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Abstract

The hippocampus is a key brain region for the storage and retrieval of episodic memories, but how it performs this function

is unresolved. Leading theories posit that the hippocampus stores a sparse representation, or “index,” of the pattern of

neocortical activity that occurred during perception. During retrieval, reactivation of the index by a partial cue facilitates the

reactivation of the associated neocortical pattern. Therefore, episodic retrieval requires joint reactivation of the hippocampal

index and the associated neocortical networks. To test this theory, we examine the relation between performance on a

recognition memory task requiring retrieval of image-specific visual details and feature-specific reactivation within the

hippocampus and neocortex. We show that trial-by-trial recognition accuracy correlates with neural reactivation of low-level

features (e.g., luminosity and edges) within the posterior hippocampus and early visual cortex for participants with high

recognition lure accuracy. As predicted, the two regions interact, such that recognition accuracy correlates with hippocampal

reactivation only when reactivation co-occurs within the early visual cortex (and vice versa). In addition to supporting

leading theories of hippocampal function, our findings show large individual differences in the features underlying visual

memory and suggest that the anterior and posterior hippocampus represents gist-like and detailed features, respectively.

Key words: neocortex, MVPA, memory, hippocampus, fMRI

Introduction

The ability to mentally re-experience vivid imagery from a past

event is a defining feature of episodic memory. A large body

of evidence indicates that vivid episodic recollection is imple-

mented by the reactivation of neural activity that occurred dur-

ing the recalled episode—particularly within modality-specific

neocortical regions, e.g., the visual cortex for visual memories

(Buchsbaum et al. 2012; Kuhl et al. 2012; Johnson and Johnson

2014; St-Laurent et al. 2014; Naselaris et al. 2015; Wing et al. 2015;

Bone et al. 2019; Bone et al. 2020). Leading theories of hippocam-

pal function posit that it mediates neocortical reactivation by

storing a compressed representation, or “index,” of the neocorti-

cal activity that occurred during perception, thereby facilitating

the encoding of arbitrary associations between an event’s con-

stituent features that can later be retrieved by the reactivation

of a subset of the encoded features (Teyler and DiScenna 1986;

McClelland et al. 1995; Nadel et al. 2000; Kumaran et al. 2016; Sek-

eres et al. 2018; Barron et al. 2020). Despite being a key element of

current theories of episodic memory and hippocampal function,
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direct evidence for the belief that episodic memories arise from

the interaction of hippocampal and neocortical representations

of the same information remains limited in humans.

Due to the anatomical position of the hippocampus near the

end of the ventral visual pathway, it is generally assumed that

the constituent features directly indexed by the hippocampus

are limited to “high-level” representations, such as object cate-

gory and the spatiotemporal relations between objects (Barron

et al. 2020). However, humans have the capacity to vividly and

accurately reconstruct a past visual experience from the original

perspective—which is severely compromised with damage to

the hippocampus (Tulving 1993; Rubin et al. 2003). High-level

representations capture statistical regularities shared across cat-

egory members, so they generally lack the event-specific infor-

mation that would be required for vivid and accurate visual

recall, such as object pose and lighting. Low-level features (e.g.,

edges, luminosity) are not abstracted to the same extent as high-

level features, so indexing neocortical activity representing a

sparse set of low-level features, in addition to high-level features,

would provide the information necessary to constrain memory

reactivation to be specific to the past event. Therefore, if the

hippocampus supports detailed episodic memory, then retrieval

should be facilitated by reactivation of a hippocampal network

that indexes neocortical activity representing low-level visual

features—particularly within the early visual cortex.

The patterns that can be indexed and the features that they

represent are determined by the physical connections between

the hippocampus and neocortex. This connectivity varies along

the longitudinal axis, with the posterior hippocampus (pHC)

reciprocally linked to sensory regions of the posterior neocortex,

and the anterior hippocampus (aHC) connected to anterior neo-

cortical structures implicated in the representation of schemas

(Kier et al. 2004; Catenoix et al. 2011; Poppenk and Moscovitch

2011; Poppenk et al. 2013). Based on differences in connectivity

and an approximately linear increase in receptive field size

(Kjelstrup et al. 2008) along the hippocampal longitudinal axis,

researchers (Poppenk et al. 2013; McCormick et al. 2015) postulate

that the pHC indexes the fine-grained perceptual features of

an event, which constitute vivid, perceptually rich memories,

whereas the aHC indexes coarse-grained features,which support

gist-like memories. Although the bulk of experimental evidence

supports this hypothesis (Evensmoen et al. 2015; Schlichting

et al. 2015; Brunec et al. 2018; Sekeres et al. 2018; Grady 2020),

at least one recent finding implicates the aHC and pHC in the

representation of detailed and gist-like memories, respectively

(Dandolo and Schwabe 2018).

The current experiment addresses three questions: First,

we ask whether detailed and accurate visual memory is

associated with hippocampal reactivation of neural activity

representing visual features—particularly low-level features.

Second, is detailed visual memorymore strongly associated with

reactivation within the pHC than the aHC? And third, does the

association between memory performance and hippocampal

reactivation of low-level visual features depend upon concurrent

reactivation of the same features within the visual cortex, as

predicted by the hippocampus’s role in indexing neocortical

activity?

To this end, we combined functional magnetic resonance

imaging (fMRI) and measures of neural reactivation applied

to a challenging recall and recognition task. We defined

reactivation in two ways: namely, image-specific and feature-

specific reactivation. Image-specific reactivation refers to

multivoxel reactivation of neural activity that occurred during

perception of specific images (themost common approachwithin

the memory reactivation literature), whereas feature-specific

reactivation refers to reactivation of neural activity that occurred

during perception of specific features shared across images.

Cross-validation is used to exclude the encoding trials of the

target image from the feature-specific training set, so the training

sets for the two measures are different. Features were extracted

from layer node activations of the VGG16 deep neural net

(DNN) (Simonyan and Zisserman 2014). Activations from the

convolutional layers (1–13), and the fully connected layers (14–16)

were used, corresponding to low-visual (edges and luminosity;

1–4), middle-visual (simple object parts and patterns; 5–9), high-

visual (complex object parts, e.g., faces; 10–13) and semantic

(object category; 14–16) features, respectively. Because feature-

specific reactivation is trained across images (excluding the

target/cued image), the method requires neural representations

of visual features to be at least partially shared between images.

This would not be possible if memories with shared features are

represented by non-overlapping neural patterns (Yassa and Stark

2011). Findings indicate that similar events are represented by

partially overlapping neural patterns within the hippocampus,

and that the degree of representational overlap varies between

hippocampal subfields (Bakker et al. 2008; Yassa and Stark 2011;

Rolls 2013; Berron et al. 2016), so feature-specific reactivation

should be detectable within the hippocampus.

The experiment (see Bone et al. 2020, which addressed neo-

cortical reactivation using the same experimental data) had two

video viewing runs, used to train the feature-specific encoding

models, and three sets of alternating encoding and retrieval runs

(Fig. 1). During encoding runs participants memorized a set of

thirty color images (per run) while performing a 1-back task. In

the following retrieval runs, participants’ recall and recognition

memory of the images was assessed. Neural reactivation was

measured while participants visualized a cued image within a

light-gray rectangle, followed by a memory vividness rating. An

image was then presented that was either identical to the cued

image or a similar lure, and the participants judgedwhether they

had seen the image during encoding and provided a confidence

rating. Critically, the lure images carried the semantic and visual

gist of the cued images but had different fine-grained details (see

Supplementary Fig. 1 for example image pairs). Consequently,

accuracy on the recognition task served as ameasure of detailed,

rather than gist-like, memory.

