strategies can evaluate the influ-
ences of nodes in a short time. However, it is hard for them to
improve the recovery robustness of networks by protecting 5% influ-
ential nodes, as shown in Table 1. The results in Fig. 3 and Table 1
also show that both the Degree and the PageRank protection strat-
egies can greatly enhance the recovery robustness of large-scale net-
works in a reasonable time.

Discussion
The coupling property makes complex systems fragile to cascading
failures during the recoveries. How to enhance the robustness of
coupled systems with low cost has received many attentions in recent
years. In this paper, the cascading failures between coupled networks
in the recovery processes are represented by a mathematical model,
and the resilience of coupled systems to cascading failures under the
recoveries is evaluated by the proposed recovery robustness index.
And a protection method for protecting several influential nodes is
proposed to enhance the recovery robustness of coupled systems.
Experimental results have shown that the recovery robustness of
coupled systems is greatly enhanced by the proposed method. Our

experiments also demonstrate that the coupled networks with mod-
ularity property are more fragile to failures than those with no mod-
ularity property. The Degree and the PageRank protection strategies
have low computational complexity, and can be used to enhance the
robustness of large-scale coupled networks with millions of nodes.

Combined with the spreading process and the robustness of net-
works, our work can derive a series of interesting issues that are
worth further studying. For instance, the studies in Refs. 12–15 pro-
pose the methods for identifying influential spreaders and present
the conditions for viral influence spreading. Following these studies,
we will extend our work to analyze the effect of the protection of
super-influential nodes on the enhancement of the recovery robust-
ness of coupled networks. Moreover, in the real world, the coupling
behavior of real systems are more complex than that of the model in
Refs. 5, 8 and the Degree and PageRank techniques are difficult to
find the influential nodes in these systems15. Our work will be
extended for different types of coupled networks to identify influ-
ential nodes. In addition, the study in Ref. 27 finds the relationship
between the inter-similarity and the cascading failures of coupled
networks. Following this study, we will increase the inter-similarity
by finely tuning the links structures of networks, enhancing the
recovery robustness of coupled networks. Finally, the study in Ref.
28 analyzes the relationship between the stability of networks and the
internal and external connections of networks. It is worth further
studying on the analysis of the relationship between the recovery
robustness and the internal and external connections of coupled
networks.

Methods
Recovery processes. In a system with two coupled subsystems, it is notable that both
subsystems are likely to suffer from failures. In practical applications, the probability
of damages on both subsystems is smaller than that on one of the subsystems.
Moreover, the system cannot operate normally when one of its subsystems suffers
from devastating damages. According to those phenomena, a damaged coupling
network can be modeled as G 5 (C, D, ECD), where ECD denotes the coupled links
between network C and D. In the model, each node in network C is randomly coupled
with one node in network D, and network C suffers from devastating damages. In this
case, the network D fails to work as well because its coupled network C is damaged.

In real-world applications, the damaged systems can be recovered by recon-
structing the damaged entities gradually. Reconstructing a damaged system can be
regarded as an inverse problem of attacking a system, and it can be modeled as a
process in which the damaged nodes in networks are gradually recovered. In the
recovery processes, there is an inter-propagation of recoveries in coupled networks.
Nodes in network D can be triggered to work normally if their coupled nodes in
network C have been recovered.

Cascading failures in the recovery processes. There are cascading failures in coupled
systems during the recovery processes. Assuming that a fraction of nodes p of network
C has been reconstructed, firstly, the coupled nodes in network D are triggered to
work normally. Then, cascading failures occur because the recovered nodes in
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network C (D) may be scattered in a few unconnected clusters. The recovered nodes in
network C (D) which are not in the largest connected parts would lose their
functionality, and the failures in network C (D) will trigger the failures of the coupled
nodes in network D (C). The above failures recursively occur when there are no
further failures in both networks C and D. A schematic illustration of a cascade of
failures on a toy coupling network with 4 recovered nodes of network C is given in
Fig. 4.

