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Abstract: This communication describes our recent efforts to utilize Wittig olefination reactions for
the post-polymerization modification of polynorbornene derivatives prepared through ring opening
metathesis polymerization (ROMP). Polymerizing α-bromo ester-containing norbornenes provides
polymers that can undergo facile substitution with triphenylphosphine. The resulting polymeric
phosphonium salt is then deprotonated to form an ylide that undergoes reaction with various aryl
aldehydes in a one-pot fashion to yield the respective cinnamates. These materials can undergo
further modification through photo-induced [2 + 2] cycloaddition cross-linking reactions.
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1. Introduction

Post-polymerization modifications (PPMs) offer chemists the ability to change or fine-tune a
macromolecule’s overall bulk properties. These reactions are typically carried out through the
covalent modification of a polymer’s end groups, backbone, and/or pendant groups [1]. Although
Hermann Staudinger receives much credit (deservedly so) for the development of “polymer-analogous
reactions”, these types of transformations have been carried out for much longer [2]. However,
recent decades have been witness to an explosion of literature examples describing various types of
PPM reactions [3–5], including the modification of bio-based [6] polymers and plastic upcycling [7,8].
However, this renaissance is mostly attributable to the invention and development of the concepts of
“click” and “green” chemistry [9,10], as well as controlled [11] “living” polymerization techniques,
such as reversible addition/fragmentation chain transfer (RAFT) polymerization and atom transfer
radical polymerization (ATRP) [12,13]. For example, Zhao et al. have recently shown that polymers
containing Meldrum’s acid derivatives (prepared using RAFT) could undergo post-polymerization
Knoevenagel reactions [14], while Sumerlin and coworkers showed that keto-enol tautomerization
could be harnessed for the PPM of materials prepared from RAFT [15]. Bode’s laboratory recently
showed that it was possible to utilize ATRP to prepare acyltrifluoroborate-containing polymers that
could undergo post-synthetic modifications with functionalized amines [16].

In addition to RAFT and ATRP, ring opening metathesis polymerization (ROMP [17]) has become
one of the most widely utilized living polymerization techniques. This is thanks, in part, to the high
functional group tolerance (and bench-stability) of Grubbs-type initiators that can easily facilitate the
polymerization of high- and medium-strain cyclic monomers (i.e., norbornenes, cyclooctenes, etc.)
for a number of applications [18]. Despite the high functional group tolerance of Grubbs initiators,
there exist circumstances in which PPM reactions are required. For example, Nelson and coworkers
recently described the use of Dewar heterocycles as monomers for ROMP [19]. Such species could
be polymerized to provide polymeric -lactams that could undergo subsequent modifications to yield
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water-soluble -amino acid polymers, functionalities that may be less well- tolerated in ROMP. Kiessling’s
laboratory reported on the ROMP of oxazinone-based monomers. The resulting poly(oxazinone)s
could undergo PPM with a variety of oxime ethers [20]. This same laboratory pioneered the use
of “activated” N-hydroxysuccinimide (NHS) ester-containing ROMP materials, that could undergo
PPMs to form biologically-active polymers [21]. Our lab has recently adopted this technique for the
preparation of a polymer-supported DMAP catalyst [22]. Earlier examples describing the utility of
multiple “click” reactions as tools for PPM of ROMP-based materials exist, as do those detailing PPM
strategies to prepare polymer/protein conjugates [23–27].

For the last few years, our laboratory [28–33] (among others [34–36]) has been interested in
the utilization of a “thio-bromo” click [37,38] reaction for carrying out PPMs. Of particular interest
to us is the modification of polymeric materials prepared from ROMP [21]. The marriage of these
two chemistries required the polymerization of norbornene/cyclooctene derivatives-decorated with
electrophilicα-bromo ester moieties that could undergo PPMs through reactions with nucleophilic thiols.
The utility of pendant alkyl bromides has been illustrated for other substitution reactions as well [39–45].
Following our initial reports, we reasoned that this functionality may serve as a convenient handle to
introduce other useful functional groups, such as acrylates and cinnamates; these are α,β-unsaturated
carbonyls that can undergo further modifications through various Michael reactions, as well as
photo-facilitated [2 + 2] cycloadditions. Polymers decorated with acrylates and cinnamates have
indeed been prepared through ROMP [46–49]. However, most of these rely on multistep monomer
syntheses (≥ 2 steps) utilizing standard, substitution chemistry in a pre-polymerization strategy.

