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Abstract: We present a novel calibration method for a multi-view laser Doppler speed sensing
(MLDSS) system. In contrast with the traditional method where only the laser geometry is
independently calibrated, the proposed method simultaneously optimizes all the laser parameters
and directly associates the parameters with a motion sensing model. By jointly considering the
consistency among laser Doppler velocimetry, the laser geometry and a visual marker tracking
system, the proposed calibration method further boosts the accuracy of MLDSS. We analyzed the
factors influencing the precision, and quantitatively evaluated the efficiency of the proposed method
on several data sets.
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1. Introduction

Multiview laser Doppler speed sensing (MLDSS) [1] uses several one-dimensional speed
measurements to recover the six-degree-of-freedom (6-DOF) motion of an arbitrary rigid body. Such a
system has unique advantages, such as the capability to measure untextured and unstructured targets,
ultrahigh speed, and ultralow computational cost. An inertial measurement unit [2,3] may have similar
characteristics, but would be intrusive since it must be attached to the target. On the other hand,
conventional contactless 6-DOF motion-sensing techniques, including computer-vision approaches,
usually rely on the target structure [4,5] and texture [6,7], making it difficult to directly reapply them
when the scenario changes. In this sense, MLDSS is potentially a more general solution for most
motion-sensing tasks, e.g., industrial inspection, user interface [8], and autonomous driving.

It is important to mention that the precision of MLDSS strongly relies on the sensing accuracy
of the laser Doppler velocimeter (LDV), the system-layout parameters, and calibration precision.
Factors related to the LDV sensing, such as speckle noise [9,10] and laser source drift [11,12] have
been well discussed. Hu et al. stated the essential system-layout conditions, and proposed a simple
method to calibrate the system parameters [1]. In their approach, each laser was separately calibrated
by linearly fitting of the camera-collected 3D laser spot co-ordinates.

A similar calibration principle can be commonly found in the literature for the calibration of
galvanoscopic laser systems using various types of sensors [13–15]. It makes sense and achieves
relatively good accuracy, but it has to be noted that LDV measurements and the system layout
are not involved in the process. Hence, we refer to it as “geometric-only calibration”. Although
measurement precision is rather sensitive to the accuracy of the calibration parameters, geometric-only
calibration minimizes only the error in image-based measurements, but ignores correlation with the
motion-reconstruction process.
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The inspiration for our approach is derived from the calibration techniques of optical systems and
computer vision, in which simultaneously calibrating all elements is rather beneficial in terms of both
simplicity and accuracy [16,17]. It is also important to incorporate a system measurement model into
the geometrical calibration, as implied in References [18,19]. Based on this idea, we present a novel
calibration technique for MLDSS. This is done with a maximum-likelihood estimate (MLE) for the
system parameters given the measurements of the LDV, and the motion ground truth provided by an
additional 3D tracking vision system. Instead of directly calculating the laser geometry, in this method
we sought the best group of laser parameters that minimized motion-estimation error. We validated
the proposed method on several different datasets, and an obvious improvement in accuracy was
confirmed.

2. MLDSS Parameters

In this section, we briefly describe the basic kinematic formulation in MLDSS [1] and parameterize
it for the calibration.

Basic Equations

We discuss a right-handed co-ordinate system with a fixed origin O. A rigid body has a 6-DOF
speed denoted by X = [ωT , vT ]T , with angular components ω = [ωx, ωy, ωz]T and linear components
v = [vx, vy, vz]T .

MLDSS utilizes a simple kinematic model to reconstruct the speed of a target rigid body. When a
laser-beam ray hits the target, the one-dimensional velocity along this ray is measured by the Doppler
effect. Let the ith laser be denoted by Li : oi, li, where oi is one point on Li, and li is the direction unit
vector. Velocity measurement could then be formulated as:

vi = oi × li ·ω + li · v (1)

By combining multiple measurements with the form in Equation (1), the 6-DOF speed could
be linearly reconstructed from one-dimensional velocity measurements vi. The minimum MLDSS
implementation with six lasers, as shown in Figure 1, is written as:

(o1 × l1)T l1
T

(o2 × l2)T l2
T

...
...