We found that the within-subject correlation between

recognition accuracy and image-specific reactivation during

recall was significantly greater within the pHC relative to the

aHC for individuals with high lure accuracy. Feature-specific

reactivation during recall produced a similar result, with the

correlations limited to visual features (i.e., excluding semantic

features). Moreover, low-level visual reactivation within the

pHC positively interacted with low-level visual reactivation

within the calcarine sulcus, indicating that the correlation

between recognition accuracy and hippocampal reactivation

depended upon reactivation of the same information co-

occurring within the early visual cortex (and vice-versa). Overall,

our results show that hippocampal representations extend to

low-level visual features, and we confirm that the precision

of these representations (including low-, mid-, and high-level

visual features) varies along the long-axis, such that gist-like

and detailed representations occur within the aHC and pHC,

respectively. Our findings also expand upon previous work (Bone

et al. 2020) by showing that individual differences in the features

underlying visual memory extend to the hippocampus. Finally,

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab045#supplementary-data
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Figure 1. Procedure. Alternating image encoding and retrieval tasks. During encoding, participants performed a 1-back task while viewing a sequence of color

photographs accompanied by matching auditory labels. During retrieval, participants 1) were cued with a visually-presented label, 2) retrieved and maintained a mental

image of the associated photograph over a 6-s delay, 3) indicated the vividness of their mental image using 1–4 scale, 4) decided whether a probe image matched the

cued image, and 5) entered their confidence rating with respect to the old/new judgment. Due to copyright concerns, images used in the study could not be included in

the figure. The images depicted in the figure are for explanatory purposes only.

our results support leading theories that claim the hippocampus

implements episodic recall by storing and reactivating a sparse

index of neocortical activity.

Materials and Methods

Participants

Thirty-seven right-handed young adultswith normal or corrected-

to-normal vision and no history of neurological or psychiatric

disease were recruited through the Baycrest subject pool, tested,

and paid for their participation. Informed consent was obtained,

and the experimental protocol was approved by the Rotman

Research Institute’s Ethics Board. Subjects were either native or

fluent English speakers and had no contraindications for MRI.

Data from 12 of these participants was excluded from the final

analyses for the following reasons: excessive head motion (5;

removed if >5 mm within run maximum displacement in head

motion), fell asleep (2), did not complete experiment (3), trial

labeling error (1), second video runwas cut short due to technical

difficulties (1). Thus, 25 participants were included in the final

analysis (13 males and 12 females, 20–32 years old).

Stimuli

In total, 111 colored photographs (800 by 600) were gathered

from online sources. For each image, an image pair was acquired

using Google’s similar image search function, for a total of 111

image pairs (222 images). Twenty-one image pairs were used

for practice, and the remaining 90 were used during the in-

scan encoding and retrieval tasks (see Supplementary Fig. 1

for example image pairs). Each image was paired with a short

descriptive audio title in a synthesized female voice (https://neo

speech.com; voice: Kate) during encoding runs; this title served

as a visually presented retrieval cue during the in-scan retrieval

task. Two videos used for model training (720 by 480 pixels; 30

fps; 10 m 25 s and 10m 35 s in length) comprised a series of short

(∼4 s) clips drawn from YouTube and Vimeo, containing a wide

variety of themes (e.g., still photos of bugs, people performing

manual tasks, animated text, etc.). One additional video cut from

“Indiana Jones: Raiders of the Lost Ark” (1024 by 435 pixels;

10 m 6 s in length) was displayed while in the scanner, but the

associated data were not used in this experiment because the

aspect ratio (widescreen) did not match the images.

Procedure

Before undergoing MRI, participants were trained on a practice

version of the task incorporating 21 practice image pairs. Inside

the MRI scanner, participants completed three video viewing

runs and three encoding-retrieval sets. The order of the runs was

as follows: first video viewing run (short clips 1), second video

viewing run (short clips 2), third video viewing run (Indiana Jones

clip), first encoding-retrieval set, second encoding-retrieval set,

third encoding-retrieval set. A high-resolution structural scan

was acquired between the second and third encoding-retrieval

sets, providing a break.

Video viewing runs were 10 m 57 s long. For each run, par-

ticipants were instructed to pay attention while the video (with

audio) played within the center of the screen. The order of the

videos was the same for all participants.

Encoding-retrieval sets were composed of one encoding run

followed by one retrieval run. Each set required the participants

to first memorize and then recall 30 images drawn from 30

image pairs. The image pairs within each set were selected

randomly, with the constraint that no image pair could be used

in more than one set. The image selected from each image pair

to be presented during encoding was counterbalanced across

subjects. This experimental procedure was designed to limit the

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab045#supplementary-data
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concurrent memory load to 30 images for each of three consecu-

tive pairs of encoding-retrieval runs.

Encoding runs were 6 m 24 s long. Each run started with

10s during which instructions were displayed on-screen. Trials

began with the appearance of an image in the center of the

screen (1.8 s), accompanied by a simultaneous descriptive audio

cue (e.g., a picture depicting toddlers would be coupled with the

spoken word “toddlers”). Images occupied 800 by 600 pixels of

a 1024 by 768 pixel screen. Between trials, a crosshair appeared

centrally (font size= 50) for 1.7 s. Participants were instructed

to pay attention to each image and to encode as many details

as possible so that they could visualize the images as precisely

as possible during the imagery task. The participants also per-

formed a 1-back task requiring the participants to press “1” if

the displayed image was the same as the preceding image, and

“2” otherwise. Within each run, stimuli for the 1-back task were

randomly sampled with the following constraints: 1) each image

was repeated exactly four times in the run (120 trials per run;

360 for the entire session), 2) there was only one immediate

repetition per image, and 3) the other two repetitions were at

least 4 items apart in the 1-back sequence.

Retrieval runs were 9 m 32 s long. Each run started with

10s during which instructions were displayed on-screen. Thirty

images were then cued once each (the order was randomized),

for a total of 30 trials per run (90 for the entire scan). Trials

began with an image title appeared in the center of the screen

for 1 s (font =Courier New, font size= 30). After 1 s, the title was

replaced by an empty rectangular box shown in the center of the

screen (6 s), and whose edges corresponded to the edges of the

stimulus images (800 by 600 pixels). Participants were instructed

to visualize the image that corresponded to the title as accurately

as they could within the confines of the box. Once the box disap-

peared, participants were prompted to rate the subjective vivid-

ness (defined as the relative number of recalled visual details

specific to the cued image presented during encoding) of their

mental image on a 1–4 scale (1 = a very small number of visual

details were recalled, 4 =a very large number of visual details

were recalled) (3 s) using a four-button fiber optic response box

(right hand; 1 = right index finger; 4 = right little finger). This was

followed by the appearance of a probe image (800 by 600 pixels)

in the center of the screen (3 s), which was either the same as

or similar to the trial’s cued image (i.e., either the image shown

during encoding or its pair). While the image remained on the

screen, the participants were instructed to respond with “1” if

they thought that the image was the one seen during encoding

(old), or “2” if the image was new (responses made using the

response box). Following the disappearance of the image, partic-

ipants were prompted to rate their confidence in their old/new

response on a 1–4 scale (2 s) using the response box. Between

each trial, a crosshair (font size= 50) appeared in the center of

the screen for either 1, 2 or 3 s.

Randomization sequences were generated such that both

images within each image pair (image A and B) were presented

equally often during the encoding runs across subjects. During

retrieval runs each image appeared equally often as a matching

(encode A—>probe A) or mismatching (encode A—>probe B)

image across subjects. Due to the need to remove several sub-

jects from the analyses, stimulus versions were approximately

balanced over subjects.

Setup and Data Acquisition

Participantswere scannedwith a 3.0-T SiemensMAGNETOMTrio

MRI scanner using a 32-channel head coil system. Functional

images were acquired using a multiband EPI sequence sensitive

to BOLD contrast (22× 22 cm field of viewwith a 110× 110matrix

size, resulting in an in-plane resolution of 2 × 2 mm for each of

63 2-mm axial slices; repetition time=1.77 s; echo time=30 ms;

flip angle = 62◦). A high-resolution whole-brain magnetization

prepared rapid gradient echo (MP-RAGE) 3-D T1 weighted scan

(160 slices of 1 mm thickness, 19.2× 25.6 cm field of view) was

also acquired for anatomical localization.

