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CD4+CD25highFoxp3+ regulatory T-cells (Tregs) are functionally characterized for their
ability to suppress the activation of multiple immune cell types and are indispensable for
maintaining immune homeostasis and tolerance. Disruption of this intrinsic brake system
assessed by loss of suppressive capacity, cell numbers, and Foxp3 expression, leads to
uncontrolled immune responses and tissue damage. The conversion of Tregs to a
pathogenic pro-inflammatory phenotype is widely observed in immune mediated
diseases. However, the molecular mechanisms that underpin the control of Treg
stability and suppressive capacity are incompletely understood. This review
summarizes the concepts of Treg cell stability and Treg cell plasticity highlighting
underlying mechanisms including translational and epigenetic regulators that may
enable translation to new therapeutic strategies. Our enhanced understanding of
molecular mechanism controlling Tregs will have important implications into immune
homeostasis and therapeutic potential for the treatment of immune-mediated diseases.
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INTRODUCTION

Regulatory T (Treg) cells, a subset of helper T cells, are pivotal in supporting immune tolerance and
preventing autoimmunity (1, 2). Forkhead box P3 (Foxp3) is a master transcription factor required for
Treg function and development. Mutations in Foxp3 gene led to impaired Treg functions, which
resulted in excessive autoimmunity in multi-organs in both human andmouse (3, 4). On the contrary,
forced ectopic expression of Foxp3 induces the differentiation into Treg-like cells from conventional T
cells (5). Foxp3+ Treg cells also express high levels of IL-2R (CD25) and CTLA-4 on their surface,
which are well-characterized Treg-lineage markers and associated with suppressive activity (1). There
are two sub-populations of Treg cells based on origins. Thymic Treg (tTreg) cells are naturally
occurring in the thymus by self-antigens and IL-2 while induced Treg cells in the periphery (pTreg)
are differentiated by TGF-b plus IL-2. Both Treg subsets have similar functions, but tTregs are
relatively more stable than pTregs due to the differential demethylation of TSDR (Treg-specific
demethylated region) in Fopx3 gene locus (6). Treg cells can execute their functions through multiple
mechanisms including immune-suppressive cytokine expression, metabolite deprivation, cytotoxic
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molecule production and surface inhibitory receptor expression
making them an attractive cell therapy target for the treatment of
autoimmunity. Dysregulation of Treg development, homeostasis,
function, or stability would result in defective immune tolerance
and eventually trigger autoimmunity. Indeed, a number of studies
have reported that defects in maintenance of Treg number or
function are associated with diverse human autoimmune diseases
including type 1 diabetes (7–10), systemic lupus erythematosus
(11–14), rheumatoid arthritis (15, 16), inflammatory bowel
diseases (17–19), Sjögren’s syndrome (20, 21), and multiple
sclerosis (22). Besides, there is evidence that Treg cells can be
reprogramed to Th17 (19, 23) or Th1 cells (24), implying this
pathogenic Treg conversion can further promote excessive
inflammation in patients. Thus, it is a key mechanism limiting
Treg conversion as well as sustaining the immune-regulatory
function for Treg cell adoptive transfer therapy.
CYTOKINES AND TREG STABILITY

It is a question of interest how Treg cells maintain their functional
activity in physiological environments. Treg-specific fate-mapping
reporter mice enabled to study Treg stability have demonstrated
that Treg cells maintained their immune-suppressive activity
under both normal and inflammatory conditions (25). However,
many other studies have reported that Treg cells often lost Foxp3
along with reduced suppressive function under various
inflammatory conditions (26–28). Such Treg instability has been
identified in human patients or animal models with inflammatory
diseases such as IBD, RA, and SLE (29).

