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Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are 
either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules 
have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current 
knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or 
distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation 
of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the 
brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of 
both cancer and neurodegenerative disorders.
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Abbreviations
Aβ	� Amyloid-β
AD	� Alzheimer’s disease
ALS	� Amyotrophic lateral sclerosis
AMPA	� α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionate
APC/C	� Anaphase promoting complex/

cyclosome
APP	� Amyloid precursor protein
ATRA​	� All-trans retinoic acid
APL	� Acute promyelocytic leukemia
Bax	� Bcl-2 associated X
BH3	� Bcl-2 homology 3
Bim	� Bcl-2-interacting mediator of cell 

death
BimEL	� Bim-extra long
CDK	� Cyclin-dependent kinase

Chd1	� Cdc20 homologue 1
CP110	� Centrosomal protein of 110 kDa
E2F	� E2 factor
EPSCs	� Excitatory postsynaptic currents
ER	� Endoplasmic reticulum
ERK	� Extracellular signal-regulated kinase
FAK	� Focal adhesion kinase
FBXO1	� F-box only 1
FOXM1	� Forkhead box protein M1
FTD	� Frontotemporal dementia
GR	� Glutathione reductase
GSK3β	� Glycogen synthase kinase 3 beta
HD	� Huntington’s disease
HO-1	� Heme oxygenase-1
IDH1	� Isocitrate dehydrogenase 1
JNK	� C-jun N-terminal kinase
LMW	� Low-molecular-weight
LRRK2	� Leucine rich repeat kinase 2
MAPT	� Microtubule-associated protein tau
miRNA	� MicroRNA
MPP + 	� 1-Methyl-4-phenylpyridinium
MPTP	� 1-Methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine
mTOR	� Mammalian target of rapamycin
NRF2	� Nuclear factor erythroid 2 (NF-E2)-

related factor 2
NIMA	� Never in mitosis A
NMDA	� N-methyl-d-aspartate
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NQO1	� Quinone oxidoreductase 1
PARK6	� Parkinsonism associated deglycase 6
PD	� Parkinson’s disease
Pin1	� Peptidyl-prolyl cis–trans isomerase 

NIMA-interacting 1
PI3K	� Phosphoinositide 3-kinase
PINK1	� PTEN induced kinase 1
PM	� Plasma membrane
PPIase	� Peptidyl-prolyl cis–trans isomerase
PP2A	� Protein phosphatase 2A
PRDX3	� Peroxiredoxin 3
PSEN1/2	� Presenilin 1/2
PTEN	� Phosphatase and tensin homolog
ROS	� Reactive oxygen species
SCF	� Skp1–Cul1–F-box
SLBP	� Stem-loop binding protein
Smad4	� Mothers against decapentaplegic 

homolog 4
SOD	� Superoxide dismutase
TAR​	� Transactive response
TDP-43	� TAR DNA-binding protein 43
TGF-β	� Transforming growth factor β
TIAF1	� TGF-β1-induced anti-apoptotic factor
TREM2	� Triggering receptor expressed on 

myeloid cells 2
USP27	� Ubiquitin-specific peptidase 27

WWOX or WOX1	� WW domain-containing 
oxidoreductase

Zfra	� Zinc finger-like protein that regulates 
apoptosis

Introduction

Cancer and neurodegenerative diseases represent one of 
the most chronic physiological ailments. Aging, charac-
terized by the deterioration of physiological functions 
necessary for survival and fertility, is considered as a 
major risk factor for the two disorders [1–3]. Cancer 
has been associated with generalized hallmarks such as 
sustenance of proliferative signaling, evasion of growth 
suppressors, resistance to cell death, acquisition of rep-
licative immortality, induction of angiogenesis, and acti-
vation of invasion and metastasis. Interestingly, current 
research has indicated parameters such as deregulated 
cellular energetics and avoidance of immune destruc-
tion, as pertinent hallmarks. These features are effectu-
ated by genome instability, mutations and/ or tumor-pro-
moting inflammation [4–6] (Fig. 1). Neurodegeneration 
is characterized by dysfunction and loss of neurons [7], 
impairment of synaptic plasticity, proteinopathies, which 
include misfolded amyloid-β (Aβ) and tau in Alzheimer’s 
disease (AD), α-synuclein in Parkinson’s disease (PD), 

Fig. 1   Featured hallmarks of 
cancer and neurodegenerative 
diseases. Pathophysiological 
features of two representative 
age-related diseases, cancer 
and neurodegenerative diseases 
are shown. Mechanisms are 
inversely undergone in these 
two diseases to lead to cell 
survival and cell death in cancer 
and neurodegenerative diseases, 
respectively. DNA damage, 
cell cycle aberrations, redox 
imbalance, inflammation, and 
immunity are closely associated 
as emerging shared character-
istics between cancer and neuro-
degenerative diseases
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and their aggregates [8–11], as well as progressive mus-
cle atrophy or muscle wasting, which causes memory 
deficits, cognitive failures, and movement disorders [7] 
(Fig. 1).

Inverse comorbidities between cancer and neurodegen-
erative diseases have been reported by many clinical and 
epidemiological studies [12–24]. In this light, molecular 
mechanisms that operate inversely in these two disor-
ders (one leading to enhanced resistance to cell death 
and the other to a higher risk of cell death) would form 
effective means of diagnosis and prognosis at the physi-
ological level (Fig. 1). A recent study, which performed 
transcriptomic meta-analyses of three neurodegenerative 
diseases (AD, PD, and schizophrenia) and three kinds of 
cancers (lung, prostate, and colorectal cancer) reported a 
significant overlap between the genes upregulated in the 
neurodegenerative diseases and downregulated in cancer, 
and between the genes downregulated in the neurodegen-
erative diseases and upregulated in cancer [16].

