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Abstract: Traceability analysis, such as identification and discrimination of yeasts used for fermenta-
tion, is important for ensuring manufacturing efficiency and product safety during brewing. However,
conventional methods based on morphological and physiological properties have disadvantages
such as time consumption and low sensitivity. In this study, the resistive pulse method (RPM) was
employed to discriminate between Saccharomyces pastorianus and Dekkera anomala and S. pastorianus
and D. bruxellensis by measuring the ionic current response of cells flowing through a microsized
pore. The height and shape of the pulse signal were used for the simultaneous measurement of the
size, shape, and surface charge of individual cells. Accurate discrimination of S. pastorianus from
Dekkera spp. was observed with a recall rate of 96.3 ± 0.8%. Furthermore, budding S. pastorianus
was quantitatively detected by evaluating the shape of the waveform of the current ionic blockade.
We showed a proof-of-concept demonstration of RPM for the detection of contamination of Dekkera
spp. in S. pastorianus and for monitoring the fermentation of S. pastorianus through the quantitative
detection of budding cells.

Keywords: resistive pulse method; yeast; discrimination; brewer; Saccharomyces pastorianus;
Dekkera spp.

1. Introduction

The resistive pulse method (RPM) is used for evaluating the transient ionic current
blockade associated with the translocation of individual nano- to microsized particles
passing through an appropriate diameter pore. Moreover, it is applicable in proving small
objects by using pulse-like electrical signals. In addition, because the measured ionic
current blockade signals possess information regarding the properties of these particles
such as size [1], shape [2–4], surface charge [1,5], and deformability [6,7], these objects
can be discriminated at a single-particle resolution. Further, single bioparticles of various
sizes ranging from blood cells to polynucleotides can be discriminated against without
implementing immunostaining [2,8,9]. RPM with microsized pores (micropore devices),
which is similar to the operating principles of a Coulter counter, is widely used to measure
the number of blood cells in hematological diagnosis.

In brewing, traceability analysis such as identification and/or discrimination of mi-
croorganisms used for fermentation is important to ensure manufacturing efficiency and

Biosensors 2021, 11, 272. https://doi.org/10.3390/bios11080272 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-8590-2737
https://orcid.org/0000-0003-1779-6212
https://orcid.org/0000-0002-7422-730X
https://doi.org/10.3390/bios11080272
https://doi.org/10.3390/bios11080272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11080272
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11080272?type=check_update&version=2


Biosensors 2021, 11, 272 2 of 10

product safety [10,11]. The genus Saccharomyces is well-known as the key yeast species
in beer fermentation, and S. pastorianus is used in bottom-fermented beer [12]. Although
the presence of Brettanomyces yeasts (teleomorph Dekkera) including Dekkera anomala and
D. bruxellensis is encouraged in several types of beer, these yeasts cause contaminations of
most beer leading to spoilage [12,13].

Conventional methods used for the detection and/or isolation of yeast contamination
are based mainly on morphological and physiological properties [14]. Several types of
selective media are commonly used to identify and discriminate unknown yeasts. How-
ever, these cultivation methods require several days to obtain results. Although gene
analysis methods based on PCR are also employed to identify and/or discriminate brew-
ing yeasts [14,15], some disadvantages remain. For example, several hours are required
to acquire results and complex operations. Therefore, detection methods for unwanted
yeast contamination in brewing with rapid and easy operation, such as in-line inspection,
are necessary.

In this study, we developed a micropore device for the accurate and rapid discrimi-
nation of S. pastorianus from Dekkera spp. The budding state of S. pastorianus can also be
detected at the single-cell level by analyzing the shape of the current blockade signals.

2. Materials and Methods
2.1. Yeast Strains and Preparation

S. pastorianus W34/70, D. anomala DSMZ 70727, and D. bruxellensis NBRC 0677 were
used in this study. These yeasts were cultivated in YPAD agar plates [16] (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) for at least 2 days. To prepare the cell sample solution
for ionic current measurements, appropriate amounts of each yeast were collected from a
single colony and suspended in 50 mM 2-(N-morpholino) ethanesulfonic acid (MES) buffer
to a concentration of 1 × 106 cells/mL.