Since Treg cells are present in various organs including
lymphoid and peripheral tissues, they often encounter the
cytokine milieu in the inflammatory microenvironment. These
inflammatory cytokines can control Treg development, function
and plasticity at the local tissues during immune responses. For
example, IL-2 is indispensable for Treg development and
proliferation by controlling STAT5 signaling pathway (30, 31).
IL2R/STAT5 signals also confers Treg lineage stability with
retained function (32, 33). TGF-b signaling in combination
with activation of IL-2R signaling pathway promotes Treg
differentiation from naïve CD4+ T cells (34). The downstream
molecules such as Smad3 and STAT5 of TGF-b and IL-2
signaling pathways, respectively, play a critical role for Treg
generation and Foxp3 stability via binding to conserved non-
coding sequences (CNS) in the Foxp3 gene locus (35). TGF-b
signaling also supports Treg stability by prevention of conversion
into IFN-g-expressing cells through inhibition of IL-12R
expression (36). These results indicated that IL-2 and TGF-b
are pivotal in Treg homeostasis in preventing autoimmunity.
Both cytokines can play a role in TET protein expression or
recruitment to the CNS2 locus. TET proteins will be discussed
later as important modulator of demethylation and Tregs
stability, but because of this role they also suppress Treg
plasticity to acquire Teff responses (37, 38).

Tumor necrosis factor a (TNF-a) plays an important role in
pathogenesis of autoimmune diseases. Several studies revealed that
Frontiers in Immunology | www.frontiersin.org 2
TNF-amodulates immune regulation by affecting Treg expansion
and/or stability (39–41). Treg cells preferentially express TNFR2
on the surface compared to conventional CD4+ T cells (42), and
TNFR2-mediated signaling prevents methylation on Foxp3 gene
locus, leading to maintained Treg stability (40). Indeed, TNFR2-
deficient Treg cells displayed Foxp3 loss with increased
methylation in the proximal promoter of Foxp3 gene, leading to
reduced suppressive function, and TNFR2-deficient mice further
showed severe disease progression with reduced number of Treg
cells in collagen-induced arthritis model (41). TNFR2 designed
ankyrin repeat proteins (DARPins) have been used to target
TNFR2 in Tregs as an antibody mimetic. TNFR2 DARPins
showed increased i-kB degradation in human primary Tregs
and increased NF-kB activation in a Jurkat reporter cell line,
which could lead to decreased suppressive functions. However,
conflicting literature exists showing TNFR2 agonistic antibody or
TNF-a mutant protein selectively binding to TNFR2, expand
highly potent regulatory Tregs (43, 44). Moreover, TNF-a
together with IL-6 enables human Treg proliferation with
sustained function and stability ex vivo (45). Anti-TNF therapy
has been employed, but some patients treated with anti-TNF
therapy develop disease exacerbation (46), implying that these
therapies may hinder immune-suppressive function of Treg cells.
However, TNFR2-mediated signaling dampened Treg activity in
some studies (42, 47, 48), suggesting Treg function regulated by
TNF-TNFR2 signaling should be controlled for drug development
of autoimmune diseases.

IL-6 is known to be an inflammatory cytokine in several
autoimmune diseases including systemic lupus erythematosus,
arthritis, and experimental autoimmune encephalomyelitis.
IL-6-mediated STAT3 signaling promotes Th17 cell
differentiation, while it suppresses Foxp3+ Treg polarization
(49). Beyond Treg differentiation, IL-6 also induces Foxp3
instability and impaired Treg function through regulation of
STAT3 under the inflammatory disease condition (50). IL-6/
STAT3 signaling hinders the suppression of Foxp3 on RORgt,
which is a key transcription factor for IL-17 expression in Th17
cells. Interestingly, Blimp-1 can inhibit the methylation of Foxp3
gene locus by suppression of Dmnt3a expression in response to
IL-6. Blimp-deficient mice displayed loss of Foxp3 in Tregs cells
accompanied with increased severity of central nervous system
diseases (51). It has been identified that Treg conversion into
Th17-like cells in RA patients (52) supporting IL-6 drives
instability of Treg cells.