The experiment was programmedwith the E-Prime 2.0.10.353

software (Psychology Software Tools, Pittsburgh, PA). Visual stim-

uli were projected onto a screen behind the scannermade visible

to the participant through a mirror mounted on the head coil.

fMRI Preprocessing

Functional images were converted into NIFTI-1 format, motion-

corrected and realigned to the average image of the first runwith

AFNI’s (Cox 1996) 3dvolreg program.Themaximumdisplacement

for each EPI image relative to the reference image was recorded

and assessed for head motion. The average EPI image was then

co-registered to the high-resolution T1-weightedMP-RAGE struc-

tural using the AFNI program align_epi_anat.py (Saad et al. 2009).

The functional data for each experimental task (video view-

ing, 1-back encoding task, retrieval task) was then projected to a

subject-specific cortical surface generated by Freesurfer 5.3 (Dale

et al. 1999). The target surfacewas a spherically normalizedmesh

with 32000 vertices that was standardized using the resampling

procedure implemented in the AFNI program MapIcosahedron

(Argall et al. 2006). To project volumetric imaging data to the

cortical surface we used the AFNI program 3dVol2Surf with the

“average” mapping algorithm, which approximates the value at

each surface vertex as the average value among the set of voxels

that intersect a line along the surface normal connecting the

white matter and pial surfaces.

The three video scans (experimental runs 1–3), because

they involved a continuous stimulation paradigm, were directly

mapped to the surface without any pre-processing to the

cortical surface. The three retrieval scans (runs 5, 7, 9) were

first divided into a sequence of experimental trials with each

trial beginning (t=−2) 2 s prior to the onset of the retrieval cue

(verbal label) and ending 32 s later in 2-s increments. These

trials were then concatenated in time to form a series of 90

trial-specific time-series, each of which consisted of 16 samples.

The resulting trial-wise data blocks were then projected onto

the cortical surface. To facilitate separate analyses of the “recall”

and “old/new judgment” retrieval data, a regression approach

was implemented. For each trial, the expected hemodynamic

response associated with each task was generated by convolving

a series of instantaneous impulses (i.e., a delta function) over

the task period (10 per second; imagery: 61; old/new: 31) with

the SPM canonical hemodynamic response. Estimates of beta

coefficients for each trial and task were computed via a separate

linear regression per trial (each with 16 samples: one per time

point), with vertex activity as the dependent variable, and the

expected hemodynamic response values for the “recall” and

“old/new judgment” tasks as independent variables. The “recall”

beta coefficients were used in all subsequent neural analyses.

Data from the three encoding scans (runs 4, 6, 8) were first

processed in volumetric space using a trial-wise regression

approach, where the onset of each image stimulus was modeled

with a separate regressor formed from a convolution of the

instantaneous impulse with the SPM canonical hemodynamic

response. Estimates of trial-wise beta coefficients were then
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computed using the “least squares sum” (Mumford et al. 2012)

regularized regression approach as implemented in the AFNI

program 3dLSS. The 360 (30 unique images per run, 4 repetitions

per run, 3 total runs) estimated beta coefficients were then

projected onto the cortical surface with 3dVol2Surf.

Hippocampal ROI Definition

To define anterior and posterior hippocampal ROIs, we used the

Freesurfer’s (version 5.3) automated parcellation of the left and

right hippocampi on the T1-weighted image of each participant.

Based on the finding that receptive field size varies linearly

along the longitudinal axis in rodents (Kjelstrup et al. 2008),

we expected that the level of detail represented would gradu-

ally increase from the anterior to posterior potions of the hip-

pocampus in humans. Consequently, the precise boundaries of

the “aHC” and “pHC” were not considered to be critical, so the

left and right hippocampal ROIs were equally divided into five

sections along the antero-posterior axis, yielding five ROIs per

hemisphere. These ROIs were then used as masks to extract

time-series from the pre-processed and co-registered fMRI data.

We used five equal longitudinal sections because that would

allow us to exclude the middle (to reduce signal bleed between

the regions and increase the expected difference between them),

while maintaining a reasonable number of voxels for decod-

ing when the two posterior and anterior regions are grouped

together.

Deep Neural Network Image Features

We used the pretrained TensorFlow implementation of the

VGG16 deep neural network (DNN) model (Simonyan and

Zisserman 2014; see http://www.cs.toronto.edu/&#x007E;frossa

rd/post/vgg16 for the implementation used). Like AlexNet (the

network used in previous studies, e.g., Güçlü and van Gerven

2015), VGG16 uses Fukushima’s (1980) original visual-cortex

inspired architecture, but with greatly improved top-5 (out of

1000) classification accuracy (AlexNet: 83%, VGG16: 93%). The

network’s accuracy was particularly important for this study

because we did not hand-select stimuli (images and video

frames) that were correctly classified by the net. The VGG16

model consists of a total of thirteen convolutional layers and

three fully connected layers. 90 image pairs from the memory

task and 3775 video frames (3 frames per second; taken from

the two short-clip videos; video 1: 1875 frames; video 2: 1900

frames; extracted using “Free Video to JPG Converter” https://

www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Conve

rter.htm) were resized to 224×224 pixels to compute outputs

of the VGG16 model for each image/frame. The outputs from

the units in all layers were treated as vectors corresponding

to low-level visual features (layers 1–4), mid-level visual features

(layers 5–9), high-level visual features (layers 10–13) and semantic

features (layers 14–16).

Convolutional layers (layers 1–13) were selected to repre-

sent visual features because they are modeled after the struc-

ture of the visual cortex (Fukushima 1980), and previous work

showed that the features contained within the convolutional

layers of AlexNet (which has a similar architecture to VGG16)

corresponded to the features represented throughout the visual

cortex (Güçlü and van Gerven 2015). The layer activations were

visually inspected to confirm whether they represent the appro-

priate features.The low-level layerswere required to have similar

outputs to edge filters. Layers 1–4 best fit that description. The

high-level layer was required to have features that selectively

respond to complex objects (e.g., faces). Layers 10–13 contained

such features. There were no a priori demands on the type of

features represented by the middle layer, so layers 5–9 were

selected. We used the fully connected layers (14–16) to approxi-

mate semantic features because, unlike the convolutional layers,

they are not modeled upon the visual cortex. Instead, the fully

connected layers are designed to learn features (derived from

high-level visual features in layer 13) that directly contribute to

the semantic classification of images.

To account for the low retinotopic spatial resolution resulting

from participants eye movements, the spatial resolution of the

convolutional layers (the fully connected layers have no explicit

spatial representation) was reduced to 3 by 3 (original resolution

for layers 1–2: 224 by 224; layers 3–4: 112 by 112; layers 5–7: 56 by

56; layers 8–10: 28 by 28; layers 11–13: 14 by 14). Convolutional

layer activations were log-transformed to improve prediction

accuracy (Naselaris et al. 2015).

Encoding–Decoding Analysis for Feature-Specific
Reactivation

Our feature-specific reactivation measure is based on a method

(Naselaris et al. 2015) involving two steps, an encoding step and a

decoding step. The goal of the encoding step is to predict activity

for each voxel when viewing or recalling an image based upon

the relationship (at perception) between DNN feature activations

(from a given layer) and neural activity associated with the target

image.Once trained, a single encodingmodel takes DNN features

from one layer of the network as the input and outputs the

predicted activity for one voxel.Multiplemodels are used to cover

all voxels and layers.