Multiple signaling pathways that regulate cell death 
and survival have been well investigated in tumorigenesis, 
including DNA damage, cell cycle aberrations, inflamma-
tion, immunity, and oxidative stress; these pathways have 
now been shown to be associated with neurodegenerative 
diseases as well [18, 25–31] (Fig. 1). In addition, aber-
rant expression or mutations in genes such as α-synuclein, 
phosphatase and tensin homolog (PTEN), PTEN induced 
kinase 1 (PINK1; parkinsonism associated deglycase 
6, PARK6), DJ-1 (PARK7), leucine rich repeat kinase 2 
(LRRK2; PARK8), microtubule-associated protein tau 
(MAPT), amyloid precursor protein (APP), presenilin 
1/2 (PSEN1/2), and cyclin-dependent kinase 5 (CDK5), 
which play essential roles in neurodegeneration, are also 
observed in cancer [32].

Over the past decade, accumulating evidences have 
demonstrated an intriguing relationship between cancer 
and neurodegenerative diseases. Better understanding 
of the relationship between the two will provide novel 
avenues for the study of these age-related diseases. In 
this review, we will discuss the current knowledge on the 
shared or distinct roles of overlapping molecules that have 
been significantly correlated with the pathophysiology 
of both cancer and neurodegenerative diseases, such as 
p53, cyclin D, cyclin E, cyclin F, peptidyl-prolyl cis–trans 
isomerase (PPIase) NIMA (Never in Mitosis A)-interact-
ing 1 (Pin1), and protein phosphatase 2A (PP2A) (Fig. 2). 
In addition, we describe the inter-dependent regulation of 
brain cancers and neurodegeneration through intercellular 
communications between tumor and neuronal cells in the 
brain. Furthermore, this review provides some perspec-
tives into the application towards pharmacological thera-
peutics for both cancer and neurodegenerative diseases.

Overlapping molecules between cancer 
and neurodegenerative diseases

p53

The transcription factor p53 is an extensively studied tumor 
suppressor [33–35], and is known to be associated with 
around 50% of all human malignancies. In most of these 
cases, p53 gene has been reported to contain missense 
mutations [36–39]. The mutant p53 proteins no longer 
have tumor suppressor activity, and obtain several gain-
of-functions such as invasion [40–48], enhanced migra-
tion [42, 49–52], anchorage-independent growth [53–58], 
propagation of cell cycle [59–65], cell survival and avoid-
ance of cell death [66–76], genomic instability [77–82], and 
angiogenesis [83–85]. A commonly occurring mutant form 
of p53, p53-R273H, contributes to the impaired detoxifi-
cation of reactive oxygen species (ROS) by decreasing the 
nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2)-
mediated expression of phase 2 ROS-detoxifying enzymes, 
quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 
(HO-1), which resulted in a reduced antioxidant response 
and imbalance of redox homeostasis in lung or colon cancer 
cells [70, 86, 87] (Fig. 3). Overexpression of another mutant, 
p53-G245D, upregulated a transcription factor called fork-
head box protein M1 (FOXM1), which exerted oncogenic 
properties [88]. However, another study showed that the 
enhanced level of FOXM1 downregulates ROS levels by 
increasing antioxidant enzymes like superoxide dismutase 
(SOD) and thioredoxin-dependent peroxide reductase, 
peroxiredoxin 3 (PRDX3) [89]. These complicated results 
of mutant p53 on redox homeostasis could warrant more 

Fig. 2   Changes in overlapping molecules in cancer and neurodegen-
erative diseases. Cyclin D and cyclin E are upregulated whereas pro-
tein phosphatase 2A (PP2A) is downregulated in both diseases. p53 is 
downregulated in cancer but inversely upregulated in neurodegenera-
tive diseases. Peptidyl-prolyl cis–trans isomerase NIMA-interacting 1 
(Pin1) is mainly upregulated in cancer and Parkinson’s disease (PD) 
but downregulated in Alzheimer’s disease (AD). Cyclin F is down-
regulated in cancer, while its mutant form is found in amyotrophic 
lateral sclerosis (ALS) and frontotemporal dementia (FTD). NIMA 
never in mitosis A
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careful considerations when targeting dual factors p53 and 
redox regulation for the treatment of cancers. Furthermore, 
mutant p53 proteins are rather reluctant to degradation com-
pared to wild-type p53 proteins, and thus the accumulated 
mutant p53 proteins are often a major therapeutic target for 
cancer treatment [36, 37, 85, 90–92].

Unlike the role of p53 in cancer, the level and activity 
of p53 in neurodegenerative diseases have been shown to 
be substantially increased [93–95]. Brains of AD patients 
and model mice showed increased levels of p53 [96–99] 
and apoptotic neuronal cell death [100–102]. In double 
transgenic AD mice that express the mutants of amyloid 

precursor protein/presenilin (APP/PS) and accumulate Aβ 
[103], cerebral gray matter displayed a positive correlation 
between the p53 level and accumulated Aβ level [104]. In 
addition, the triggering receptor expressed on myeloid cells 
2 (TREM2), an AD-associated molecule, was reported to 
be upregulated positively in a p53-dependent manner 
in vitro [105]. Similar to AD, p53 level and activity were 
also increased in the brains of PD patients and model mice 
[106]. Specifically, the caudate nucleus, but not the substan-
tia nigra, putamen, and cerebral cortex, of the PD patient 
brains showed a significantly enhanced p53 protein level 
[106]. The p53-dependent apoptosis-related proteins, such 