IL-1 family cytokines have been investigated to have impacts
on Treg homeostasis and stability. For example, IL-1b can inhibit
Treg development by activation of HIF-1A/mTOR pathway (53).
IL-1b also promotes the conversion of Treg cells into IL-17-
producing cells albeit intact Foxp3 expression unlike IL-6 (54).
However, IL-33, another IL-1 family cytokine, maintains Treg
stability under inflammatory conditions by suppressing
expression of IL-17 or IFN-g (54, 55). Additionally, IL-33
together with IL-18 induces amphiregulin expression by Treg
cells, which is critical for tissue repair upon viral infection (56).

Interferon gamma (IFN-g) is a critical cytokine for both
innate and adaptive immune responses. NK cells and Th1 cells
June 2022 | Volume 13 | Article 932485
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predominantly produce IFN-g, but the aberrant expression of
IFN-g can trigger various autoimmune diseases. T-bet activation
induced by IFN-g drives expression of CXCR3, a homing
receptor, in Treg cells like Th1 cells. The ablation of T-bet+
Treg cells enhances Th1-dependent autoimmunity (57)
indicating this distinctive subset of Treg cells specifically
restrains conventional Th1 cells. In contrast, IFN-g can
promote Treg conversion into IFN-g-expressing Th1-like cells,
which further cause excessive inflammation or anti-tumor
responses (58, 59). The accumulated HIF-1a by VHL-deficient
Treg cells induces IFN-g expression with Foxp3 loss in Treg cells.
These observations indicate that pathogenic plasticity of Treg
cells may increase under inflammatory hypoxic condition or
changes in metabolism.
FOXP3 STABILITY THROUGH
FUNCTIONAL AND PHENOTYPIC
SCREENS

To better understand how FOXP3 and CTLA4 are regulated
either at steady state or under inflammatory conditions, multiple
medium-through put screens have been run in recent years.
Notably, small molecule and secretome phenotypic screens have
identified novel regulators that stabilize or destabilize Tregs at
steady state. In both instances, the iQue flow system was used as
to measure the protein expression of FOXP3 and CTLA4 in
primary human Tregs as surrogates for stability and function.
For the small molecule screen, a compound library consisting of
diverse chemical matter including known epigenetic, kinase, and
other target class modulators were screened (60). This resulted in
the discovery of intracellular proteins euchromatic histone-lysine
N-methyltransferase (EHMT2) and glycogen synthase kinase 3
alpha/beta (GSK3a/b) as positive regulators of FOXP3 and
CTLA4 expression.