2.2. Cell Size Measurement Using Light Microscope

One hundred cells in each cell suspension in 50 mM MES buffer were selected using
a light microscope (DIML II, Leica Camera AG, Wetzlar, Germany) with a 40× objective
lens to determine each yeast size. Approximately 20 µL of each cell sample was seeded
into a 96-well plate (Nunc MicroWell 96-Well Microplates, Thermo Fisher, Inc.) to settle at
the bottom of the plate surface, and the diameter of each cell was measured immediately
[Figure 1a–c]. Cell sizes were expressed as mean ± standard deviation (SD).

2.3. Micropore Device and Ionic Current Measurement

For the ionic current measurement of cells, we employed a micropore device with
a diameter of 10 µm and thickness of 50 nm, as shown in Figure 1d (M-NK-1000-A106-
001-Pm, Aipore, Inc., Tokyo, Japan). Then, 10 µL of cell sample solution was injected into
the cathode-side microchamber through the inlet, and 10 µL of 50 mM MES buffer was
injected into the anode-side microchamber through the inlet. For cell mixture measure-
ment, two of three types of yeast, 5 µL each and 10 µL in total, were injected into the
cathode-side microchamber.

A current amplifier (ACDC3000, AXIS NET, Inc., Osaka, Japan) was employed for
ionic current measurement in the current range of 2.5 µA using the LabVIEW (LabVIEW
2017, National Instruments, Austin, TX, USA) program. The time trace of the ionic current
was evaluated via the pore and was recorded at a sampling rate of 1 MHz using a voltage
input module (NI-9223, National Instruments), which corresponds to a 1-µs resolution
time. Typical waveforms of the ionic current blockade for S. pastorianus, D. anomala, and
D. bruxellensis are shown in Figure 1e–g. The duration of the blockade signal was >0.2 ms,
and the employed sampling rate was sufficient to analyze the signal of the current blockade.
For each experiment, 400 current blockade signals could be obtained in 6 min.
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Figure 1. Light microscopic images of (a) S. pastorianus, (b) D. anomala, and (c) D. bruxellensis. Bud-
ding is observed in each. Arrows indicate daughter cells. (d) Picture of micropore device with a 
diameter of 10 μm. A typical waveform of current ionic blockade by RPM was observed for (e) S. 
pastorianus, (f) D. anomala, and (g) D. bruxellensis. 
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We measured resistive pulse signals that appeared on the time trace of the ionic cur-

rent by monitoring the current displacement, which was larger than the threshold by three 
times the SD. Further, we averaged the data for the nearest neighboring points to reduce 
the current noise in the pulse measurement process, as reported by Smeets et al. [17]. In 
addition, we extracted the waveforms of the pulses of the original 1-MHz data at the time 
point of pulse detection and evaluated the peak values of the current blockade (Ip) and the 
duration of the current blockades (td) on the extracted waveform [Figure 1e−g]. Four hun-
dred pulse signals were analyzed. These data were processed using LabVIEW. 

2.5. Discrimination of Decision Boundary and Discrimination Error 
Compared with the linear separation boundary [18], a quadratic discrimination anal-

ysis (QDA) with a nonlinear separation boundary can discriminate more accurately be-
tween different classes. QDA is a probabilistic parametric classification technique that 
separates the class region by quadratic boundaries assuming that each class has a multi-
variate normal distribution with the dispersion being different per class. The decision 
boundary (DB) by QDA for cell discrimination is defined by a contour line/curve provid-
ing an equal probability of the Ip, td, and Ip-td distributions for each cell [19,20]. The prob-
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The zeta potential was measured using a zeta potential analyzer (ELSZ-2000Z Otsuka 
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mL of cell sample at a concentration of 1 × 108 cells/mL in 50 mM MES buffer. While ap-
plying an electric field of ~16 V/cm on average, the electrical mobility was evaluated from 

Figure 1. Light microscopic images of (a) S. pastorianus, (b) D. anomala, and (c) D. bruxellensis. Budding
is observed in each. Arrows indicate daughter cells. (d) Picture of micropore device with a diameter
of 10 µm. A typical waveform of current ionic blockade by RPM was observed for (e) S. pastorianus,
(f) D. anomala, and (g) D. bruxellensis.