(o6 × l6)T l6
T


[

ω

v

]
=


v1

v2
...

v6

 (2)

We use A to denote the leftmost matrix, and b to denote the rightmost vector in Equation (2).
Matrix A fully describes the system, but the dimension of the parameter space is smaller than the
number of matrix elements. Consider the ith row of A, (A)i. It represents the measurement process
of laser Li, determined by oi and li. Note that oi is a point on a straight line, and li is a unit vector.
Both oi and li have only two DOFs, so that (A)i has four DOFs. Under the optical system layout
and the specified co-ordinate system illustrated in Figure 1, we let oi = [oix, oiy, 0]T and li =

[cos βi cos αi, sin βi cos αi, sin αi], without loss of generality. Then, the parameters of the system could
be denoted by

P = {oix, oiy, αi, βi|i = 1, 2...6} (3)

where P consists of 24 elements.
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Figure 1. System to be calibrated and its parameters. Laser beams emitted from the laser Doppler
velocimeter (LDV) are reflected by the galvanometer scanner and mirror array MR1~MR4, and finally
hit a moving-target object. By scanning the laser on the target surface, the six-degree-of-freedom
(6-DOF) speed of the target could be reconstructed. Parameters consist of laser geometry, denoted by
the x and y co-ordinates on the z = 0 plane, and the laser-direction angles.

3. MLDSS Calibration

3.1. Geometric-Only Calibration

Note that P consists of only the geometrical parameters of the lasers. We can directly calculate
each laser’s spatial position, i.e., oi, li, in the calibration.

We first briefly describe this geometric-only calibration method [1,14,15]. As illustrated in Figure 2,
a planar board with printed pattern such as a chessboard is used as the calibration object. When the
laser hits the object, both the pattern and the laser spot are captured by a camera. With no loss of
generality, we assume the camera is already calibrated. The position of the pattern can be calculated
from the image [20], and the 3D co-ordinates of the laser spot can be computed by casting a ray from
the camera to the pattern plane. This procedure is repeated, and the laser parameters are acquired
by linear fitting of multiple 3D point co-ordinates. Note that a similar principle can be used with a
different sensor, such as a depth camera [13].

LDV

CAM

2D laser spot

Camera Image

Spatial Plane

Pattern

CAM

Ray casting
3D coordintate

Linear fitting

Figure 2. Geometric-only calibration procedures.

Apparently, this method has geometrical errors from sources such as the image processing
error and lens distortion. Here, we go one step farther to see the error of motion reconstruction.
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Consider Equation (2). We can split matrix A into a ground-truth matrix Ag and a distortion matrix
Aδ. The motion reconstruction error related to the calibration error is then denoted by δX ≈ A−1

g AδX.
Comparing with the error introduced by the LDV measurement denoted by δX = A−1δb, the
calibration error introduces an unbounded error that linearly increases when target speed X becomes
larger. Hence, in the case of sensing large speed, calibration accuracy could be much more important
than LDV measurement accuracy. However, the geometric-only methods only minimize the geometric
error (e.g., reprojection error), so that the motion-reconstruction error is prone to larger target speed
and systematic errors of the calibration system.

The intuition here, as we claimed in Section 1, is that all laser parameters should be jointly
optimized, and motion-reconstruction error should be minimized instead of laser geometry error, so
that bounded motion-reconstruction accuracy could be expected.

3.2. Statistical Calibration by Minimizing Motion-Reconstruction Error

Hence, in this paper, the calibration of MLDSS is described as how to find the best set of parameters
P that generate the most accurate 6-DOF speed estimation X̃ under the current system layout, given
LDV measurements b.