EHMT2 is a histone methyltransferase that catalyzes the
methylation of histone 3 lysine 9 (H3K9). Epigenetic
regulation of FOXP3 at Treg-specific demethylated regions
(TSDR) plays an important role in Treg stability and function.
Studies in murine Tregs using a small molecule inhibitor of a
DNA methyltransferase (azacytidine) also induced stabilization
of FOXP3 expression adding confidence to the small inhibitor in
human Tregs (61). Murine studies using CRISPR-Cas9 deletion
of ten-eleven translocation protein (TET), promoted partial
demethylation of TSDR CNS2 region of FOXP3, resulting in
stable FOXP3 expression in vivo (62). However, these results
were not corroborated in a separate study in which they utilized
the TET1 catalytic domain fused to an enzymatically dead Cas9.
This resulted in targeting TET1 to the CNS2 locus causing
cytosine demethylation at ~30% of CNS2, this level of
demethylation did not result in stability of FOXP3. However,
more efficient demethylation targeting may be required (63).
TET protein(s) are well-studied proteins for murine Treg
stability and has direct links to CNS2. Hydrogen sulfide (H2S)
promotes TET1 and TET2 protein expression resulting in
subsequent DNA demethylation by recruitment of the TET
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proteins by IL-2 and TGF-b signaling (64). Further, TET
proteins have a major role in Treg development in the thymus
and deletion of TET2/TET3 markedly compromises Foxp3
expression and stability. Further, vitamin C potentiates TET2/3
activity to promote demethylation in TGF-b induced Tregs,
again highlighting it’s important role in Treg stability (65, 66).
The interplay between methylation and acetylation is also
becoming clearer in its importance for Treg stability. In a
recent study, they used Gene Ontology analysis to identify
Foxp3 regulators which are highly enriched in genes encoding
subunits of the spt-Ada-Gcn5 acetyltransferase (SAGA)
chromatin-modifying and switch/sucrose non-fermentable
(SWI/SNF) chromatin remodeling complexes. They proceeded
to use CRISPR/Cas9 to reveal an important role for Brd9, a key
protein in the ncBAF complex, in Treg function. Brd9 regulated
Foxp3-dependent transcriptional programs reducing Tregs
suppressive capacity. In vivo Brd9 deletion reduced Treg
suppressor activity in a T-cell transfer model of colitis while
increasing anti-tumor immune responses in an MC38 colorectal
cancer model (67). Histone deacetylases also are implicated in
Treg biology through multiple mechanisms, including histone
deacetylase 7 (HDAC7) and histone acetyltransferase (HAT)
p300. HDAC inhibitors increased FOXP3 expression through the
regulation of protein and gene expression. Not only was FOXP3
protein elevated, but this also led to functional effects in both
humans and mice, showing greater ability to suppress Teff cell
responses (68, 69). HAT p300 was deleted through CRISPR/Cas9
and lead to the discovery that p300 targeted the promotor locus
of FOXP3 and stabilized protein levels even under inflammatory
conditions (63). Targeted small molecule inhibitors or CRISPR
deletion of proteins that drive epigenetic changes could be key in
driving stable Tregs both in the periphery or for Treg
cell therapy.

GSK3 is a growth signaling-sensitive kinase which is
represented by nonredundant isomers, alpha and beta. GSK3 is
involved in diverse biological functions in lymphocytes. In T-
cells and Tregs it has been previously validated to increase
expression of IL-10, stabilize FOXP3, regulate activation and
exhaustion, while also being able to promote pTreg generation
(70–75). Inhibition of GSK3b stabilized the expression of b-
catenin which is reported to induce expression of FOXP3 and
improve Treg survival (76). In agreement, with the role of GSK3b
inhibition acting as a stabilizer of FOXP3, it was demonstrated
that a GSK3b activator which results in GSK3b- phosphorylation
resulted in subsequent ubiquitination and degradation of FOXP3
by E3 ligase b-transducing repeat containing protein (74, 77).
Ubiquitination of histones at the Foxp3 locus and/or of the
protein itself is important to regulate expression. Members of the
SAGA complex is also involved in the deubiquitinating of
FOXP3, including ubiquitin specific peptidase 22 (Usp22).
Deletion of Usp22 drives reduction in Foxp3 transcript levels
and through increased ubiquitin at the chromatin level
ultimately leading to Foxp3 degradation. In vivo loss of Usp22
resulted in lower suppressive activity of Tregs, correlating
degradation of Foxp3 to functional activity (67, 78). E3
ubiquitin ligases induced by inflammation and responsible for
June 2022 | Volume 13 | Article 932485
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ubiquitination of Foxp3 include, Rnf20 (78), TRAF6 (79) and
STUB1 (80). These all show key roles in causing degradation of
FOXP3 in mouse and human Tregs. The ubiquitin pathway thus
represents an interesting area of research for targeting through
genetic manipulation.