2.4. Resistive Pulse Analysis and Cell Discrimination

We measured resistive pulse signals that appeared on the time trace of the ionic current
by monitoring the current displacement, which was larger than the threshold by three
times the SD. Further, we averaged the data for the nearest neighboring points to reduce
the current noise in the pulse measurement process, as reported by Smeets et al. [17]. In
addition, we extracted the waveforms of the pulses of the original 1-MHz data at the time
point of pulse detection and evaluated the peak values of the current blockade (Ip) and
the duration of the current blockades (td) on the extracted waveform [Figure 1e–g]. Four
hundred pulse signals were analyzed. These data were processed using LabVIEW.

2.5. Discrimination of Decision Boundary and Discrimination Error

Compared with the linear separation boundary [18], a quadratic discrimination analy-
sis (QDA) with a nonlinear separation boundary can discriminate more accurately between
different classes. QDA is a probabilistic parametric classification technique that separates
the class region by quadratic boundaries assuming that each class has a multivariate normal
distribution with the dispersion being different per class. The decision boundary (DB)
by QDA for cell discrimination is defined by a contour line/curve providing an equal
probability of the Ip, td, and Ip-td distributions for each cell [19,20]. The probability is
expressed as follows:

P
(
log10 y

)
=

1√
2π|Σk|

exp
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log10 y〉k
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where Σk and
〈
log10 y〉k are the variance-covariance matrix and the mean value of observa-

tions log10 y for the kth dimension (k = log10 Ip or log10 td), respectively.

2.6. Zeta Potential Measurement

The zeta potential was measured using a zeta potential analyzer (ELSZ-2000Z Otsuka
Electronics Co., Ltd., Osaka, Japan). A glass flow cell for measurements was filled with
1.0 mL of cell sample at a concentration of 1 × 108 cells/mL in 50 mM MES buffer. While
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applying an electric field of ~16 V/cm on average, the electrical mobility was evaluated
from the Doppler shift of the scattering light of the laser, and the zeta potential ζ was
obtained by fitting the electrophoretic velocity of cells flow inside the measurement glass
cell based on the Smoluchowski equation [21]. The measured zeta potential is represented
by the mean ± SD (n = 6).

2.7. Multiphysics Simulations of Ionic Current Waveform for a Budding Yeast

To elucidate the characteristic ionic current waveforms originating from the morpho-
logical features of budding yeasts passing through a pore, numerical simulations based on
finite element methods were conducted [2,4]. The geometric structures were modeled in a
cylindrical coordinate system (r, θ, and z as the radial, azimuthal, and axial coordinates,
respectively), as shown in Figure 4a. The total model size was 50 µm in radius (R = 50 µm)
and 100 µm in z-height. A membrane with a thickness of 50 nm formed a 5-µm radius pore
[white arrow in Figure 4a] and was placed in the middle of the model (z = 0 µm).

A yeast model [black arrow in Figure 4a] of a given size (parameterized by Lx) was
positioned along the z-axis. The multiphysics simulation was conducted by simultaneously
solving Equation (1) the continuity equation at a steady-state (∇·j = 0, where j is the
current density) for the applied electric potential of Vc, Equation (2) the Poisson–Boltzmann
equation for the electrostatic potential of Vs, Equation (3) the Nernst–Planck equation for
the i ion concentration of ci, and Equation (4) the incompressible Navier–Stokes equation
for the hydrodynamic pressure and the flow field of p and U:

∇·j = ∇·
[
−
(

σw + F ∑
i

z2
i uici

)
∇Vc

]
= 0 (1)

∇2Vs = − ρ
εw

= − 1
εw

F ∑
i

zici exp(−zieVs/kBT) (2)

∇·(−Di∇ci − ziuiFci∇Vs) + U·∇ci = 0 (3)

−∇p + η∇2U − ρ∇Vc = 0 (4)

Here, σw, F, zi, and ui are the electrical conductivity of water, the Faraday con-
stant, charge number, and electrical mobility of ion i, respectively. We used zi = 1 and
ui = 3.69 × 10−7 m2/V·s for i = H+, and zi = −1 and ui = 2.87 × 10−8 m2/V·s for i = MES−.
These ui values were evaluated from the diffusion coefficient of Di [22,23] based on the
Einstein relation ui = eDi/kBT, where e, kB, and T are the elementary charge, Boltzmann
constant, and temperature, respectively. ρ, εw, and η are the net ionic charge density,
permittivity, and dynamic viscosity of water, respectively.