Fig. 3   Mechanisms of overlapping molecules in cancer and neurode-
generative diseases. (Down) Mutant p53 inhibits the nuclear factor 
erythroid 2 (NF-E2)-related factor 2 (NRF2)-mediated antioxidant 
enzymes, and thus induces reactive oxygen species (ROS) production. 
Low-molecular-weight (LMW) cyclin E cannot translocate into the 
nucleus, and forms LMW cyclin E cyclin-dependent kinase 2 (CDK2) 
complex in the cytoplasm, thereby activating oncogenic functions, 
such as tumor cell invasion and metastasis. (Top left) Amyloid-β 
(Aβ), Aβ fibrils and plaques are formed from amyloid precursor pro-
tein (APP) via amyloidogenic processing. Cyclin D1 promotes tau 
phosphorylation and induces apoptosis through a caspase 3-mediated 
pathway. PP2A dephosphorylates phosphorylated tau, and glycogen 
synthase kinase 3 beta (GSK3β) phosphorylates tau. Reduced activ-

ity of superoxide dismutase (SOD) and glutathione reductase (GR) 
induces the increase of ROS production, which leads to the confor-
mational change of p53, and this unfolded p53 is also observed in 
AD. (Top right) Mutant parkin and glutamate excitotoxicity increase 
cyclin E accumulation, which induces apoptosis. In addition, p53 also 
induces the upregulation of apoptotic proteins, such as Bcl-2 associ-
ated X (Bax) and caspases 3, which is observed in the PD brain. The 
interaction between Pin1 and synphilin-1 (an α-synuclein-binding 
protein) enhances the formation of α-synuclein inclusions, and this 
α-synuclein inclusion formation can be inhibited by PP2A. ER endo-
plasmic reticulum, HO-1 heme oxygenase-1, NQO1 quinone oxidore-
ductase 1, PM plasma membrane. Molecule name marked in purple 
indicates studies that involve exogenous proteins
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as Bcl-2 associated X (Bax) and caspase-3, were increased 
in the PD brains [107, 108].

Genetic mutations in p53 have not been reported for neu-
rodegenerative diseases. However, functionally compro-
mised variants of p53 such as those with an altered tertiary 
structure (called unfolded p53 or conformational mutant 
p53) have been distinctly observed in AD patients [109, 110] 
and in older APPswe/PS1-A246E AD transgenic mice [111], 
but not in non-AD individuals, including PD patients [109]. 
In human neuroblastoma cell line SH-SY5Y overexpressing 
APP, an increased level of unfolded p53 was observed. This 
was shown to be associated with a lack of p53 pro-apoptotic 
activity (Fig. 3) and an impairment in neuronal responses 
against acute cytotoxic injury [112].

Oxidative imbalance has also been demonstrated as a 
distinctive feature in neurodegenerative diseases [113–119]. 
This imbalance has been observed to be mediated by 
reduced activities of SOD and glutathione reductase dur-
ing AD [113]. Importantly, it was noted that the reduced 
enzyme activity of SOD corresponded with increased levels 
of unfolded p53, suggesting that ROS possibly contributes 
to p53 conformational change in AD [113] (Fig. 3). In a PD 
model induced by the treatment of 1-methyl-4-phenylpyri-
dinium (MPP +), the expression of sestrin-2, an antioxidant 
protein, was increased by MPP + -induced p53 activation, 
and such enhanced expression of sestrin-2 protects cells 
against ROS, suggesting a novel role of p53 in PD [119]. 
Therefore, counteracting oxidative stress or improving cel-
lular antioxidative properties would provide effective thera-
peutic alternatives for neurodegenerative disorders.

Cyclins

Many studies have demonstrated that dysregulated destruc-
tion of cell cycle regulators, many of which play a role in 
either tumor suppression or tumorigenesis, is tightly linked 
to cancer initiation and progression. Cyclins are known to 
regulate cell cycle by modulating the activity of cyclin-
dependent kinases (CDKs). Deregulation of the cell cycle 
through changes in the activity of cell cycle CDKs or their 
regulators form essential determinants of human cancers 
[120–127].

Beyond their role in cell cycle regulation, cyclins con-
tribute immensely to the cellular aspects of the terminally 
differentiated neurons [128]. Cell cycle-independent roles of 
cyclins, including cyclin E and cyclin Y, have been reported 
in postmitotic neuronal physiology [129–131]. Cyclin E 
deficiency has been shown to reduce the number of synapses 
and spine volume, and also to impair long-term potentiation 
and memory [131]. Knockdown of cyclin Y in hippocam-
pal neurons has been reported to enhance activity-depend-
ent synaptic delivery of α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionate (AMPA) receptors and long-term 

potentiation [129]. Interestingly, such aberrations in the cell 
cycle components and the resulting neuronal cell death have 
also been found in neurodegeneration and neurodegenerative 
diseases [132–135].

Cyclin D

Cyclin D, which controls the entry from the quiescence 
(G0) to G1 phase of the cell cycle [136], and its associated 
CDKs, CDK4 and CDK6, are overexpressed and hyperac-
tive, respectively, in most tumors [124, 137] (Fig. 4). Mutant 
cyclin D1 knockin mice, in which CDK4 and CDK6 are not 
activated, were resistant to breast tumors initiated by the 
activated erbB-2 oncogene [122, 127]. Mice lacking cyclin 
D1 were also resistant to breast cancers induced by the erbB-
2 and ras oncogenes, but were sensitive to breast cancers 
induced by other oncogenes like c-myc or Wnt-1. Further-
more, knockdown of cyclin D1 induced oxidative imbal-
ance by elevating intracellular ROS levels in cancer cells, 
which promoted the senescence of cancer cells through a 
retinoblastoma-independent pro-senescence pathway [138]. 
These investigations suggest that anti-breast cancer therapy 
targeting cyclin D1 could be very specific to breast cancers 
depending on the activated pathways [127].

CDK4, a cyclin D-associated CDK, was observed to be 
increased in the brains of AD patients [139]. In addition, 
the upregulation of cyclin D was reported to be linked to 
increases of phosphorylated tau and caspase 3, which led 
to apoptosis in cultured hippocampal neurons, suggesting 
that cyclin D increment could be a crucial factor in the pro-
gression of neurodegenerative pathology [140] (Fig. 3). 
Conversely, in cyclin D1-deficient mutant mice, phenotypi-
cally characterized by small eyes with thin retinas, a reduced 
proliferation of retina cells and an increased photoreceptor 
cell death were observed [141]. In addition, stimuli inducing 
cortical neuronal degeneration reduced the protein level of 
cyclin D1 [142]. Recently, neuronal gain- or loss-of-function 
of cyclin D/CDK4 in Drosophila caused neurodegeneration 
[143]. In addition, cyclin D/CDK4-mediated neurodegen-
eration was shown to be mediated by altered mitochondrial 
function and an accompanying increase in ROS [143].