To simplify the discussion, we divided motion sensing into discrete frames. First, assume that
we know the ground-truth position of the target object at each frame k. It is denoted by ξk = [rT

k , tT
k ]

T

in the space of se(3) Lie algebra, where rk = [rkx, rky, rkz]
T is the orientation and tk = [tkx, tky, tkz]

T is
the location. Simultaneously, the MLDSS system measures velocities bk = [vk1, vk2, vk3, vk4, vk5, vk6]

T ,
respectively from each laser.

Note that long-term speed integration would inevitably introduce larger and time-dependent
error, a short-time interval may result in undesired peaks in the estimated speed, and interframe
subtraction helps to cancel systematic errors in a 3D tracking system. We formulate the problem with
interframe motion increments. The pose change between frame k and k− 1 is thus represented by
δξ(k) = [δrT

k , δtT
k ], where

δrk = rk − rk−1

δtk = tk − exp(δrk−1)tk−1
(4)

exp(·) denotes the conversion from a so(3) rotation vector to the corresponding SO(3) rotation matrix,
known as the Rodrigues transform [21].

Knowing that matrix A can be uniquely determined by parameter set P, the 6-DOF speed of the
target measured by the MLDSS system at frame k could be calculated by X̃k(P) = [A(P)]−1bk. Let
δtk = tk − tk−1. The interframe pose-change estimation of the MLDSS system is thus written as

δξ̃k(P) = X̃k(P)δtk (5)

We use ek(P) = δξk − δξ̃k(P) to denote the error of one frame. With the assumption that δξ̃k(P) is
locally linear, and the LDV measurement error follows a Gaussian distribution, the MLE of the MLDSS
system is the solution of the following nonlinear least-square problem:

Popt = arg min
P

∑
k
(eT

k (P)ek(P))) (6)

We solve Equation (6) using the Levenberg–Marquardt algorithm [22]. It requires an initial guess
of P, which can be provided by the geometric-only method as introduced in Section 3.1.

3.3. System Setup and Nonideal Factors

It has to be mentioned that the description in Section 3.2 omitted some details in order to clearly
state the proposed method. In this subsection, we describe the practical system for calibration and
reformulate the complete calibration problem.
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Figure 3 illustrates the system for calibration. It consists of the MLDSS system to be calibrated [1],
a marker-based 3D tracking system composed of three IR cameras (Flex 3, Natural Point, Inc., Corvallis,
OR, USA), and a monochrome camera (MQ003MG-CM, XIMEA). The 3D tracking system uses active
infrared illumination and the stereo method to track the 3D location of retroreflective markers. Four or
more asymmetrically placed markers on a rigid body can be tracked, with the 6-DOF pose denoted by
Lie Algebra ξ. This pose is taken as the ground truth in our discussion, since most of the systematic
error is cancelled by interframe subtraction.

MR1

MR2

MR4

MR3

IR1
IR2

IR3

XI

GS

laser from the LDV

Figure 3. Experimental setup. Photograph of the system and the experimental condition. MR1~MR4
are the mirrors, and GS is the galvanometer scanner. IR1~IR3 are IR illumination sources and cameras.
XI is a monochrome camera. Calibration object was moved manually 1 m away from the system.

The four cameras were calibrated [23,24] beforehand. The IR camera’s trigger signal was inverted
each time the LDV measurement was sampled, so that the frame rate of the MLDSS was roughly
twice that of the cameras. Throughout the discussion in this paper, the MLDSS system ran at about
200 Hz, and the tracking system ran at 100 Hz. All devices were controlled by a desktop workstation
(Dell T7910 workstation with Intel E5-2687W v4 @3GHz). Note that such a high-spec computer is
not necessary for this calibration. Both motion reconstruction and optimization in this paper are
computationally friendly and can run on common tabletop computers.