The secretome high-throughput screen assessed 575 secreted
proteins for the upregulation of FOXP3 and CTLA4. As
described above secreted proteins can have diverse effects on
Treg cell function and stability. This identified four proteins,
growth differentiating factor-7 (GDF-7), acidic prostate
phosphatase (PAP), interferon alpha-7 (IFNa-7), and IL-10 (a
well-known cytokine regulating Treg function) (81). GDF-7
belongs to the TGF-b superfamily of proteins. Signaling via
TGF-b is well documented to support Treg stability and
function. GDF-7 function has not been previously well
described for Tregs, however it binds to a heterodimeric
receptor consisting of type 1 and type 2 heterodimers (82).
Another GDF protein, GDF-15, has increased serum levels in
patients with hepatocellular carcinoma and correlated to
increased numbers of FOXP3+ Tregs. It was further
demonstrated to play an important role in the tumor
microenvironment to drive pTreg development and enhance
the suppressive function of tTregs by downregulating STUB1, an
E3 ligase that mediates FOXP3 protein degradation (83). Further
examination of TGF-b superfamily members for the control of
Tregs will help elucidate the roles of this superfamily on Treg
biology, including GDF-7. PAP was originally described in
patients with prostate cancer, hence its name, and is used as a
diagnostic biomarker. Interestingly, PAP has shown nucleosidase
activity in vitro, converting AMP into free adenosine. Adenosine
is a well described molecule which possess immuno-suppressive
properties. The molecules which convert ATP/ADP and AMP
into free adenosine are upregulated on Tregs, CD39 and CD73,
respectively. Free adenosine then acts via the ADORA2A/A2a
receptor. This receptor has been described to be important in
Treg numbers and function in murine models (84, 85). Finally,
IFNa-7 is less well described then the molecules above to have
positive effects on FOXP3 levels. Further, there are conflicting
reports on how type I interferons may affect regulatory T-cells
and is an area of research which needs further explored (86, 87).

Interestingly other well-known inflammatory cytokines in the
secretome screen were not found to affect FOXP3 and CTLA4
expression. Explanations for this could be naïve Tregs were used
at steady state, change in receptor expression after expansion, or
while Foxp3/CTLA4 levels were unchanged, their suppressive
capacity or phenotype was altered which was undetected in this
medium-through put screen. Evidence for the importance of
other signaling receptors and known transcription factors have
come to light from CRISPR/Cas9 experiments. Recently,
additional evidence confirming years of research into the
importance of IL-2 for Tregs was demonstrated via CRISPR/
Cas9. IL-2RA deletion resulted in the loss of STAT5 signaling
and Treg suppressive function. Similarly, IL-6R alpha subunit
showed reduction in STAT3 activation, suggesting the possibility
of genetically engineered Tregs to be resistant to IL-6 mediated
Treg instability (88). While transcriptional regulation is not a
Frontiers in Immunology | www.frontiersin.org 4
focus of this review, a paper by Schumann et al. entitled
“functional CRISPR dissection of gene networks controlling
human regulatory T cell identity” pressured Tregs under
inflammatory cytokines while using CRISPR/Cas9 to reveal
important transcription factors regulating Treg instability in
the inflammatory settings. This screen highlighted four such
factors including IRF4, FOXO1, STAB1, and HIVEP2 (89). It will
be pivotal to expand on this seminal work by generating data
outside of transcription factors or to a whole genome wide screen
to further elucidate the gene networks responsible for stability
and function of Tregs for the treatment of autoimmune diseases.
TREG EXPANSION AND ADVANCES IN
TREG CELL THERAPY

Human Treg biology has been a challenge due to their relatively
low frequency in peripheral blood, lower proliferation rates and
loss of function, survival and phenotypic stability in long-term
cultures and after freeze thaw (90–92). Recently, many of these
challenges have been overcome, opening the field of human Treg
biology to be used in adoptive cell therapy, high-through put
screens and novel genome editing techniques like CRISPR
(clustered, regularly interspaced, short palindromic repeats)/
Cas9 (CRISPR associated protein 9) (93–95). These advances
on top of the decades of fundamental research support the use of
Tregs in adoptive cell therapy. Polyclonal Treg cell-based
therapies have previously been shown to be safe and well
tolerated for the treatment of autoimmunity and transplant
rejection, although the efficacy was limited (96), therefore new
approaches are being developed to increase their efficacy in
particular genetic engineering. Briefly, using genetically
engineered Tregs in adoptive cell therapy could help to
overcome the short-comings with current autologous
polyclonal Treg methods by increasing Treg stability in
inflammatory environments, enhancing their function, or
targeting Tregs to tissues or sites of inflammation, these
aspects are reviewed elsewhere (97–99). Genetically modified
Tregs have recently advanced to clinical trials in transplantation:
chimeric antigen receptor (CAR)-Tregs genetically engineered to
specifically target HLA-A2 and drive Treg activation to prevent
immune-mediated rejection in HLA-A2 mismatched kidney and
liver transplants (NCT04817774 and NCT04838171) (100–102).
DISCUSSION