Cyclin E

Cyclin E plays a role in the initiation of DNA replication 
at the G1/S checkpoint [144] and is a regulatory subunit of 
CDK2 [145]. Cyclin E was reported to be overexpressed in 
many types of cancers, such as breast cancer [146], non-
small-cell lung cancer [147], colorectal carcinomas [148], 
lymphomas [149], acute myelogenous leukemia [150], gas-
tric carcinomas [151], and osteosarcoma [152]. Over 10% of 
female transgenic mice overexpressing cyclin E developed 
mammary carcinoma at around 8–13 months of age [153]. 
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Tumorigenesis mediated by cyclin E overexpression likely 
involves genomic instability [154–157] as cyclin D1 overex-
pression also induces genomic instability [158]. Ubiquitin-
specific peptidase 27 (USP27) was recently identified as a 
cyclin E interactor, and was reported to increase cyclin E 
stability through the negative regulation of cyclin E ubiq-
uitination [159] (Fig. 4). Depletion of USP27 inhibited the 
migration and metastasis of hepatocellular carcinoma and 
the tumor growth, suggesting that USP27 is a novel thera-
peutic target for cancers involving cyclin E [159].

Besides the 50 kDa full-length cyclin E, tumor-specific 
low-molecular-weight (LMW) cyclin E isoforms, ranging 
from 33 to 45 kDa, have been found to be accumulated in 
cancer cells [146, 160–166]. LMW cyclin E has mostly 
lost its N-terminal nuclear localization signal [167], which 
results in the cytoplasmic accumulation of cyclin E [168] 
(Fig. 3). It exerts oncogenic functions through properties 
such as hyperactivation of CDK2 due to more stable LMW 
cyclin E/CDK2 complex formation [169], the resistance of 
LMW cyclin E/CDK2 complex to inhibitors p21 and p27 

[170], altered substrate interactions [171], and cytoplasmic 
novel interactions that differ from the full-length cyclin E 
[172]. Like cytoplasmic LMW cyclin E, excessive cytoplas-
mic cyclin D1 also exerts oncogenic functions by promot-
ing tumor cell invasion and metastasis [173–175] through 
cytoplasmic interactions [175, 176].

Cyclin E is a substrate of the parkin E3 ubiquitin ligase. 
Mutations in the parkin gene are the most common cause of 
PD, and upregulates cyclin E and CDK2 [177–179]. Glu-
tamate excitotoxicity has also been implicated in PD [180, 
181]. Like parkin mutations, the glutamatergic excitotoxin 
kainate treatment increased cyclin E accumulation in cul-
tured neurons, and this increase was further enhanced in 
parkin knockdown neurons, which resulted in the promo-
tion of apoptosis (Fig. 3). Conversely, parkin overexpres-
sion retarded the cyclin E accumulation in cultured neurons 
treated with excitotoxin, and protected the neurons from the 
kainate-induced excitotoxicity [182]. Cyclin E expression 
is also related to AD [183–185], for example, expression 
of cyclin E in the brain induced cell cycle activation and 

Fig. 4   Cell cycle and cyclins, such as cyclin D, cyclin E, and cyclin 
F in cancer and neurodegenerative diseases. Dysregulated cell cycle 
is tightly related with cancer initiation as well as neurodegeneration. 
Cyclin D1, associated with CDK4 and CDK6, modulates the entry 
from quiescence (G0) to the G1 phase of the cell cycle, and is also 
linked to the progression of neurodegeneration. Cyclin E plays a role 
in the initiation of DNA replication at the G1/S checkpoint, and also 
causes neurodegeneration in the postmitotic neurons. Ubiquitin-spe-
cific peptidase 27 (USP27), a cyclin E interactor, increases the stabil-
ity of cyclin E by inhibiting the ubiquitination and subsequent degra-
dation of cyclin E. SCF-cyclin F and APC/C-Cdh1 are controlled by 

a negative reciprocal feedback circuit, which controls S phase entry. 
In addition, cyclin F interacts with stem-loop binding protein (SLBP) 
and promotes SLBP degradation during G2. Blockade of the interac-
tion between cyclin F and SLBP increases apoptosis upon genotoxic 
stress in G2 phase. Pin1 is a positive regulator of cyclin D1, and both 
Pin1 and cyclin D1 are upregulated in many cancers. Pin1 expression 
is negatively regulated by small non-coding microRNAs (miRNAs), 
including miR-200b, miR-296-5p, miR-874-3p, miR-140-5p, and 
miR-370. SCF Skp1–Cul1–F-box, APC/C anaphase promoting com-
plex/cyclosome, Chd1 Cdc20 homologue 1. Molecule names marked 
in purple indicate studies that involve exogenous proteins
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led to neurodegeneration of postmitotic neurons in a Dros-
ophila tauopathy AD model [184] (Fig. 4). In addition, Aβ 
treatment in cultured neurons increased ROS production 
and activated the mammalian target of rapamycin (mTOR) 
complex 1, thereby leading to the expression of cell cycle 
regulatory proteins such as cyclin D1/CDK4 and cyclin E/
CDK2 [185].