We address the nonideal factors in this practical calibration system as follows.
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Temporal misalignment. As we described above, the 3D tracking system runs slower than the MLDSS
system so that they are temporally misaligned. Using f to denote the frame index of MLDSS, and
t f to denote the corresponding time, we align the MLDSS measurements to the 3D tracking system.
Equation (5) is thus reformulated by linearized integration and interpolation:

δξ̃k(P) = ∑
f

X̃ f (P)δt f (7)

where
δt f = min(t f − tk−1, t f − t f−1, tk − t f )

tk−1 ≤ t f ≤ tk
(8)

Note that although the two systems are synchronized by hardware connection, unintended
temporal misalignment might still exist due to the sampling time of the LDV and the exposure time
of the cameras. This misalignment causes an error in ek(P) and is independent of parameters P that
finally influence calibration precision. To solve it, we modeled the temporal misalignment as a fixed
offset parameter to. Equation (8) is thus rewritten as

δt f = min(t f − tk−1 + to, t f − t f−1, tk − t f − to)

tk−1 − to ≤ t f ≤ tk − to
(9)

Mechanical velocity offset. A galvanometer scanner is used for controlling laser direction. While we
assumed the scanner fully stopped when sampling the LDV measurement, the scanner could possibly
slightly oscillate and cause error in the speed. Because the control sequence of the galvanometer is
fixed and the optical path of each laser is different, this offset can be regarded as systematic to each
laser. We thus refined speed reconstruction as

X̃ f (P) = [A(P)]−1(b f + bo) (10)

where bo is the vector composed of the velocity offset for each laser due to the corresponding
mechanical oscillation.
Weighing error terms. In solving the multiobject optimization problem denoted by Equation (6), it is
important to balance the influence of each error term and data samples in order to not let partial data
be dominant. Here, we introduce a diagonal weight matrix W. Error term Ek for each sample k is thus:

Ek(P) = eT
k (P)Wek(P) (11)

Considering the difference in the unit and the distance from the calibration object to the origin
of the system, [1, 1, 1, 0.005, 0.005, 0.005] is ad hoc determined as the diagonal elements of W in our
experiment, but note that this weight should be adjusted with a change in the co-ordinate system.
Outlier Measurements. Speckle noise [10] is one of the main noise sources of the LDV. It causes
undesired short-term peaks in velocity measurements. Such noise can largely be relieved in the
low-frequency domain with the use of a tracking filter [1,9]. However, considering signal intensity
is low due to potential loss in the laser focus, there occasionally is speckle noise in measurements.
In order to reduce its influence on calibration accuracy, a modified Huber kernel [25] is introduced to
the problem:

Ek(P) =


eT

k (P)Wek(P)
2δ

if eT
k (P)Wek(P) < δ2√

eT
k (P)Wek(P)− δ

2
otherwise.

(12)

where outlier errors grow linearly instead of quadratically.
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Complete maximum likelihood estimation. With the above consideration, we can naturally extend
Equation (6) by estimating the complete set of parameters:

Popt = arg min
P,to ,bo

∑
k
(Ek(P, to, bo)) (13)

where Ek(P, to, bo) is defined by injecting Equations (7), (9), (10) into Equation (12). Equation (13) is
solved with the Levenberg–Marquadt algorithm [22] as well. The initial guess of P is provided by
geometric-only calibration. to and bo are simply set to zero.

3.4. Summary
In this section, the calibration of MLDSS with a pratical system is described and formulated.

The proposed method states the calibration problem with minimization of the motion error, which is
essentially different from conventional geometrical methods [1,14,15]. The procedures of the proposed
calibration are summarized as follows:

• Make a calibration object with four or more asymmetric placed markers;
• register the calibration object in the 3D tracking system as a trackable rigid body;
• simultaneously capture target motion and speed with the MLDSS and the 3D tracking system,

and build a dataset following the instructions in Section 4;
• estimate initial parameters using the geometric-only method introduced in Section 3.1 (optional);

and
• refine all parameters by solving Equation (13).

4. Data Collection

It is straightforward to solve Equation (13) with the collected motion data. However, inappropriate
data selection would provide insufficient information, and finally result in an ill-conditioned
optimization problem. We study the data collection for our method in this section.