To this day, the Wittig reaction remains a highly efficient route toward the preparation of
alkenes, including acrylate and cinnamate esters [50]. For this reason, it is a mainstay in sophomore
organic chemistry courses. Although the Wittig and Wittig-like reactions have been used to prepare
polymers and modify the termini of ROMP-based materials [51], it has not, to our knowledge,
been utilized as PPM reaction for the modification of polymer-pendant groups, especially not with
ROMP. The reason for its underutilization is, more-than-likely, the lack of atom-economy, a hallmark
of “green chemistry”. This low atom economy is a consequence of the formation of a stoichiometric
equivalent of a triphenylphospine oxide which is, by no means, benign. For this reason, this reaction is
often thought to be antithetical to the green chemistry philosophy (although catalytic variants have
been developed [52]). Product purification only exacerbates this issue, as the removal of the byproduct
often requires column chromatography, generating even more waste. However, this actually may
not be as problematic for modifying polymers (especially on academic-lab scales), since polymer
purification is commonly carried out by solvent precipitation. While not inherently “green”, solvent
precipitations are relatively green, when compared to column chromatography (which can generate
excessive amounts of solvent waste). Furthermore, this can offer a simpler way to isolate the phosphine
oxide byproduct, which could presumably be reduced and recycled. With this in mind, we developed
a straightforward method for modifying poly(norbornene) derivatives using Wittig reactions.

2. Results and Discussion

Our work began with the preparation of α-bromo ester-decorated norbornene 2 using procedures
adapted from the literature [53]. This involved subjecting commercially available alcohol (mixture of
endo and exo) to a reaction with bromoacetyl bromide in the presence of sodium bicarbonate for 2 h
(Scheme 1). This led to the isolation of 2 in 65% yield. 2 was then subjected to ROMP in the presence
of Grubbs 3rd generation initiator 3 [54] using [M]:[I] ratio of 250:1 in methylene chloride for 2 h.
Subsequent quenching with ethyl vinyl ether (EVE) and precipitation into methanol led to the isolation
of polymer 4 as gummy solid in 80% yield. Product formation was confirmed by the disappearance of
the olefinic signals between 6.2 and 5.9 ppm and the appearance of broad signals between 5.48 and
5.07 ppm in the 1H NMR spectrum. Gel permeation chromatography (GPC) revealed that 4 possesses
Mn and Ð values of 64,500 Da (Mn,theor. = 61,500 Da) and 1.03, respectively (see details of 1H NMR
spectra and GPC chromatograms in Supplementary Materials).
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In order to prepare the requisite polymeric ylide, we next subjected polymer 4 to a substitution 
reaction with triphenylphosphine in THF for 24 h. Phosphonium salt 5 was isolated in 71% yield by 
solvent precipitation into ether. Confirmation was obtained by 1H NMR, which showed a 
disappearance of the broad singlet at 3.85 ppm, corresponding to the α-protons geminal to the 
bromide; this signal was shifted upfield and overlapped with the polymer’s olefinic signals. 
Phosphonium salt 5 was next subjected to reaction with sodium bicarbonate to generate a polymeric 
ylide (Scheme 2). Unfortunately, we found this ylide formation to be problematic, since it led to the 
formation of a completely insoluble gel through, presumably, unexpected cross-linking between the 
ylide and ester moieties [55].  

 

Scheme 2. Attempted synthesis of polymeric phosphorus ylide from 5. 

We did find, however, that Wittig modifications could be carried out without the need to isolate 
the polymeric ylide. A biphasic, one-pot reaction of 5 (in methylene chloride), with a saturated, aqueous 
solution of NaHCO3 in the presence of excess benzaldehyde led to the formation of polymeric 
cinnamate ester 6 in 70% yield, after quenching with dilute acid (Scheme 3). Product formation was 
confirmed by 1H NMR spectroscopy, which showed the appearance of signals between 7.8–7.1 ppm 
and a doublet at 6.4 ppm, indicative of aryl and olefinic protons, respectively (Figure 1).  

 

Scheme 3. One-pot synthesis of polymeric cinnamate ester by reaction of 5 with benzaldehyde. 

Scheme 1. Synthesis of phosphonium salt 5.