Cyclin F

Cyclin F, also known as F-box only 1 (FBXO1), was first 
reported as the F-box family of proteins, which contain an 
F-box motif [186]. F-box proteins are the substrate-recogni-
tion subunits of Skp1–Cul1–F-box (SCF) E3 ubiquitin ligase 
complexes, and thus in the SCF-cyclin F complex, cyclin 
F recognizes target proteins and mediates the ubiquitina-
tion of target proteins for proteolysis [187, 188]. Cyclin F is 
also a member of the cyclin family; however, unlike other 
cyclins, which regulate the cell cycle in concert with the 
activity of their associated CDKs, cyclin F does not require 
CDK activity to regulate cell cycle-associated functions. 
The SCF-cyclin F complex controls the cell cycle through a 
tightly regulated ubiquitin-mediated proteolysis of centro-
somal protein of 110 kDa (CP110), which prevents centro-
somal duplications [189]. In addition, cyclin F in S phase 
regulates the ubiquitination and subsequent degradation of 
Cdc20 homologue 1 (Chd1), a substrate adaptor protein 
of the anaphase promoting complex/cyclosome (APC/C), 
while cyclin F in G1 phase is ubiquitinated and subsequently 
degraded by the APC/C-Chd1 complex [190] (Fig. 4). In 
addition, cyclin F interacts with stem-loop binding protein 
(SLBP) through Arg97 (R97) and Leu99 (L99) in SLBP, and 
regulates SLBP degradation during G2 [191]. Disruption of 
the interaction between SLBP and cyclin F by expressing 
SLBP (RL97/99AA) in G2 led to increased apoptosis upon 
genotoxic stress [191]. The crucial roles of F-box proteins, 
including cyclin F, in tumorigenesis are gradually becom-
ing acknowledged owing to their pivotal roles in such cases 
of cell cycle regulation and genome stability [189, 192]. 
Recently, it was discovered that cyclin F is upregulated 
under metabolic stress conditions and inhibits tumorigen-
esis mediated by an oncogenic mutant form of isocitrate 
dehydrogenase 1 (IDH1), IDH1-R132H, in glioma [193]. 
Indeed, it was also reported that cyclin F is downregulated 
in hepatocellular carcinomas, and low cyclin F expression 
is correlated with poor survival and recurrence-free survival 
of hepatocellular carcinoma patients [194], supporting that, 
unlike other cyclins, cyclin F acts as a tumor suppressor 
and could be further investigated as a promising prognostic 
marker for hepatocellular carcinoma.

A recent study using whole-exome sequencing identi-
fied mutations in the cyclin F gene, ccnf, in the relatives 
of patients with amyotrophic lateral sclerosis (ALS) and 

frontotemporal dementia (FTD) [195], which have a com-
mon pathological feature of aberrant accumulation of ubiq-
uitinated transactive response (TAR) DNA-binding protein 
43 (TDP-43) [196–198]. These findings drive the need to 
investigate whether TDP-43 is a substrate of the SCF-cyclin 
F E3 ubiquitin ligase complex. An ALS/FTD-causing patho-
genic mutation in cyclin F at amino acid position 621 from 
serine to glycine (Cyclin F-S621G) was shown to increase 
the specific ubiquitination at lysine-48 of proteins, which led 
to the accumulation of lysine-48-ubiquitinated proteins and 
the impairment of autophagic degradation [199], indicat-
ing autophagy to be a degradative mechanism underlying 
the pathogenesis of ALS/FTD. The roles of cyclin F, which 
acts as a cyclin as well as an F-box protein, have not been 
explored in this context, and thus can be further investigated 
to understand their relevance in mediating neurodegenera-
tive diseases.

Pin1

Pin1 is a regulatory protein of cyclin D1, which is a major 
regulator of G1 checkpoint progression. Like cyclin D1, 
Pin1 has been reported to be overexpressed in various can-
cers, including breast, colon, liver, and lung cancers. Fur-
ther, cyclin D1 and Pin1 expression levels have been shown 
to correlate positively in such cancers [200, 201], thereby 
indicating Pin1 as a potential tumor-promoting factor. 
Accordingly, Pin1 expression and tumor progression have 
also been positively correlated in brain, breast, cervical, 
colon, liver, and prostate cancers [201–204].

Pin1 is a transcriptional target of the E2 factor (E2F). 
The E2F promotes Pin1 expression by binding to the E2F-
binding sites of the Pin1 gene promoter [205]. In addition, 
several studies have demonstrated that small non-coding 
microRNAs (miRNAs), including miR-200b in breast tumor 
[206], miR-296-5p in prostate cancer [207], miR-874-3p 
[208] and miR-140-5p [209] in hepatocellular carcinoma, 
and miR-370 in esophageal squamous cell carcinoma [210], 
negatively regulate Pin1 expression (Fig. 4). In other words, 
suppression of such Pin1-targeting miRNAs leads to Pin1 
overexpression in various cancers.

Alongside the tumor-promoting function, Pin1 has also 
been suggested to bear conditional tumor suppressor activity. 
Pin1 binds to and negatively regulates the protein expres-
sion levels of cyclin E [211, 212], whose overexpression 
mediates tumorigenesis and involves genomic instability 
[154–157] (Fig. 4). Many therapeutic studies for treating 
cancers have developed Pin1 inhibitors based on the fact 
that Pin1 is a generally recognized tumor-promoting factor 
[213–226]. Considering that Pin1 has also been reported to 
have a tumor suppressing function, Pin1-directed inhibitors 
must be carefully implicated in cancers.
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In another paradigm, Pin1 has been known to bind to 
phosphorylated tau in normal and AD brain extracts, and 
soluble Pin1 protein has been found to be negligible in AD 
brains [227]. Pin1 facilitates the dephosphorylation of tau by 
PP2A [228]. Accordingly, Pin1 expression is inversely cor-
related with neurofibrillary hyperphosphorylated tau aggre-
gates in AD [229]. Furthermore, Pin1 knockout mice caused 
tau hyperphosphorylation and tau filament formation [229], 
and also enhanced amyloidogenic APP processing and selec-
tively increased insoluble Aβ in brains [230]. Similarly in 
the synaptopathy aspect, Pin1 proteins are decreased in the 
synapses of AD patients and AD mice brains, and blocking 
Pin1 activity causes the degradation of a major postsynap-
tic density organizer, Shank3, resulting in the disruption of 
synapse structure and thus plasticity. These data indicate 
that loss of Pin1 activity could lead to deficits in synapse 
function and plasticity during AD development [231]. Taken 
together, Pin1 plays a pivotal role in protecting neurodegen-
eration, and thus could be used as a promising therapeutic 
target for AD.