Check the derivatives of Equation (2). Jacobian JP = ∂X/∂P describes the gradient direction in
the parameter space of one data sample. Let the parameter of laser Li be denoted by Pi, and the ith
column of A−1 be [A−1]i. Knowing that A is a function of P, we write the partial Jacobian Ji as:

Ji =
∂X
∂Pi

= −[A−1]iXTGi (14)

where Gi is given by Equation (15).

Gi =
∂(A)i

∂Pi
=



0 sin αi oiy cos αi 0
− sin αi 0 oix cos αi 0

sin βi cos αi cos βi cos αi oiy cos βi sin αi − oix sin βi sin αi oix cos βi cos αi + oiy sin βi cos αi
0 0 − cos βi sin αi sin βi sin αi
0 0 − sin βi sin αi − cos βi sin αi
0 0 cos αi 0


(15)

JP is the stack of Ji for i = 1, 2, ..., 6. It can be observed that some submatrices of JP have only zero
elements. It means that a certain kind of motion error would provide no additional constraints for
some parameters. Especially from Equation (14), error in the translation components does not provide
any constraint for position parameters oix and oiy, and the error of rx , ry provides no constraint for
direction angle βi.

More intuition is provided by Table 1, where we simulated the norms of the submatrices of JP
using real calibration parameters. Subtle, Rot, and Trans denote the motion patterns of subtle speed
X = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T , a rotational speed where ωx = πrad/s, and a translational speed where
vx = 100mm/s, respectively. a and o denote the set of direction parameters {αi, βi} and position
parameters {oix, oiy} for all lasers.
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Table 1. ∞-norm of submatrices under different motions.

Motion Pattern ‖∂ω/∂a‖∞ ‖∂ω/∂o‖∞ ‖∂v/∂a‖∞ ‖∂v/∂o‖∞

Subtle 0.0036 0.0012 0.280 0.2201
Rot 0.0088 0.0424 0.501 3.39

Trans 1.31 0 99.2 0

Table 1 demonstrates how the motion pattern influences gradient direction. A large translational
motion means a larger gradient in the direction parameters a and a smaller gradient in position
parameters o. Jointly consider this with Equation (14). Translational motion error in one direction
cannot fully condition the parameters, but the absolute value of the gradient could be much larger
than the rotational motion. This might finally result in overfitting to a partial dataset, while the other
part of the calibration data contributes little to the optimization.

Two implications could be derived to help such a situation. First, contribution to the optimization
problem from different samples should be balanced considering the corresponding gradient. This is
done by reweighing error terms as we introduced in Section 3.3. Second, multiple motion patterns
should be included and evenly distributed in the dataset in order to avoid degeneration configuration.

Based on the above discussion, we prepared the dataset for solving Equation (13) with a calibration
object as illustrated in Figure 4a In the dataset, the motion of the calibration object was evenly
distributed into six different patterns as illustrated in Figure 4b. During data collection, the calibration
object was manually moved roughly 1 m away from the measurement systems, as shown in Figure 3.

(a)

X

Z

Trans
y

Trans
x

Trans
z

Rot
y

Rot
z

Rot
x

(b)

Retroreflective

Marker

Y

Figure 4. (a) Calibration object, a white board with ten randomly but asymmetrically placed
retroreflective markers. (b) Six motion patterns of the calibration object in its local co-ordinate system, of
which the calibration data are composed.

5. Evaluation

5.1. Cross-Validation

We validated the proposed method with a real dataset, consisting of 4500 sample frames for the
calibration, and 1500 frames for the test. Both the calibration set and the test set consisted of six evenly
distributed back-and-forward motion patterns, as shown in Figure 4b. This data amount far exceeds
the necessary amount for the calibration, but it helps to reduce data noise. Note that the proposed
system runs in high speed. Specifically, the marker tracking system runs at 100 Hz, and the MLDSS
runs at 200 Hz. Hence, it takes no more than 10 min to collect all the data and finish optimization.