The boundary conditions for Equation (1) [Vc at z = 50 µm and −50 µm] were 0.1 V
and 0 V, respectively. For Equation (2), a surface charge of −0.015 C/m2, estimated from
the zeta potential by using the Grahame equation [24,25], was imposed on the surfaces of
the pore and the yeast model. For Equation (3), the boundaries at z =±50 µm and r = 50 µm
were assumed to be ci = 2.6 mM. This ci value was estimated based on the assumption that
the total ionic current was 100 nA, which corresponded to the experimentally measured
baseline current. The other boundary conditions were similar to those in a previous
study [2].

The resulting electric potential (Vc + Vs) distribution is shown in Figure 4a. The total
ionic current I was calculated by the surface integral for j in the z-direction (jz) at z = 50 µm
over the r–θ surface, expressed as

I =
∫ R

0
rdr

∫ 2π

0
dθ jz (5)

All numerical simulations were performed with COMSOL Multiphysics 5.0 (COM-
SOL, Inc., Stockholm, Sweden) using the physical parameters of σw = (18.2 MΩ·cm)−1,
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F = 9.649 × 104 C/mol, e = 1.602 × 10−19 C, kB = 1.381 × 10−23 J/K, T = 293.15 K,
εw = 7.097 × 10−10 F/m, and η = 1.002 × 10−3 Ns/m2 [23].

3. Results and Discussion
3.1. Morphological Examination by Light Microscopy

Light microscopic images of cells are shown in Figure 1a–c. S. pastorianus cells
were round to ovoid shapes with a size of 5.6 ± 0.9 × 6.9 ± 1.2 µm [Figure 1a]. Both
D. anomala and D. bruxellensis were spindle-shaped at 2.9 ± 0.8 × 13.6 ± 5.7 µm and
2.5 ± 0.5 × 7.9 ± 3.2 µm, respectively [Figure 1b,c]. The size and shape of S. pastorianus
were clearly different from those of D. anomala and D. bruxellensis. Budding was observed
in some cells [Figure 1a–c].

3.2. Ionic Current Measurement of Cells and Cell Discrimination

We applied a bias voltage of Vb = 0.1 V between the cathode-side and the anode-side
microchambers, and the baseline had a current level of approximately 100 nA. The electrical
conductivity (σ) was determined to be 0.104 ± 0.06 S/m. The electric field generated by the
bias voltage yields electric forces that drive the cells and translate them through the pores.
As illustrated in Figure 1d, the cells were restricted by a pore, causing them to pass turn
by turn through the pore, thus yielding a one-to-one correspondence of a pulselike signal
between the ionic current blockade and a translocation event of a cell through the pore.

Figure 1e–g depict typical waveforms of the current blockades generated by S. pastori-
anus, D. anomala, and D. bruxellensis, respectively. The size and deformability of the sensed
particles were estimated from the Ip values generated by the RPM [1,6,7]. The Ip values
of S. pastorianus, D. anomala, and D. bruxellensis were 6.16 ± 3.96 nA, 0.99 ± 0.58 nA, and
0.75 ± 0.46 nA, respectively, which are significantly different. td can be utilized to elucidate
the surface charge of the sensed particles [1,5]. The zeta potential was examined to estimate
the surface charge of the cells. The evaluated zeta potentials for S. pastorianus, D. anomala,
and D. bruxellensis were −28.99 ± 0.50 mV, −16.50 ± 0.64 mV, and −14.42 ± 0.90 mV,
respectively. Contrary to the prediction from the results of zeta potential measurement, the
td values were 1.31± 0.89 ms, 1.07± 1.12 ms, and 0.93± 0.90 ms with statistical differences
between S. pastorianus, D. anomala, and D. bruxellensis, respectively. Since the Ip values for
Dekkera spp. are extremely smaller than that of S. pastorianus, it is considered that Dekkera
spp. pass through the pore with a longitudinal direction. The minor axis of Dekkera spp. is
less than half that of S. pastorianus, and the spindle-shaped Dekkera spp. are thought to be
more mobile than the round shape of S. pastorianus in solution, so it may be faster to pass
the pore [26]. Therefore, it may be that the td values indicating the residence time in the
pore becomes shorter in long Dekkera spp. compared with short S. pastorianus.