Unlike in AD, Pin1 is upregulated in a 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse 
model and human PD brains [232]. Pin1 was reported to be 
involved in Lewy body formations in PD [233]; it locates 
to 50–60% of the Lewy bodies, which are cytosolic inclu-
sions containing α-synuclein aggregates, in PD patient 
brains [233]. In addition, Pin1 interacts with an α-synuclein-
binding protein synphilin-1 [234], which resultantly 
enhances the interaction between α-synuclein and synphi-
lin-1 and thus the formation of α-synuclein inclusions [233] 
(Fig. 3). Given that Pin1 is downregulated and upregulated 
in AD and PD, respectively, precise modulations of Pin1 
levels depending on the biological contexts might be one of 
the crucial factors to be considered in differential therapeutic 
strategies for treating AD and PD.

PP2A

PP2A, a member of serine/threonine protein phosphatase, 
is a tumor suppressor [235–238] and a master regula-
tor of the cell cycle known to dephosphorylate over 300 
substrates related to the cell cycle [239]. Partial reduction 
of PP2A-Aα subunit expression to ~ 50% of normal levels 
induced anchorage-independent growth and tumorigenic-
ity, whereas over 63% reduction of PP2A-Aα expression 
resulted in apoptosis [236]. In addition, a tenfold reduction 
of PP2A-Aα expression level was observed in almost half of 
the glioma samples studied [240]. A cancer-associated muta-
tion in the PP2A-Aα subunit, PP2A Aα-E64D, increased the 
incidence of lung cancer by 50–60% in mice [241], further 
supportive of PP2A as a tumor suppressor (Fig. 2). Another 
mutation of PP2A-Aα, PP2A-Aα-W257G, was shown to pro-
mote cancer cell migration [242]. Apart from the PP2A-Aα 

subunit, mutations in the PP2A-B55α regulatory subunit 
have been identified in prostate cancer [243].

The phosphorylation level of proteins maintained by the 
activity of kinases and phosphatases is an important fac-
tor for regulating brain function, and PP2A is the most 
important phosphatase in the brain [244, 245]. One of the 
main hallmarks of AD is tau hyperphosphorylation [244, 
246], which has 3–4-fold higher levels of tau phosphoryla-
tion compared to control brains [247]. Consistent with this 
notion, the reduced activity and expression of ABαC subu-
nit of PP2A, the major tau phosphatase [248–250], which 
consists of a scaffolding A subunit, a regulatory B subu-
nit, and a catalytic C subunit [251], were observed in AD 
brains, but not in non-AD dementias [252, 253]. In con-
trast, enhanced activation of glycogen synthase kinase 3 beta 
(GSK3β), a major tau kinase [248, 250, 254], was found to 
increase tau phosphorylation [250] (Fig. 3). Decreased activ-
ity and expression of PP2A-C subunit in AD were not only 
reported to be involved in tau hyperphosphorylation, but 
also suggested to be responsible for the activation of c-jun 
N-terminal kinase (JNK), which could lead to Aβ overpro-
duction [255, 256]. Accordingly, two endogenous inhibitors 
of PP2A, I1(PP2A) and I2(PP2A), were upregulated in the 
neocortex by in situ hybridization in AD brains, and were 
suggested to be involved in the hyperphosphorylation of tau 
in AD [257].

The PP2A-B55α regulatory subunit serves as a major 
phosphatase for α-synuclein and prevents its accumulation; 
thereby restricting the key element of PD pathology [258, 
259]. In addition, it has been demonstrated that α-synuclein 
regulates PP2A activity [260–263], and low activity of PP2A 
was reported in PD [259, 264] (Fig. 3). Taken together, bal-
anced phosphorylation and dephosphorylation of proteins 
are critical for physiology, and in particular, reverting PP2A 
activity ultimately to dephosphorylate tau or α-synuclein 
could be a promising therapeutic strategy for AD or PD 
treatment [265, 266].

The shared mechanisms in both cancer and neurodegen-
eration involve activating kinases and inactivating protein 
phosphatases. For instance, in brain tumors, PP2A-Aα subu-
nit levels have been found to be reduced in 8 out of 23 glio-
blastomas, 10 out of 19 oligodendrogliomas, and 7 out of 
16 anaplastic oligodendrogliomas [240]. Further, PP2A-Aα 
subunit mutations were found to contribute to cancer 
development and tumorigenicity [236]. The most frequent 
PP2A-Aα mutation, R183W, has been shown to lack the 
ability to suppress tumor growth, and lead to decreased sen-
sitivity of tumors towards MEK inhibitors [267]. Alongside, 
PPP2R2C, which encodes a gamma isoform of the subunit 
B55 subfamily, was also reported to be downregulated in 
various glioma cell lines and glioma patients [268]. Over-
expression of PPP2R2C suppressed cancer cell proliferation 
by inhibiting the activity of S6K in the mTOR pathway, and 
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further promoting the binding of PP2A-C with S6K, indicat-
ing PP2A as a potent tumor suppressor in human brain can-
cer [268]. Further investigation on the detailed mechanisms 
underlying PP2A downregulation in gliomas, which leads 
to neurodegeneration would provide better information for 
PP2A-based drug development for cancer and neurodegen-
erative diseases.