We compared the proposed method with the geometric-only calibration method [1], where the
camera-calibration reprojection error was below 0.081 pixel, and the 3D point-to-line root mean square
(RMS) distance in the linear fitting was 0.734 mm (100 points for each laser). Note this error is already
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smaller than that of the state-of-art geometric-only method [13] thanks to the use of a long-focus camera
lens. Since in the MLDSS scenario we care most about motion reconstruction, while geometrical error
is of minor importance, we compared the correctness of the reconstructed-motion increments in the
test set.

Figure 5 illustrates the six motion components in the reconstruction results of all the samples in
the test set. We qualitatively confirmed that motion reconstruction was improved with the proposed
method in this figure. While the geometric-only method achieved relatively good accuracy in major
motion components, such as in the translational motion, the capability of measuring subtle and
rotational motions degraded. With Equation (14), we consider the reason for this as the error in
the wrong estimation of positional parameters oix and oiy, and a joint effect of geometrical errors
of multiple lasers. In contrast, the proposed method achieved better accuracy in almost all motion
components, as shown in the magnified parts of the figure.

GT
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Figure 5. Motion reconstruction results of the test set. Specifically, this figure includes the rotational
components (top three subfigures) and translational components (bottom three subfigures) of the
interframe motion increments in the test set. It was confirmed that the proposed method obviously
outperforms the geometric-only method.
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To quantitatively demonstrate the results, RMS error between the motion-reconstruction result
and the ground truth is shown in Table 2. We divided the test data into six parts by major motion
pattern, as demonstrated in Figure 4b. From Table 2, it is shown that the proposed method achieved
smaller motion-reconstruction error in almost all motion patterns. The RMS errors of both the rotational
and translational components across the whole dataset were reduced by more than 50%, which we
consider significant improvement of accuracy.

Table 2. Root mean square (RMS) errors in the test data.

Test Set Rotational (Rad) Translational (mm)

Proposed Geo Proposed Geo

Rotx 0.0139 0.0484 2.3142 9.0864
Roty 0.0108 0.0321 2.0543 4.9750
Rotz 0.0239 0.0321 3.8263 7.6578

Transx 0.0101 0.0089 3.1751 3.4187
Transy 0.0077 0.0220 1.9044 3.8176
Transz 0.0054 0.0075 1.6014 2.7850
Total 0.0133 0.0290 2.5977 5.7731

5.2. Sensing Daily Object

To show that the proposed method is also valid for the speed estimation of daily objects besides
the calibration board, we briefly tested the new parameters on measuring a rotating globe as shown
in Figure 6a. Ground-truth motion was also measured by the 3D marker tracking system. Figure 6b
shows the result. The proposed method achieved a more accurate result than the geometric-only
method. Rotational RMS error was 0.0245 rad with the proposed calibration parameters, while that of
the conventional method was 0.0388 rad.

0 50 100 150 200 250 300 350 400 450 500

-0.1

0

0.1 GT

Pro

Geo

0 50 100 150 200 250 300 350 400 450 500

-0.1

0

0.1 GT

Pro
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0 50 100 150 200 250 300 350 400 450 500

-0.1

0

0.1 GT

Pro

Geo

Sample Index

δr
x

δr
y

δr
z

(a) (b)

Figure 6. (a) Used test globe. Retroreflective markers (red-circled) were attached on the globe to track
its rotation. (b) Motion-reconstruction results (rotational part).

6. Conclusions

In this paper, we described a new calibration method for MLDSS. In contrast with the conventional
method where only laser geometry is independently calibrated from images, the proposed method
simultaneously optimizes all laser parameters and directly associates them with the motion-sensing
model. We discussed in detail the system model and factors related to calibration accuracy, and
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proposed a maximum-likelihood estimation-based method for solving a calibration problem. Finally,
higher accuracy was confirmed by cross-validation from qualitative and quantitative evaluation on a
1500 sample test set compared with the state-of-art method.
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