The goal of the decoding step is to measure reactivation of

feature-specific neural activity patterns for each retrieval trial

and feature-level. This is accomplished by correlating (over vox-

els within a ROI) the actual neural activity pattern during recall

with the encoding models’ (layer-specific) predictions for each

encoded image (i.e., the particular combination of features com-

prising the image) and then comparing how strong the corre-

lation with the target/cued image prediction is relative to all

the non-target image predictions using a rank measure. A final

additional step of residualization is used to remove trial-by-trial

variance of the reactivation measure (from the decoding step)

that is shared by other feature levels and between the aHC and

pHC.The three steps are described inmore detail in the following

three sections.

Feature-Specific Encoding Model

Separate encoding models were estimated for all combinations

of subject, feature level and brain surface vertex (Naselaris et al.

2015). Let vit be the signal fromvertex iduring trial t. The encoding

model for this vertex for a given feature level, l, is:

vit = hTflt + ǫ (1)

Here, flt is a 100×1 vector of 100 image features from the

layer of VGG16 representing the target feature level, l, associated

with the current trial/image, t (only the 100 features from layer l

with the largest positive correlations with the vertex activity, vi,

were selected to make the computation tractable. Correlations

were performed immediately before each non-negative lasso

http://www.cs.toronto.edu/&#x007E;frossard/post/vgg16
http://www.cs.toronto.edu/&#x007E;frossard/post/vgg16
https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
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regression using data from the movie and encoding tasks), h

is a 100× 1 vector of model parameters that indicate the vox-

el/vertex’s sensitivity to a particular feature (the superscript T

indicates transposition) and ǫ is zero-mean Gaussian additive

noise.

The model parameters h were fit using non-negative lasso

regression (R package “nnlasso”; Mandal and Ma 2016) trained

on data drawn from the encoding and movie viewing tasks

(excluding the Indiana Jones video because its widescreen aspect

ratio differed significantly from the encoded images) using 3-

fold cross validation over the encoding data (cross validationwas

performed over images, so trials containing presentations of the

to-be-predicted image were not included in the training set; all

movie data was used in each fold). The non-negative constraint

was included to reduce the possibility that a complex linear

combination of low-level features may approximate one or more

high-level features. The regularization parameter (lambda) was

determined by testing 5 log-spaced values from approximately

1/10000 to 1 (using the nnlasso function’s path feature). For each

value of the regularization parameter, the model parameters h

were estimated for each vertex and then prediction accuracy

(sum of squared errors; SSE) was measured on the held-out

encoding data. For each vertex, the regularization parameter

(lambda) that produced the highest prediction accuracy was

retained for image decoding during recall.

Image Decoding

For feature-specific reactivation, encoding models were used to

predict neural activity during recall for each combination of sub-

ject, feature-level, ROI, and retrieval trial (148 cortical FreeSurfer

ROIs and 10 hippocampal ROIs). The accuracy of this prediction

was assessed as follows: 1) for each combination of subject,

feature-level, and ROI, the predicted neural activation patterns

for the 90 images viewed during the encoding task were gener-

ated using a model that was trained on the movie and encod-

ing task data, excluding data from encoding trials wherein the

predicted image was viewed using 3-fold cross validation; 2)

for each retrieval trial, the predictions were correlated (Pear-

son correlation across vertices within the given ROI) with the

observed neural activity during recall resulting in 90 correlation

coefficients per trial. 3) For each retrieval trial, the 90 correlation

coefficients were ranked in descending order, and the rank of

the prediction associated with the recalled image was recorded

(1=highest accuracy, 90= lowest accuracy). 4) This rank was then

subtracted from the mean rank (45.5) so that 0 was chance, and

a positive value indicated greater-than-chance accuracy for the

given trial (44.5 =highest accuracy, −44.5 = lowest accuracy). 5)

The ranks were placed into four groups by layer (1–4, 5–9, 10–

13, 14–16) and averaged together within each group, reducing the

feature-levels from 16 to 4.

For image-specific reactivation, a similar decoding method

was used (steps 1–4 ignoring references to feature-levels), except

the predicted neural activation patterns for the 90 images were

the average activation patterns (over four trials) when the partic-

ipant viewed each image during encoding.

The reactivation results were averaged over bilateral ROI pairs

(for cortical and hippocampal ROIs) to produce reactivation val-

ues for 74 bilateral cortical ROIs, and 5 bilateral hippocampal

ROIs. To acquire anterior and posterior hippocampal reactivation

values, the two most anterior and the two most posterior hip-

pocampal ROIs (the middle ROI was not included) were averaged

together, respectively.

Removing Shared Variance Between ROIs and Feature Levels

To remove the shared variance between feature levels and the

anterior and posterior hippocampus for the within-subject anal-

yses, residuals extracted from linear models were used in the

place of the reactivation measure. Linear models were run for

all combinations of ROI and feature-level. For image-specific

reactivation within the hippocampus, trial-by-trial reactivation

within the aHC (pHC) was the DV and reactivation within the

pHC (aHC) was the IV. For feature-specific reactivation within

the neocortex, reactivation of the target feature level was the DV

and reactivation of the three non-target feature levels were three

IVs. For feature-specific reactivation within the hippocampus,

reactivation of the target feature level within the aHC (pHC) was

the DV, reactivation of the three non-target feature levels within

the aHC (pHC) were three IVs, and reactivation of all feature

levels within the pHC (aHC) were four IVs. The residuals from the

models were used asmeasures of feature-specific reactivation in

all within-subject analyses, replacing the reactivation measures

used as the DVs.

Bootstrap Statistics

For the within-subject LME models, confidence intervals and P-

values were calculated with bootstrap statistical analyses (1000

samples) using the BootMer function (Bates et al. 2015). For

the between-subject linear models, confidence intervals and P-

values were generated with bootstrap statistical analyses (1000

samples) with random sampling over subjects.

Results

Recognition Accuracy

Recognition accuracy, averaged across participants, was 83.3%

(SD=6.8%; chance=50%). Accuracy on old and lure trials was

81.7% (SD=9.8%) and 85.0% (SD=10.7%), respectively, with no

significant difference in accuracy between the two conditions

(t(24) =−1.07, P=0.295, paired samples, two-tailed t-test) (Sup-

plementary Fig. 2). Participants failed to respond within the 3 s

old/new response period on 1.0% (SD=1.5%) of trials. Those trials

were classified as incorrect.

Recognition Accuracy and Hippocampal Reactivation
during Recall

To determine whether detailed low-level visual features are rep-

resented by the hippocampus—particularly the pHC—we first set

out to examine the relationship between trial-by-trial recogni-

tion accuracy and feature-specific reactivation within the aHC

and pHC. We relied upon the participants’ ability to distinguish

between theirmemory of the previously seen image and a similar

lure to indicate whether they recalled a detailed and accurate

representation of the encoded image. The lures had similar

low-level features and almost identical semantic features to

the old image, so, while low-level features would be the most

discriminative, the participant would still require a detailed and

accurate memory of those features to perform well, i.e., a “low-

resolution”/gist-like representation of low-level features would

be insufficient and potentially misleading.

We did not solely rely upon our reactivation measure to

distinguish representations with small differences because the

amount of visual detail that can be decoded from fMRI scans

is limited—even in best-case scenarios such as scans of the

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab045#supplementary-data
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neocortex during perception (Wen et al. 2018, Fig. 8). Fine dis-

tinctions between neural representations would be considerably

more difficult to detect within the hippocampus due to its size,

the variety of information stored there, and the compression that

must therefore occur within the region. Instead, the reactivation

measure was used to indicate whether participants were able to

at least reinstate an accurate “low-resolution” representation on

a given trial that was sufficient to distinguish the target image

from the other images seen during encoding. More detailed

reactivation sufficient to distinguish the target image from the

similar lure was inferred from the relation between reactivation

and recognition accuracy. A positive trial-by-trial correlation was

expected only if accurate fine-grained features were reactivated

within the ROI because reactivation of a “low-resolution” gist-

like representation alone would not be sufficient to distinguish

the old image from a lure. Conversely, a negative trial-by-trial

correlation was expected if successful reactivation of a “low-

resolution” representation was generally associated with reacti-

vation of inaccurate andmisleading fine-grained features within

the ROI, as would be the case for individuals who tend to have a

strong memory for the gist of a visual scene but a weak memory

for visual details.