The cascading failures in the recovery process in which a fraction of nodes p of
network C is recovered can be expressed as equation (1)

yr
1 pð Þ~p,

gr
n pð Þ~qr

g,nSr
C yr

n pð Þ
� �

p,

yr
n pð Þ~qr

y,nSr
D gr

n{1 pð Þ
� �

p,

ð1Þ

where yr
n pð Þ (gr

n pð Þ) is the fraction of surviving nodes in network C (D) at the (n-1)-
th coupled process when the fraction of nodes p in network C is initially recovered,
Sr

C yr
n pð Þ

� �
Sr

D gr
n pð Þ

� �� �
represents the ratio of nodes in the largest connected part of

the recovered network C (D), and qr
y,n qr

g,n

� �
is the fraction of nodes in network C (D)

which is coupled with the recovered nodes in network D (C). When yr
nz1 pð Þ~yr

n pð Þ
and gr

nz1 pð Þ~gr
n pð Þ, the cascading failures end. In this case, we express yr

n pð Þ and
gr

n pð Þ as yr(p) and gr(p), respectively.

Recovery robustness in coupled networks. According to the percolation theory, the
functionality of a damaged network is determined by its remaining largest linked
part5,8, and the attack robustness considers the remaining functionality of the network
under all possible damages44,50,51. For a single network with N nodes, the attack
robustness can be calculated as Ref. 51

R~
1
N

X1

p~1=N

S pð Þ, ð2Þ

where S(p) represents the fraction of nodes in the largest linked parts when the
fraction of nodes p of the network loses the effectiveness. The normalization factor
1/N is designed to compare the robustness of networks that are with different
scales51.

For a coupling network G 5 (C, D, ECD), its functionality depends on not only the
remaining functionality of network C, but also that of network D. Therefore, it is
necessary for the recovery robustness Rrc of the coupling network to consider the
functionality integrity of both networks C and D during the recoveries. Rrc is com-
puted as

Rrc~
1
N

X1

p~1=N

frc pð Þ

~
1
N

X1

p~1=N

p:Sr
C yr pð Þð Þ

� �l: p:Sr
D gr pð Þð Þ

� �1{l
h i

,

~
1
N

X1

p~1=N

p: Sr
C yr pð Þð Þ

� �l: Sr
D gr pð Þð Þ

� �1{l
h i

ð3Þ

where frc(p) is the remaining functionality integrity of the coupled network after the
fraction of nodes p in network C has been recovered, and yr(p) (gr(p)) is the fraction of
nodes in the largest linked parts of network C (D). The values of yr(p) and gr(p) can be
computed by equation (1) when yr

1 pð Þ~p. l is a mixing parameter ranging from 0 to
1. When l 5 0 or l 5 1, the robustness of the coupled network system is determined
by that of D or C, respectively.

The recovery models are mainly divided into two categories: random and targeted.
However, it is hard for a random model to recover the functionality of coupled
networks with low cost. Therefore, we mainly consider a targeted model in this study.
More specifically, the degree-based targeted recovery model widely used in practical
applications is adopted.

Enhancement of the recovery robustness of coupled networks by protecting
influential nodes. The functionality of many systems is controlled by a set of
influential entities. These systems cannot operate normally once their influential
entities are damaged. In real-world applications, complex systems have their own
strategies for resisting unpredictable failures. For instance, in medical systems, all
medical institutions have backup power generations for providing medical
assistance for severe patients. In the coupled bank and computer systems, the
influential transaction bank data are protected from hackers’ targeted attacks. The
common purposes of those strategies are that the influential entities are not to be
damaged when they or their coupled entities suffer from damages. Based on the
purposes above, we devise a systematic technique aiming at protecting several
influential nodes to reinforce the robustness of coupled networks under the
recoveries.

The reasons why the proposed strategy can reinforce the robustness of coupled
networks under the recoveries are as follows. Firstly, damages on the protected nodes
of one network will not lead to the nodes failures of its coupled network. It implies that
the degree of coupling between two networks is reduced. According to the results
found in Refs. 8, 19, the robustness of coupled networks can be enhanced with the
degree of coupling decreasing. Secondly, the protected nodes would not lose their
effectiveness when they are damaged. It means that the damages on the networks are
decreased, which results in the improvement of the robustness of coupled networks.
Moreover, the proposed strategy can reduce the influence caused by cascading fail-
ures during the recovery processes. Finally, extensive experiments demonstrate the
effectiveness of the proposed strategy on the enhancement of the recovery robustness
of coupled networks.