Brain tumors and neurodegeneration: 
Intercellular communications 
between cancer and neuronal cells

As discussed in the previous section, molecules such as 
p53, cyclins, Pin1 and PP2A play important roles in the 
deregulation of homeostatic pathways in respective cell 
types, leading to cancers and neurodegeneration. Besides 

the intracellular actions of such molecules, recent studies 
have shed light on another viewpoint that cancer and neu-
rodegeneration can affect each other by the communication 
between tumor cells and neuronal cells in the brain.

Several studies have demonstrated that malignant primary 
brain tumor glioma cells secrete excessive glutamate via the 
cystine/glutamate antiporter xCT (SLC7A11) [269], which 
generates a toxic microenvironment for the neurons lying 
in the vicinity of the glioma, thereby inducing excitotoxic-
ity, neuronal cell death, and neurodegeneration [270–273] 
(Fig. 5). In addition, gliomas implanted into the striata of 
adult rats have shown high glutamate release, rapid growth 
of the glioma, and neuronal degeneration in the vicinity of 
the tumor [272]. This effect was found to be reduced by 
blocking the glutamate receptor, N-methyl-d-aspartate 
(NMDA) receptor, with its antagonist MK801 or meman-
tine [272], indicating that glutamate-releasing glioma cells 

Fig. 5   Reciprocal regulation between brain cancer and neuronal cells 
in the brain. Excessive glutamate (Glu) secreted from glioma cells 
leads to neurodegeneration as well as glioma progression. NMDA 
receptors (NMDARs) on the metastasized breast cancer cells receive 
glutamate, and promote breast-to-brain cancer metastasis. Neuroli-
gin-3 (NLGN-3) is cleaved by ADAM10 and released from a post-
synaptic neuron. This secreted soluble neuroligin-3 (sNLGN-3) acts 
as a mitogen for glioma cells, thereby fostering glioma progression 
through a FAK and PI3K–mTOR signaling pathway. Transform-

ing growth factor β (TGF-β)1-induced anti-apoptotic factor (TIAF1) 
aggregates, which can form a peritumor capsule, cause neurotoxic-
ity while suppressing tumor progression through the interaction with 
Smad4, WW domain-containing oxidoreductase (WWOX) and p53. 
Neurotoxicity can also be caused by the formation of TIAF1-Aβ 
complex. ADAM10 a disintegrin and metalloproteinase 10, AMPAR 
AMPA receptor, APP amyloid precursor protein, Cys cystine, FAK 
focal adhesion kinase, mTOR mammalian target of rapamycin, NRXN 
neurexin, Smad4 mothers against decapentaplegic homolog 4
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mediate neurodegeneration by generating excessive gluta-
mate excitotoxicity in the vicinity of the glioma. With this 
knowledge, potential therapeutic effects of antagonizing 
tumor-secreted glutamate or its receptors can be considered. 
These findings are further supportive of a positive correla-
tion between brain tumors and AD [274, 275].

Besides the cancer cell-driven regulation of neurodegen-
eration, studies suggesting the neuronal regulation of brain 
cancer have also been demonstrated [276–279]. A recent 
study reported that presynapse-releasing glutamate is impli-
cated in invasive tumor growth in breast cancer metastasized 
to the brain [279]. Breast cancer metastasized to the brain 
express NMDA receptors that may be activated by gluta-
mate released from the presynapse, and aid in promoting 
the breast-to-brain cancer metastasis [279]. The paracrine 
action of glutamate is achieved by forming pseudo-tripartite 
synapses, composed of a cancer cell, a presynapse, and a 
postsynapse [279] (Fig. 5). In a patient-derived pediatric 
glioblastoma xenograft model, optogenetically induced neu-
ronal activity promoted the proliferation and growth of the 
glioma in vivo [276, 278]. This glioma growth was found to 
be mediated by activity-dependent cleavage and secretion of 
the synaptic adhesion molecule neuroligin-3 from a postsyn-
aptic neuron or oligodendrocyte precursor cell. This cleav-
age is carried out by a disintegrin and metalloproteinase, 
ADAM10 [278]. The secreted soluble neuroligin-3 can act 
as a mitogen for the glioma, inducing focal adhesion kinase 
(FAK), phosphoinositide 3-kinase (PI3K)-mTOR pathway, 
expression of neuroligin-3 and other synapse genes, leading 
to the proliferation of the glioma cells [276–278] (Fig. 5). 
Interestingly, patient-derived glioma xenografted into the 
CA1 region of hippocampal circuit was found to exhibit 
AMPA receptor-mediated excitatory postsynaptic cur-
rents (EPSCs) on the glioma, and form structural synapses 
with neurons [277]. The glioma progression was promoted 
through the integration of electrical and synaptic features of 
the glioma into neural circuits in the brain [277].

The microenvironment of brain cancer is also governed 
by transforming growth factor β (TGF-β)1-induced anti-
apoptotic factor (TIAF1), found to be aggregated at the 
interface between metastatic cancer cells, such as metastatic 
small-cell lung cancer cells and metastatic lung adenocar-
cinoma, forming a protective peritumor capsule, that can be 
toxic to neurons [280] (Fig. 5). TIAF1 aggregates have been 
found in the hippocampi of both non-demented humans and 
AD patients, along with Aβ and tumor suppressors, such 
as Smad4 and WW domain-containing oxidoreductases 
(WWOX or WOX1) [280, 281]. TIAF1 aggregation sup-
presses anchorage-independent growth, metastasis, and 
tumor progression, while inducing apoptosis and cell death, 
which may lead to neurodegeneration [280, 281]. Consist-
ently, a TIAF1/WWOX/p53 triad was found to suppress 
cancer progression [280, 282], but caused brain protein 

aggregation in the brain due to functional antagonism of 
p53 to WWOX-mediated cancer suppression, which lead to 
neurodegeneration [282]. Unlike TIAF aggregates, zinc fin-
ger-like protein that regulates apoptosis (Zfra) and bind tau 
and Aβ in the AD hippocampus, was reported to suppress 
melanoma-mediated neurodegeneration in the hippocampus 
and cortex [283]. More detailed investigation on the intracel-
lular, extracellular or intercellular mechanisms of where and 
how TIAF1 and Zfra exert their actions in establishing com-
munication between brain cancer cells and neuronal cells 
would be interesting.