The reproducibility of Ip and td measurements by the RPM for these yeasts was
confirmed by three different experiments [27] [Figure 2a]. The histogram of Ip on log, td on
log, and scatter plot of Ip–td on log-log, and the BDs for each cell are shown in Figure 2b.
If cells are present in regions I, II, and III on each graph, then they are estimated as D.
bruxellensis, D. anomala, and S. pastorianus, respectively. The electrical current records and
Ip-td scatter plot by RPM of a mixture of two types of yeast from S. pastorianus, D. anomala,
and D. bruxellensis are shown in Figure 3. Large variations in current blockade were
observed in each mixture of S. pastorianus and D. anomala [Figure 3a], and S. pastorianus and
D. bruxellensis [Figure 3b]. Relatively uniform small current blockades could be observed
in the mixture of D. anomala and D. bruxellensis [Figure 3c]. The cell distribution on the
Ip-td scatter plot by RPM analysis of cell mixture and single measurement [Figure 2b] is
very similar and has high applicability of RPM for accurate discrimination of S. pastorianus
from Dekkera spp. can be expected.
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Recall rates of S. pastorianus, D. anomala, and D. bruxellensis were estimated on log10Ip
to be 92.4 ± 1.9%, 54.5 ± 5.3%, and 62.6 ± 3.1%, respectively [Figure 2b and Table 1].
S. pastorianus was detected with high sensitivity. On the other hand, recall rates of S.
pastorianus, D. anomala, and D. bruxellensis were estimated to be 56.8 ± 8.9%, 19.5 ± 13.2%,
and 66.8± 5.4% on log10td, respectively. Highly sensitive detection of S. pastorianus was not
observed. By performing discriminant analysis on the log10Ip–log10td plane, a significant
improvement in the recall rate for S. pastorianus was 96.3 ± 0.8% compared to log10Ip
and log10td (McNemar test, p < 0.05). The limit of detection was 2.4%, which gave a
signal at 3SDs above the backgrounds. The accuracy of S. pastorianus identification by
PCR is reported to be 94.6% [12]. RPM can be expected to be as accurate as PCR. These
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results indicate the potential of Ip–td analysis by RPM for the quantitative detection of S.
pastorianus in solution and the accurate detection of Dekkera spp. contamination.

Table 1. Discrimination of investigated yeasts based on log10Ip acquired by RPM.

Predicted Classification

S. pastorianus D. anomala D. bruxellensis Total

A
ct

ua
lc

la
ss

ifi
ca

ti
on

S. pastorianus
376
372
361

22
28
39

2
0
0

400
400
400

Recall 92.4 ± 1.9%

D. anomala
19
25
23

242
209
203

139
166
174

400
400
400

Recall 54.5 ± 5.3%

D. bruxellensis
10
10
8

138
128
155

252
262
237

400
400
400

Recall 62.6 ± 3.1%

Discrimination of investigated yeasts based on log10td acquired by RPM.

Predicted Classification

S. pastorianus D. anomala D. bruxellensis Total

A
ct

ua
lc

la
ss

ifi
ca

ti
on

S. pastorianus
204
268
209

88
15
32

108
117
159

400
400
400

Recall 56.8 ± 8.9%

D. anomala
100
178
113

106
17

111

194
205
176

400
400
400

Recall 19.5 ± 13.2%

D. bruxellensis
73
97

101

80
13
34

247
290
265

400
400
400

Recall 66.8 ± 5.4%

Discrimination of investigated yeasts based on log10Ip–log10td acquired by RPM.

Predicted Classification

S. pastorianus D. anomala D. bruxellensis Total

A
ct

ua
lc

la
ss

ifi
ca

ti
on

S. pastorianus
383
389
384

15
11
14

2
0
2

400
400
400

Recall 96.3 ± 0.8%

D. anomala
11
12
5

252
247
243

137
141
152

400
400
400

Recall 61.8 ± 1.1%

D. bruxellensis
3
4
1

139
139
62

258
257
337

400
400
400

Recall 71.0 ± 11.5%
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3.3. Analysis of Budding S. pastorianus