Many criteria based on the network-specific knowledge have been presented for
evaluating the influence of nodes13. As many real networks have thousands of nodes
and links, it is necessary to consider both the computational complexity and the
efficiency of those criteria. In this study, we mainly adopt the following well-known
criteria to measure the influences of nodes.

Random (Ir). In Random centrality, the influence of a node Ir(i) is computed as

Ir ið Þ~rand(), ð4Þ

where rand() is the function for generating a random value in the range of 0 to 1.
Degree (Id). In Degree centrality, the influence of a node Id(i) is highly related to its

degree, and it is computed as Ref. 45

Id ið Þ~
XN

j~1

aij, ð5Þ

where aij represents the connection between nodes vi and vj. If there is an edge
between nodes vi and vj, aij 5 1, if not aij 5 0.

Betweenness (Ib). In Betweenness centrality, the influence of a node Ib(i) is eval-
uated by the number of the shortest paths that pass through the node45.

Figure 4 | Illustration of a cascade of failures on a toy coupling network
with 4 recovered nodes. The purple check marks point out the recovered

nodes. Nodes and links painted in gray cannot operate normally. (a) 4

nodes in network C are initially recovered. (b) Stage 1: the initial recoveries

on network C trigger the nodes recoveries of network D. (c) Stage 2: the

nodes of network C that are not in the largest connected part are failed, and

the failures trigger the nodes failures of network D. (d) Stage 3: the nodes of

network D that are not in the largest connected part are failed, and the

failures in turn result in the nodes failures of network C.
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Ib ið Þ~
XN

j=i,q=i

sjq ið Þ
sjq

, ð6Þ

where sjq denotes the number of shortest paths from node vj to node vq, and sjq(i)
represents the number of shortest paths passing through node vi from vj to vq.

PageRank (Ipr ). PageRank technique can be described by a random walk process on
networks. In PageRank, the influence of a node Ipr ,t ið Þ at time t in a network is
calculated as Refs. 13, 46

Ipr ,t ið Þ~ 1{e

N
ze
X

j

aijIpr ,t{1 ið Þ
kout jð Þ , ð7Þ

where e is a damping factor for a random walker to move along the links of the
network, and it is usually set as a fixed value 0.8546. 1-e is the probability for a random
walker to jump to a randomly selected node. kout(j) represents the outdegree of node
vj. Ipr ,t ið Þwill converge to a stationary value Ipr ið Þwith t increased, and the Ipr ið Þ value
is the influence of node vi in the network.

LeaderRank (Ilr ). In LeaderRank technique, all nodes, except for the ground node
vg, are initially assigned with one unit of resource. Then, at each state t, the resource of
each node is evenly distributed to its neighborhoods. This process ends when the
resource of each node keeps unchanged, and this state is recorded as tc. Compared
with PageRank, LeaderRank is parameter-free47. In LeaderRank centrality, the
influence of a node Ilr ið Þ is determined by its resource value at the state tc, and Ilr ið Þ is
computed as Ref. 47

Ilr ið Þ~ctc ið Þz ctc gð Þ
N

, ð8Þ

where ctc ið Þ is the resource value of vi at the state tc, as computed in equation (9)

ctc ið Þ~
XNz1

j~1

ajictc{1 jð Þ
kout jð Þ : ð9Þ

Local (Il). In Local centrality, the influence of a node Il(i) is determined by its
nearest and next nearest neighbors, and it is evaluated as Ref. 48

Il ið Þ~
X
vj[Ci

X
vu[Cj

d uð Þ, ð10Þ

where d(u) is the number of nodes whose shortest paths from them to node vu are no
more than 2, and Ci (Cj) is the neighborhood of node vi (vj).
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