In order to prepare the requisite polymeric ylide, we next subjected polymer 4 to a substitution
reaction with triphenylphosphine in THF for 24 h. Phosphonium salt 5 was isolated in 71% yield by
solvent precipitation into ether. Confirmation was obtained by 1H NMR, which showed a disappearance
of the broad singlet at 3.85 ppm, corresponding to the α-protons geminal to the bromide; this signal
was shifted upfield and overlapped with the polymer’s olefinic signals. Phosphonium salt 5 was next
subjected to reaction with sodium bicarbonate to generate a polymeric ylide (Scheme 2). Unfortunately,
we found this ylide formation to be problematic, since it led to the formation of a completely insoluble
gel through, presumably, unexpected cross-linking between the ylide and ester moieties [55].
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Scheme 2. Attempted synthesis of polymeric phosphorus ylide from 5.

We did find, however, that Wittig modifications could be carried out without the need to isolate
the polymeric ylide. A biphasic, one-pot reaction of 5 (in methylene chloride), with a saturated,
aqueous solution of NaHCO3 in the presence of excess benzaldehyde led to the formation of polymeric
cinnamate ester 6 in 70% yield, after quenching with dilute acid (Scheme 3). Product formation was
confirmed by 1H NMR spectroscopy, which showed the appearance of signals between 7.8–7.1 ppm
and a doublet at 6.4 ppm, indicative of aryl and olefinic protons, respectively (Figure 1).
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We next set out to determine the aldehyde scope of this reaction. As can be seen in Table 1, 
aldehydes containing various electron withdrawing groups were well tolerated, providing cinnamate 
products in moderate to good yields with good E/Z ratios (Table 1, entries 1–6). Heterocyclic aromatic 
aldehydes (e.g., furfural) could also be utilized (Table 1, entry 7). Unfortunately, this system is not 
without limitations; it was discovered that aliphatic aldehydes and aromatic aldehydes containing 
electron donating groups resulted in substantial cross-linking, as indicated by the complete gelation 
of the reaction mixture (Table 1, entries 8–10). This is probably caused by the lower electrophilicity 
of carbonyls containing electron donating groups. 
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Figure 1. Photographs of crude, partial 1H NMR spectra of 5 (top) and 6 (bottom) showing the chemical
shifts of the indicated protons for 6.

We next set out to determine the aldehyde scope of this reaction. As can be seen in Table 1,
aldehydes containing various electron withdrawing groups were well tolerated, providing cinnamate
products in moderate to good yields with good E/Z ratios (Table 1, entries 1–6). Heterocyclic aromatic
aldehydes (e.g., furfural) could also be utilized (Table 1, entry 7). Unfortunately, this system is not
without limitations; it was discovered that aliphatic aldehydes and aromatic aldehydes containing
electron donating groups resulted in substantial cross-linking, as indicated by the complete gelation of
the reaction mixture (Table 1, entries 8–10). This is probably caused by the lower electrophilicity of
carbonyls containing electron donating groups.

Table 1. Aldehyde scope for Wittig reactions. 1

Entry RCHO Prd. E:Z 2 Yield (%) 3

1
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Table 1. Cont.

Entry RCHO Prd. E:Z 2 Yield (%) 3
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Cinnamic esters (as well as other α,β-unsaturated carbonyls) have been shown to undergo
synthetically useful [2 + 2] cycloaddition reactions under UV light [46]. Gratifyingly, we found that
the exposure of polymer 6 (in THF) to ca. 30 h of sunlight (albeit non-continuous) was sufficient to
effect the formation of a completely insoluble material that was produced, presumably, through [2 + 2]
cycloaddition cross-linking reactions (Figure 2).
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Figure 2. (a) Cross-linking of 6 through [2 + 2] cycloaddition. (b) Photograph of THF solution of 6
before exposure to sunlight (left) and photograph after exposure to sunlight and decantation of excess
solvent (right).

3. Conclusions

In conclusion, we have shown that a standard Wittig reaction can be used for the
post-polymerization modification of materials prepared from ROMP. Polymerization of α-bromo
ester-containing monomers, followed by substitution with triphenylphosphine, led the way to carry
out a one-pot reaction in which polymeric ylide formation and Wittig reaction could be carried out.
This provided polymeric cinnamate esters containing electron withdrawing groups in moderate to
good yield. Furthermore, these materials could be subjected to cross-linking reactions in the presence
of sunlight, presumably occurring through [2 + 2] cycloadditions. Experiments designed to expand
the scope of this process as well as exploring further PPM reactions utilizing Michael and Diels–Alder
reactions are currently underway.
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