In the RPM analysis for S. pastorianus, 87.6% of the waveforms [Figure 4b, blue]
were symmetrical, and 11.8% had shoulders before the peak time [Figure 4b, cyan] of
the waveform and 0.6% after [Figure 4b, purple]. As shown in Figure 1a, budding was
observed in some cells. Budding was observed in 11.9% of S. pastorianus on microscopic
images (data not shown), which is close to the appearance rate of the shoulder-shaped
waveform in the RPM.
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Figure 4. (a) Geometric structure modeled in a cylindrical coordinate system. r, θ, and z indicate coordinate, azimuthal angle,
and axial coordinate, respectively. The color scale at the right represents the electric potential. (b) Measured symmetric
waveform (blue), waveform with the shoulder before peak time (cyan), and waveform with a shoulder after peak time
(purple). (c) Simulated model of passing through the pore of the nonbudding cell (i) and budding cell with daughter in
front of (ii) or behind (iii) mother cell. (d) Simulated waveforms of the nonbudding cell (i), budding cell with daughter in
front of (ii) or behind (iii) mother cell.

We simulated whether the shoulder shape of the waveform shows budding by using
multiphysics simulations. The size parameter Lx for the yeast model is a variable that
defines the distribution of Vc, Vs, ci, p, and U, including j and ρ in Equations (1)–(4), and
affect I in Equation (5) [28,29]. In Figure 4c, the blue ellipsoid with La = 6.9 µm on the
major axis and Lb = 5.6 µm on the minor axis represents a nonbudding S. pastorianus (i).
The budded S. pastorianus (cyan and purple) was modeled by merging a bud (daughter
cell) to the forward and backward of the mother cell (ii and iii). The sizes of the mother
cell (La and Lb) and those of daughter cells (La’ = 5.0 µm and Lb’ = 4.1 µm for cyan, and
La’ = 5.6 µm and Lb’ = 4.5 µm for purple) were assumed from the microscopic images.
Figure 4d shows the change in I during the yeast z-position displacement of zyst = 40
to −40 µm. The peak of the current blockade appeared at zyst = 0 µm [Figure 4d, i–iii].
The gap of the pore by passing through cells was minimized in the cell model size of La
and Lb at zyst = 0 µm [Figure 4c, i–iii]. In contrast to the symmetric shape of (d, i), the
shoulder appeared at zyst > 0 for (d, ii) and zyst < 0 for (d, iii). These corresponded to the
passage of the budded S. pastorianus model through the pore in the order of daughter–
parent (c, ii) or parent-daughter (c, iii), and the appearance of the shoulder was related



Biosensors 2021, 11, 272 9 of 10

to the daughter cell size. The simulated waveforms [Figure 4d] were in good agreement
with the experimentally measured waveforms [Figure 4b]. Budding S. pastorianus can
be quantitatively detected by measuring the shouldered waveform of the current ionic
blockade. The contributions of the size and orientation of yeasts to the waveform can
explain the RPM for the investigated Dekkera spp., in which clear shoulders were not seen.
Dekkera spp. has an elongated spindle shape, and the major axis of D. anomala is larger
than the pore diameter [Figure 1b,c]. This restricts the orientation of those during passage
through the pore in the longitudinal direction, and the cell passes through the pores with its
major axis parallel to the z-axis. Since the minor axis of Dekkera spp. is apparently smaller
than that of S. pastorianus [Figure 1a–c], their obtained Ip values obtained are smaller than
those of S. pastorianus [Figure 1e–g]. The current resolution to discriminate the budding
cells in Dekkera spp. may be insufficient by the RPM analysis employed in this study. A
smaller-sized pore is necessary to improve the resolution for analyzing the budding of
Dekkera spp. These results indicate the potential application of RPM for the monitoring
of growth viability and fermentation of yeasts by the quantitative detection of budding
cells [30–32].

4. Conclusions

In this study, we demonstrated the potential of RPM analysis using a micropore device
with a 10-µm diameter pore for accurate discrimination of S. pastorianus from Dekkera
spp. by measuring multiple parameters such as cell size, and the quantitative detection
of budding S. pastorianus by evaluating the shape of the waveform of the current ionic
blockade. We demonstrated the proof-of-concept of RPM for the detection of Dekkera
spp. contamination in S. pastorianus and for monitoring the fermentation of S. pastorianus
through the quantitative detection of budding cells.
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