Discussion and perspectives

Many epidemiological studies have demonstrated an inverse 
correlation between the two age-related diseases, cancer 
and neurodegenerative diseases [22–24], and this intrigu-
ing correlation was restricted to certain types of cancers 
and neurodegenerative diseases. Indeed, in the case of 
schizophrenia, varying degrees of risk for different types 
of cancers have been reported [284, 285]. For instance, 
patients with schizophrenia have shown an increased, mar-
ginal, and decreased risk in colon, breast, and respiratory 
cancer, respectively [285]. Many studies, as described in 
this review, have revealed the shared roles of overlapping 
molecules involved in both cancers and neurodegenerative 
diseases. However, the underlying mechanisms for the two 
are very distinct, wherein cancers escape cell death while 
neurodegeneration occurs towards cell death (Fig. 1). There-
fore, it would be conceivable that individuals afflicted with 
a neurodegenerative disease may have a reduced chance of 
developing certain types of cancers and vice versa. Given the 
molecular overlap of both diseases, studies in the fields of 
cancer and neurodegeneration would provide mutual benefits 
for each other. Because both diseases are closely associated 
with genetic mutations, it would be valuable to investigate 
the correlations of the genetic mutations which are found in 
one disease and also affect the other disease. For this, large 
amounts of intensive epidemiological studies investigating 
the incidence of one disease in the population that is affected 
by the other disease would need to be performed.

Besides clinical and epidemiological studies, which indi-
cate an inverse association between cancer and neurodegen-
erative diseases [14, 18, 24, 31, 286, 287], studies on shared 
molecular mechanisms between cancer and neurodegenera-
tive diseases are increasing [16, 288]. Further in-depth inves-
tigations into the cellular and molecular mechanisms related 
to distinct or shared features targeting the molecular cross-
talk between cancer and neurodegeneration will assist in the 
development of additional biomarkers and new therapeutics. 
Because of the inverse associations between the two diseases 
with shared molecules in their pathological processes, the 
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therapeutic development in cancer research may lead to the 
identification of prognostic markers even for both cancer 
and neurodegeneration, which could potentially result in 
improved treatments for both disorders. Indeed, over the 
last decade, drug repositioning from anticancer agents to 
medicine for neurodegenerative diseases or in the opposite 
direction has been applied to develop novel therapeutics to 
overcome these two aging-related diseases with success or 
failure [289, 290].

Cyclin D and cyclin E are upregulated in both cancer and 
neurodegenerative diseases, while PP2A is downregulated 
in both diseases. In addition, cyclin F is downregulated in 
cancer, and functionally mutated cyclin F is found in neu-
rodegenerative diseases. p53 is downregulated in cancer 
but upregulated in neurodegenerative diseases, while Pin1 
is upregulated in cancer and PD but downregulated in AD 
(Fig. 2). Overall, it seems that such overlapping molecules 
between cancer and neurodegenerative diseases may play 
important roles in pathophysiology and physiological func-
tions differentially in various contexts, depending on the 
stage or severity of disease and molecular characteristics.

Several studies have demonstrated that inhibition of Pin1 
effectively suppresses the growth of various cancer cells 
[291, 292], and is considered as a promising target for cancer 
treatment. Indeed, many small molecule inhibitors targeting 
Pin1 have been developed [215, 293, 294], that exhibit anti-
cancer activities [225, 295]. All-trans retinoic acid (ATRA), 
a target drug used for acute promyelocytic leukemia (APL), 
binds to the substrate binding site of Pin1 and thus inhibits 
Pin1 activity in breast cancer [225]. Juglone, a compound 
produced by walnut trees, covalently modifies the catalytic 
core of Pin1 [215, 293], and inhibits multiple cancer cells 
[291, 296]. API-1, a small molecule targeting the PPIase 
domain of Pin1, suppresses the proliferation and migration 
of hepatocellular carcinoma cells [292]. KPT-6566 cova-
lently binds to the PPIase catalytic core of Pin1, and selec-
tively inhibits and degrades Pin1 [213]. Such Pin1 inhibitors 
that reduce Pin activity would not be directly applicable to 
treat AD because Pin1 deficiency contributes to AD, and 
Pin1 expression is inversely correlated with tauopathy and 
AD [230]. However, a compensatory activation or upregula-
tion of Pin1 has been found in mild cognitive impairment, 
critically indicating that Pin1-based therapeutics needs to be 
considered depending on the course of AD [297].

In addition, intracellular organelles that regulate the bal-
ance between cell survival and death, are also governed by 
Pin1 in cancer and apoptotic neurons [298–300]. Activated 
p53, under genotoxic stress, regulates apoptosis-related 
Bax and Puma expression [301]. Pin1 binds to the activated 
p53 in the cytoplasm, which promotes the translocation of 
Pin1 to the mitochondrial membrane, where Pin1 binds to 
the Bcl-2 homology 3 (BH3)-only protein, Bcl-2-interact-
ing mediator of cell death (Bim)-extralong (BimEL), and 

mediates neural-specific mitochondrial pro-apoptotic activ-
ity [299, 300]. As discussed, Pin1 can be either pro- or anti-
apoptotic depending on the cellular context, and therefore, 
the role of Pin1 in mitochondria-driven apoptosis could 
provide a direct mechanical link between cancer and neuro-
degeneration. Therefore, future research in the field should 
prioritize the investigation of the sophisticated cellular and 
molecular mechanistic details between cancer and neuro-
degenerative diseases. Such work will provide a detailed 
checklist for the development and repositioning of thera-
peutics, and by unraveling the inverse association between 
cancer and neurodegenerative diseases, ultimately contribute 
to personalized medicine and treatment.
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