As Treg cells deploy more than a dozen molecular mechanisms
to suppress immune responses (Figure 1), they have potential as
multifaceted therapeutics in immune-mediated diseases. There is
emerging evidence that Tregs reside in the non-lymphoid tissues
and play a central role in regulating tissue homeostasis, repair
and regeneration. Thus, the net impact of a Treg therapy on
disease pathophysiology may exceed the efficacy of existing
therapies. Early-phase clinical trials of Tregs therapy have
June 2022 | Volume 13 | Article 932485
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shown good tolerability with clinical efficacy responses especially
in transplant setting. However, transient nature of improvement
has been observed in early trials with autologous ex vivo
expanded Tregs. Current efforts are focused on determining
Frontiers in Immunology | www.frontiersin.org 5
the molecular mechanisms to optimize the survival, stability
and suppressive functions of Tregs at steady state and in
inflammatory milieu (Figure 2). The progress in the
development of chimeric antigen receptors and in genome
FIGURE 1 | Suppressive mechanisms of regulatory T-cells (Tregs). Tregs exert their suppressive effects through several mechanisms, including direct and
indirect inhibition of Teffs cells. Firstly, Tregs suppress effector cell responses through the release of soluble factors or through their consumption. Tregs secrete
multiple inhibitory cytokines such as IL-10, IL-35, and TGF-b and can directly kill effector or antigen presenting cells through perforin and granzyme. Tregs also
have high expression of CD25 (IL-2 receptor a-chain) and can consume IL-2 which is necessary for optimal Teff responses and survival. Further, the generation
of adenosine from ATP/AMP which is metabolized by CD39/CD73, both of which are expressed on Tregs, results in Teff cell suppression from the induction of
negative signaling. Contact dependent inhibition can have both direct and indirect effects on Teff cell responses. Tregs express FASR which can bind to FAS on
Teffs and induce apoptosis. Further, Tregs express multiple immune check-point molecules such as LAG-3, CTLA-4, and PD-1 among others which inhibit Teff
cells responses or drive dendritic cells (DCs) towards a tolerogenic phenotype. Tolerogenic DCs can produce indoleamine 2,3-dioxygenase (IDO) which exhausts
T-cells because critical amino acids are depleted for Teff cell survival and can cause decreased expression of co-stimulatory molecules on their surface such as
CD80/86. Finally, Tregs can also compete for antigens presented by DCs and thus limiting Teffs activation through antigen stimulation.
FIGURE 2 | Summary of negative and positive regulators of FOXP3 expression. Reviewed here are recent molecules driving Tregs stability and function. Multiple
secreted proteins have shown both positive (IL-2, TGF-b, IL-10, GDF7/15, PAP), negative (IL-6, IFN-g, and IL-1), and mixed (TNF-a and IFN-a) effects on Treg biology.
Besides secreted proteins, multiple pathways influencing FOXP3 methylation, ubiquitination and acetylation have recently been described. These changes to FOXP3
ultimately led to difference in Tregs suppressive capacity and stability. Finally, pathways regulating FOXP3 protein degradation are critical to maintain Treg cell lineage
and function.
June 2022 | Volume 13 | Article 932485
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editing technology has facilitated the genetic optimization of
CAR-T cell therapy for cancer. In the next decade, development
in optimized CAR-Treg cells would lead to exciting new frontiers
in the cell therapy field enhancing the specificity and
functionality of Treg cells.
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