Aside from allowing one to distinguish gist-like and detailed

reactivation, correlating reactivation with recognition accuracy

also accounts for memory variability, both within- and between-

subjects. Within-subjects, one must account for the fact that the

participants did not successfully reactivate the relevant neural

patterns and recall the target image on all trials. Incorrect trials

can be associated with negative reactivation (if the reactivation

pattern is closer to the non-target image patterns than the target

image pattern), resulting in a positive reactivation mean on cor-

rect trials potentially being counteracted by negative reactivation

on incorrect trials. This issue was mitigated by including trial-

by-trial recognition accuracy within our model as the depen-

dent variable (DV) and reactivation as independent variables (IV).

Between-subjects, onemust account for individual differences in

detailed episodic recall. Accounting for individual differences in

the accuracy of detailed visual memory was necessary because

the trial-by-trial correlation between recognition accuracy and

low-level visual reactivation was expected to be positive for indi-

viduals who tend to have a strong memory for visual details

and negative for individuals who tend to have a strong memory

for the gist of a visual scene but a weak memory for visual

details. Individual differences inmean accuracy, particularly lure

accuracy, were expected to relate to how successful the partici-

pant was at reactivating neural patterns representing the fine-

grained visual features that could be used to distinguish the lure

from the encoded image. We therefore accounted for individ-

ual differences in fine-grained visual memory by including an

interaction between reactivation and each subject’s mean lure

accuracy.

A binomial mixed linear effects (MLE) model was constructed

with trial-by-trial accuracy as the dependent variable (DV),

feature-specific reactivation of four feature levels (low-, mid-,

high-level visual and semantic) within the aHC and pHC as eight

independent variables (IV), the interaction between participants’

average lure accuracy and the four levels of feature-specific

reactivation within the aHC and pHC as eight IVs, probe type (old

or lure) as an IV (control), and subject and image pair as crossed

random effects (random intercept only due to model complexity

limitations). In addition to the feature-specific reactivation

model, a similar binomial MLE model was constructed in which

image-specific reactivation replaced the four levels of feature-

specific reactivation. To focus on the unique contributions of the

aHC, pHC, and the four feature levels, residuals extracted from

linear models (with the variance shared between the aHC, pHC

and the four feature levels removed) were used in the place of

the reactivationmeasures in the above analysis (see “Accounting

for Shared Variance Between ROIs and Feature Levels” in section

Materials and Methods). Residuals were used in this way for all

subsequent analysis. The coefficients from these models are

depicted in Figures 2 and 3 (feature-specific: 2a-b, 3a-c; image-

specific: 2c, 3d).

Consistent with previous findings of individual differences

within the visual cortex (Bone et al. 2020), a significant

positive interaction was found between participants’ average

lure accuracy and low-level visual reactivation within the

pHC [β =0.21, P=0.001; one-tailed 1000 sample bootstrap—all

bootstrap statistics used 1000 samples] (Fig. 2a). In contrast, the

interaction with low-level visual reactivation within the aHC

was negative [albeit not significantly so: β =−0.10, P=0.102;

two-tailed bootstrap] and significantly less than the pHC

interaction [P=0.001; paired-samples one-tailed bootstrap].

A qualitative examination of the interaction coefficients in

Figure 2a indicates that this relationship between the pHC

and aHC is consistent across visual feature levels. To assess

this trend quantitatively, we averaged the coefficients across

feature levels and found that the averaged pHC interaction

coefficient was significantly greater than zero and the aHC

coefficient [pHC: β =0.09, P=0.045; one-tailed bootstrap; aHC:

β =−0.08, P=0.112; two-tailed bootstrap; difference: P=0.010;

paired-samples one-tailed bootstrap] (Fig. 2b). Qualitatively

similar albeit quantitatively weaker interaction coefficients were

found using the image-specific reactivationmodel [pHC: β =0.07,

P=0.120; one-tailed bootstrap; aHC: β =−0.07, P=0.204; two-

tailed bootstrap; difference: P=0.042; paired-samples one-tailed

bootstrap] (Fig. 2c). Overall, these findings reveal pronounced

individual differences, which suggest that reactivation within

the posterior hippocampus, particularly low-level visual reacti-

vation, ismore strongly associatedwith recognition performance

for participants with high lure accuracy.

To account for these striking individual differences, the par-

tial regression coefficients for the relation between recognition

accuracy and neural reactivation were assessed for participant

lure accuracy one standard deviation above average (95%; Fig. 3a)

and one standard deviation below average (75%; Fig. 3b). We first

examine the results for individuals with high lure accuracy

(Fig. 3a). As hypothesized, the low-level visual reactivation

coefficient within the pHC was significantly greater than zero

and was also significantly greater than the corresponding aHC

coefficient [pHC: β =0.20, P=0.021; one-tailed bootstrap; aHC:

β =−0.18, P=0.076; two-tailed bootstrap; pHC—aHC: P=0.006;

paired-samples one-tailed bootstrap]. Looking beyond low-level

features, we see that the pHC coefficient was significantly

greater than zero for high-level features [β =0.26, P=0.018;

one-tailed bootstrap; FDR corrected over feature levels], and

the pHC coefficients were significantly greater than the aHC

coefficients for all feature levels [mid-level visual: P=0.022;

high-level visual: P=0.006; semantic: P=0.045; paired-samples

one-tailed bootstrap; FDR corrected over feature levels]. Qualita-

tive analysis of Figure 3a suggests that interaction coefficients

are generally positive within the pHC and negative within

the aHC. The coefficients averaged over feature levels (Fig. 3c)

confirm this trend [pHC: β =0.15, P=0.031; one-tailed bootstrap;

aHC: β =−0.18, P=0.024; two-tailed bootstrap; pHC—aHC:

P=0.004; paired-samples one-tailed bootstrap]. As with the

interaction coefficients, the image-specific reactivation model

produced qualitatively similar yet quantitatively weaker results
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Figure 2. The trail-by-trial relation between recognition accuracy and neural reactivation within the anterior and posterior hippocampus differs according to individual

differences in average lure accuracy. (a) Within-subject partial regression coefficients for the interaction between feature-specific neural reactivation and each subjects’

average recognition lure accuracy with respect to trial-by-trial recognition accuracy. (b) The coefficients in (a) averaged over feature levels. (c) The same interaction as

(a) except with item-specific (instead of feature-specific) reactivation. Error bars are 90% CIs; ∼ indicates P< 0.10, ∗ indicates P< 0.05, ∗∗P< 0.01, one-tailed bootstrap;

FDR corrected over visual feature levels except for low-level features because, in accordance with our hypotheses, low-level features were prioritized (indicated by the

red boxes).

[pHC: β =0.15, P=0.031; one-tailed bootstrap; aHC: β =−0.12,

P=0.148; two-tailed bootstrap; pHC—aHC: P=0.005; paired-

samples one-tailed bootstrap] (Fig. 3d). Taken as a whole, our

results support the claim that the pHC represents detailed low-

and high-level visual features (which were expected to facilitate

recognition accuracy), while the aHC represents more gist-like

representations (which were expected to hinder recognition

accuracy).

The above findings only held for individuals with high lure

accuracy. For individuals with low lure accuracy, we found the

opposite (Fig. 3b), i.e., the low-level visual coefficient within the

pHCwas significantly less than zero andmarginally less than the

aHC coefficient [pHC coefficient: β =−0.22, P=0.032; two-tailed

bootstrap; aHC coefficient: β =0.03, P=0.380; one-tailed boot-

strap; pHC—aHC difference: P=0.060; paired-samples two-tailed

bootstrap]. No other coefficients were significant. Our results

indicate that participants with low lure accuracy did not simply

fail to reactivate low-level visual details, but instead reactivated

inaccurate andmisleading details that hurt their performance on

the recognition task.

If individuals with low lure accuracy are unable to accurately

recall detailed low-level features within the pHC, how did they

attempt to compensate? Althoughwe see no positive coefficients

within Figure 3b that does not necessarily mean that the

participants did not recall the associated features. An alternative

explanation for the null findings is that the features were not

sufficient for the difficult recognition task, as we hypothesized

for sematic features and the gist-like features of the aHC. If

individuals with low lure accuracy relied to a greater extent

upon these suboptimal features, then we should see a negative

relationship between the participants’ average lure accuracy

and feature-specific reactivation. To test this hypothesis, a

between-subject linearmodelwas constructedwith participants’

average lure accuracy as the dependent variable (DV) and feature-

specific reactivation of the four feature levels within the aHC

and pHC as eight independent variables (IV). Reactivation values

from trials with incorrect old/new responses were excluded

because we were interested in between-subject differences in

the location (and features) of reactivation during successful

recall.

As predicted, a significantly negative coefficient was found

for low-level visual features within the aHC [β =−0.10, P=0.002;

two-tailed bootstrap], whereas the coefficient for low-level fea-

tures within the pHC trended positive [β =0.04, P=0.064; one-

tailed bootstrap; pHC—aHC: P<0.001; paired-samples one-tailed

bootstrap] (Fig. 4a). Positive coefficients were also found for mid-

level, high-level and (marginally) semantic features within the

pHC, indicating that individuals with high lure accuracy relied

to a greater extent upon representations within the pHC [mid-

level visual: β =0.05, P=0.020; high-level visual: β =0.06, P=0.008;

semantic: β =0.02, P=0.064; one-tailed bootstrap; FDR corrected

over feature levels]. The coefficients averaged over feature lev-

els (Fig. 4b) support this interpretation [pHC: β =0.04, P=0.003;

one-tailed bootstrap; aHC: β =−0.04, P=0.188; two-tailed boot-

strap; pHC—aHC: P=0.011; paired-samples one-tailed bootstrap].

As with previous results, a variant of the above model using

image-specific reactivation produced qualitatively similar yet

quantitatively weaker results [pHC: β =0.02, P=0.173; one-tailed

bootstrap; aHC: β =−0.04, P=0.092; two-tailed bootstrap; pHC—

aHC: P=0.029; paired-samples one-tailed bootstrap] (Fig. 4c). Our

findings support our hypothesis that individuals with low lure

accuracy attempted to compensate for inaccurate low-level rep-

resentationswithin the pHC by relying upon gist-like representa-

tions within the aHC, although the lack of a significantly positive

low-level aHC coefficient within Figure 3b indicates that this

strategy was unsuccessful for the current task.

Interaction Between the Hippocampus and Calcarine Sulcus

According to leading theories (Teyler and DiScenna 1986;

McClelland et al. 1995; Nadel et al. 2000; Sekeres et al. 2018),

episodic memories are encoded in distributed neural networks

comprising hippocampal and neocortical neurons. Therefore,

hippocampal reactivation should facilitate episodic recognition

accuracy only when it co-occurs within relevant neocortical

regions (and vice versa). To test this claim, a linear model was
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Figure 3. The trial-by-trial relation between recognition accuracy and neural reactivation within the anterior and posterior hippocampus for participants with low-

and high-average lure accuracy. (a) Within-subject partial regression coefficients from the same model as Figure 2 for the relation between feature-specific neural

reactivation and trial-by-trial recognition accuracy for participant lure accuracy 1 standard deviation above average (95%). (b) the same as (a) but for participant lure

accuracy 1 standard deviation below average (75%). (c) The coefficients in (a) and (b) averaged over feature levels. (d) The same coefficients as (a) and (b) except with

item-specific (instead of feature-specific) reactivation. Error bars are 90% CIs; ∗ indicates P< 0.05, ∗∗P< 0.01, one-tailed bootstrap; (∼) indicates P< 0.10, (∗) indicates

P<0.05, two-tailed bootstrap; FDR corrected over visual feature levels except for low-level features because, in accordance with our hypotheses, low-level features were

prioritized (indicated by the red boxes).

used to investigate whether a positive interaction exists between

low-level visual reactivation within the pHC and calcarine sulcus

(the neocortical region wherein V1 is concentrated; DeYoe

et al. 1996), with respect to recognition accuracy (Fig. 5a). We

focused on low-level features for this analysis because low-level

reactivation correlated with recognition accuracy (indicating

that the features are useful for the task), and it is known a

priori where low-level visual features are represented within

the neocortex. Given that participants with low lure accuracy

showed no positive relationship between recognition accuracy

and hippocampal reactivation (Fig. 3b), indicating that they were

unable to reactivate an accurate index of early visual cortical

activity, a positive interaction between the hippocampus and

calcarine sulcus was expected only for participants with high

lure accuracy.

The binomial MLE model for the interaction between the

hippocampus and calcarine sulcus consisted of trial-by-trial

accuracy as the dependent variable (DV), reactivation of all four

feature levels within the anterior and posterior hippocampus as

8 IVs, low-visual reactivation within the calcarine sulcus as an

IV, the interactions between low-visual reactivation within the

calcarine sulcus and all 8 hippocampal reactivation measures

as 8 IVs, the interactions between participants’ average lure

accuracy and all measures of reactivation (low-level within the

calcarine sulcus and all levels within the aHC and pHC) as 9

IVs, the three-way interactions between average lure accuracy,
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Figure 4. Relation between participants’ average recognition lure accuracy and neural reactivation within the hippocampus on correct trials. (a) Between-subject

partial regression coefficients for the relation between feature-specific neural reactivation within the anterior and posterior hippocampus and each subjects’ average

recognition lure accuracy. Only reactivation values on trials with correct old/new responses were included. (b) The coefficients in (a) averaged over feature levels. (c)

The same coefficients as (a) except with item-specific (instead of feature-specific) reactivation. Error bars are 90% CIs; ∼ indicates P< 0.10, ∗P<0.05, ∗∗ P<0.01, ∗∗∗

P< 0.001, one-tailed bootstrap; (∼) indicates P< 0.10, (∗∗) P< 0.01, two-tailed bootstrap; FDR corrected over visual feature levels except for low-level features because, in

accordance with our hypotheses, low-level features were prioritized (indicated by the red boxes).

low-visual reactivation within the calcarine sulcus and all 8

hippocampal reactivation measures as 8 IVs, probe type (old

or lure) as an IV (control), and subject and image pair as crossed

random effects (random intercept only due to model complexity

limitations).

Figure 5b depicts the interaction between low-level visual

reactivation within the calcarine sulcus and the hippocampus

(see Supplementary Fig. 3 for all interaction coefficients). As

predicted by the hippocampus’s role in indexing neocortical

activity, the pHC interaction coefficient was significantly

greater than zero for individuals with high lure accuracy

[pHC: β =0.24, P=0.017; aHC: β =0.12, P=0.105; one-tailed

bootstrap]. For individuals with low lure accuracy, the interaction

coefficients were approximately zero [pHC: β =0.02, P=0.466;

aHC: β =0.01, P=0.476; one-tailed bootstrap], with the pHC

coefficient marginally lower than the corresponding coefficient

for individuals with high lure accuracy [P=0.058; paired-

samples one-tailed bootstrap]. To elaborate upon the observed

pHC interaction, Figure 5c depicts the pHC partial regression

coefficients when reactivation within the calcarine sulcus is

either high (1; Z-scored) or low (−1), and Figure 5d depicts the

calcarine sulcus partial regression coefficientswhen reactivation

within the pHC is either high (1) or low (−1). For individuals with

high lure accuracy, low-level visual reactivation within both hip-

pocampal and early visual ROIs was positively associated with

recognition accuracy only when reactivation within the other

ROI was high [high reactivation in the other ROI: pHC: β =0.46,

P=0.001; calcarine sulcus: β =0.35, P=0.007; one-tailed bootstrap;

low reactivation in the other ROI: pHC: β =−0.02, P=0.890;

calcarine sulcus: β =−0.12, P=0.352; two-tailed bootstrap]. The

results indicate that trial-by-trial recognition accuracy was only

associatedwith low-level visual reactivationwhen it co-occurred

within the pHC and calcarine sulcus, thereby supporting the

claim that the hippocampus facilitates episodic memory by

storing and retrieving a representation, or “index,” of the

neocortical activity that occurred during perception.

Discussion

We investigated the relationship between feature-specific reacti-

vation within the hippocampus and neocortex and performance

on a recognition task that required retrieval of visual details.

We showed that image-specific and feature-specific reactiva-

tion within the pHC, and not the aHC, positively correlated

with recognition accuracy, indicating that the pHC indexes more

detailed features relative to the aHC. Moreover, striking indi-

vidual differences were observed such that recognition accu-

racy was positively associated with low-level visual reactivation

within the pHC for individuals with above-average recognition

lure accuracy, whereas the opposite relationship was observed

for individuals with below-average recognition lure accuracy.

Our results show that representations within the hippocampus

extend to low-level visual features, and suggest that individ-

uals with below-average recognition performance reactivated

inaccurate low-level details within the pHC (i.e., representations

with small receptive fields) and relied—ineffectually—upon the

reactivation of less detailed low-level visual features within the

aHC (i.e., representations with large receptive fields) which are

more likely to overlap with the features of the lure images. Lastly,

the correlation between recognition accuracy and low-level reac-

tivationwithin the hippocampuswas found to depend upon low-

level reactivationwithin the early visual cortex (calcarine sulcus),

and vice versa. This mutual dependence between hippocampal

and neocortical feature-specific reactivation supports the claim

of leading theories of episodic memory that the hippocampus

mediates neocortical reactivation by storing a sparse representa-

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgab045#supplementary-data
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Figure 5. Relation between recognition accuracy and low-level visual neural reactivation within the hippocampus, calcarine sulcus and their interaction during recall. (a)

Diagramof the regions of interest: CS= calcarine sulcus,HC=hippocampus.The bilateral calcarine sulcus ROI is indicated in red.The line between the twoROIs represents

the interaction between the regions. (b) Within-subject partial regression coefficients for the interaction of low-level visual reactivation within the hippocampus and

calcarine sulcus with respect to recognition accuracy. Interaction coefficients are displayed for participant lure accuracy 1 standard deviation above (95%) and below

(75%) average. (c) Within-subject partial regression coefficients from the same model as (b) for the relation between low-level visual reactivation within the posterior

hippocampus and recognition accuracy for participant lure accuracy 1 standard deviation above (95%) and below (75%) average and low-level visual reactivation within

the calcarine sulcus 1 standard deviation above and below average. (d) Within-subject partial regression coefficients from the samemodel as (b) for the relation between

low-level visual reactivation within the calcarine sulcus and trial-by-trial recognition accuracy for participant lure accuracy 1 standard deviation above (95%) and below

(75%) average and low-level visual reactivation within the posterior hippocampus 1 standard deviation above and below average.

tion, or “index,” of the pattern of neocortical activity at encoding

(Teyler and DiScenna 1986; McClelland et al. 1995; Nadel et al.

2000; Sekeres et al. 2018; Barron et al. 2020).

The fact that it was possible to detect reactivation within

the hippocampus using a model trained to recognize feature-

specific patterns shared across images strongly implies that

hippocampal indexes of different events are not entirely pattern-

separated (i.e., there must be some overlap between the indexes

of memories that share similar features), but a couple of caveats

must be considered. First, feature-specific reactivation could

potentially be detected if pattern-separated indexes of related

events (i.e., events with overlapping features, including, but not

limited to, perception of the images in the current study) are

consistently coactivated during encoding and retrieval. This

interpretation does not align with our results because coacti-

vation of indexes of similar events/images would be expected to

reduce recognition accuracy, rather than facilitate it. Second, it

may be the case that feature-specific reactivation was detected

within hippocampal subregions that contain overlapping

representations. This interpretation is supported by studies
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(Bakker et al. 2008; Rolls 2013) which suggest that pattern-

separated representations are limited to the CA3 and dentate

gyrus, whereas representations of similar events within the CA1

tend to overlap. Future work exploring feature-specific reacti-

vation within individual hippocampal subfields will be required

clarify how pattern-separation varies between subregions.

Multiple analyses, including image-specific and feature-

specific reactivation both within- and between-subject, provided

clear and consistent evidence that fine-grained visual features

are represented within the pHC, whereas less detailed features

are represented within the aHC. Although our results support

and expand upon themajority of previous research using human

and animal models (Kjelstrup et al. 2008; Evensmoen et al. 2015;

Schlichting et al. 2015; Brunec et al. 2018; Sekeres et al. 2018;

Grady 2020), not all findings in the literature are consistent

with this dichotomy. In a recent longitudinal study using a

recognition task paradigm similar to the current study’s (except

testing occurred 1 day or 28 days after encoding, and novel

non-lure images were included in the recognition test), Dandolo

and Schwabe (2018) found that detailed visual memories were

represented within the aHC, whereas gist-like memories were

represented within the pHC. The authors’ conclusion was based

upon two findings: a between-subject correlation between lure

accuracy and univariate activity within the hippocampus, and

a multivariate model comparing cross-image neural pattern

similarity for old, lure and new images. For the between-

subject univariate correlation, recognition accuracy on lure

trials positively correlated with univariate activity within the

aHC, but not the pHC. In contrast, we found that participants’

average recognition accuracy on lure trials negatively correlated

with reactivation within the aHC, and positively correlated

with reactivation within the pHC. One potential explanation for

this discrepancy is that memories may become more detailed

within the aHC, relative to the pHC, over time (1 day). However,

other work (Brunec et al. 2018) has found that representations

within the aHC are less distinct than those within the pHC for

memories encoded over periods much longer than 1 day. An

alternative explanation is that univariate activity within the aHC

during recognition may not reflect recollection of image-specific

information, and instead reflects other functions such as context

retrieval. The multivariate measure suffers from a similar issue

of interpretation. Representational similarity analysis (RSA) was

used to detect neural patterns shared between different images.

Consequently, the detected effects do not represent retrieval of

image-specific details, and instead might reflect the retrieval

of the shared encoding context during recognition. Therefore,

Dandolo and Schwabe’s (2018) univariate and multivariate

results do not address whether the pHC or aHC represent task-

relevant event-specific details, whereas our results based upon

image/feature-specific reactivation do—and support the idea

that the pHC and aHC represent detailed and gist-like memories,

respectively.

Clear individual differences were observed with respect to

the visual feature levels recalled and the detail/location of those

features. For the recollection task, results suggest that indi-

viduals with high lure accuracy relied upon detailed low- and

high-level visual reactivation within the pHC and were likely

hindered by semantic reactivation within the aHC, whereas low

lure accuracy subjects ineffectually relied upon gist-like low-

level reactivation within the aHC in an attempt to compensate

for inaccurate low-level reactivation within the pHC. Our find-

ings are consistent with and expand upon previous work by

Sheldon et al. (2016)who found that peoplewho tend to rely upon

episodic memory (i.e., memories containing spatiotemporal and

contextual details) have greater functional connectivity between

the medial temporal lobes and posterior visual regions (i.e., neo-

cortical regions predominately connected to the pHC; Poppenk

et al. 2013). In contrast, people who tend to rely upon seman-

tic memory were found to have greater functional connectivity

between themedial temporal lobes and the prefrontal cortex (i.e.,

neocortical regions predominately connected to the aHC; Pop-

penk et al. 2013). Our findings are also consistent with Armson

et al. (2019), who found that the association between eye fixation

rate during free recall and the number of episodic details recalled

was significantly greater for participants who tend to rely upon

episodic memory (trait episodic and semantic memory in both

studies was measured via questionnaire; Palombo et al. 2013). It

is reasonable to assume that the tendency to rely upon episodic

or semantic memories would have an impact on the current

study’s recognition task because the strong semantic similarity

between the encoded and lure images greatly favors episodic

memory (a fact the participants were aware of), forcing those

who tend to use semantic memory to attempt to use episodic

memory instead. It is therefore plausible that the individual

differences observedwithin our studywere driven by stable trait-

like preferences for episodic or semantic memory. If this is the

case, the current study suggests that those who favor semantic

memory may do so because they are often unable to accurately

recall detailed low-level perceptual features—possibly as a result

of limited/impaired communication between the pHC and early

visual cortex.

According to prominent theories of the role of the hippocam-

pus in episodicmemory, communication between the hippocam-

pus and neocortex is necessary for episodic retrieval, at least

before consolidation (Teyler and DiScenna 1986; McClelland et al.

1995; Nadel et al. 2000; Sekeres et al. 2018; Barron et al. 2020). The

theories posit that events are represented by unique spatiotem-

poral arrays of neocortical modules, and that sparse representa-

tions of these arrays are stored, or “indexed,”by the hippocampus

at encoding.During retrieval, the partial reactivation of an event’s

neocortical array reactivates the hippocampal index associated

with the event, which in turn reactivates the associated neo-

cortical array, thereby emulating the original experience. Joint

reactivation within the hippocampus and neocortex is therefore

required for successful episodic retrieval. While previous work

has shown that reactivation of low-level featureswithin the early

visual cortex correlates with hippocampal univariate activity

(Bosch et al. 2014), such findings indicate that the hippocam-

pus is involved in neocortical reactivation, but do not establish

the manner of its involvement. We found that detailed visual

memory recall was only associated with low-level reactivation

within the hippocampus (pHC) when reactivation of the same

low-level features co-occurred within the early visual cortex,

and vice-versa—thereby providing evidence supporting the role

of the hippocampus in indexing neocortical activity. Moreover,

because our measure of feature-specific reactivation requires

that similar features be associated with similar activity pat-

terns across events, this suggests that the hippocampus con-

tains a functionally topographic mapping of the neocortex, as

proposed by Teyler and DiScenna (1986) in their well-known

formulation of hippocampal indexing.As our findings are limited

to low-level visual features, future reactivation studies should

explore whether the observed hippocampal-neocortical interac-

tion is evident for different features in the context of different

tasks (the current task was designed to favor low-level visual

features).

To elaborate upon how our findings support neocortical

indexing by the hippocampus, consider three alternative
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outcomes of our experiment: 1) A positive correlation between

recognition accuracy and low-level visual reactivation is found

within the hippocampus but not the early visual cortex when

hippocampal low-level visual reactivation is controlled for (as it

was in our model). This would be inconsistent with neocortical

indexing as it would suggest that visual memories are stored

entirely within the hippocampus (before consolidation), and that

neocortical reactivation of recently stored visual memories is

largely epiphenomenal, i.e., feedback from the hippocampus

may result in neocortical reactivation but this reactivation

does not directly contribute to memory recall; 2) No significant

interaction between hippocampal and early visual reactivation

is found, despite reactivation within each region correlating

with recognition accuracy. This would be inconsistent with

neocortical indexing as it would indicate that hippocampal

memory representations are not dependent upon corresponding

neocortical representations (and vice-versa); 3) An interaction

is found between low-level reactivation within the early visual

cortex and high-level, but not low-level, reactivation within the

hippocampus. This would be inconsistent with hippocampal

indexing as it would suggest that high-level information stored

within the hippocampus is required to facilitate low-level cortical

reactivation (with the image-specific low-level information being

stored elsewhere, possibly within the visual cortex), rather than

low-level cortical representations being directly indexed by the

hippocampus.

Aside fromourwithin-subject findings, individual differences

provide additional support for hippocampus’s role in indexing

neocortical activity. We found that participants with low lure

accuracy showed no interaction between low-level visual reac-

tivation within the hippocampus and calcarine sulcus, i.e., there

was no correlation between recognition accuracy and low-level

reactivation within the early visual cortex, irrespective of hip-

pocampal reactivation. This finding suggests that individual dif-

ferences in recognition memory may be the consequence of a

functional disconnection between the hippocampus and neo-

cortex. Future work should investigate why some individuals

may lack the hippocampal-neocortical functional connections

that appear to be necessary for detailed and accurate episodic

memory.

Due to the relatively small size of the hippocampus and the

variety of information stored about multiple events at any one

time, it is infeasible that all low-level visual features from a

given event could be stored within the region. Therefore, some

selection process must occur that aims to maximize information

recall while minimizing the number of features stored in the

hippocampus. To address this concern, we outline an expanded

variant of the hippocampal indexing theory: Prediction error

indexing (PEI). Aside from theories of hippocampal indexing

(Teyler and DiScenna 1986; Nadel et al. 2000; Sekeres et al. 2018),

PEI incorporates ideas drawn from the complementary learn-

ing systems (CLS) theory (Kumaran et al. 2016), the predictive

coding theory (Rao and Ballard 1999; Bastos et al. 2012; Barron

et al. 2020) and the predictive, interactive multiple memory sys-

tems (PIMMS) theory (Henson and Gagnepain 2010). In short, PEI

assumes that hippocampal memory representations optimize

compression by taking advantage of the event-specific informa-

tion that overlaps with the statistical information stored within

the neocortex. This is accomplished by biasing the features that

are indexed by the hippocampus to those that are not predicted

by the neocortex at encoding, with the rest of the features recon-

structed at retrieval via neocortical inference. During episodic

memory recall, a hippocampal index of higher level features

activates the corresponding neocortical representations, which,

in turn, are used to infer lower level features, while a hippocam-

pal index of a sparse subset of lower level features serves to

constrain this inference to be specific to the recalled event.

Consequently, the indexing of higher level features takes prece-

dence over lower level features because reactivation of lower

level features is (usually) dependent upon reactivation of higher

level features. Therefore, consistent with our results, PEI predicts

thatmemory for lower level featureswill show greater variability,

both within- and between-subjects. Future work could test PEI by

associating feature-specific hippocampal reactivation with the

predictability of a stimuli’s features.

The contributions of this study were 5-fold. First, we found

evidence for low-level visual representations within the hip-

pocampus. Second, results frommultiple analyses indicated that

fine-grained and gist-like features are represented within the

pHC and aHC, respectively. Third, we found that feature-specific

representations within the hippocampus are functionally topo-

graphic and dependent upon feature-specific representations

within the neocortex, thereby providing compelling evidence

that the hippocampus facilitates episodic memory by storing a

compressed representation, or “index,” of the neocortical activity

that occurred during perception. Fourth, individual differences

in recognition lure accuracy were associated with striking differ-

ences in the relation between trial-by-trial memory accuracy and

feature-specific reactivation within and between the hippocam-

pus and neocortex, indicating that those with high (low) lure

accuracy retrieved consistently accurate (inaccurate) detailed

representations of low-level features. Fifth, we outlined a variant

of the hippocampal indexing theory, PEI, that is consistent with

our results and incorporates recent theoretical advances in the

fields of memory and perception. Overall, the current study’s

results stress the importance of conceptualizing and measur-

ing hippocampal function as part of an extended hippocampal-

neocortical network, rather than in isolation. By doing so, future

studiesmay refine our understanding of themechanisms under-

lyingmemory and reveal the causes individual differenceswithin

healthy and clinical populations.
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