
R E V I E W

The Application of Nanoparticles Targeting 
Cancer-Associated Fibroblasts
Qiu Huang*, Yue Ge*, Yu He, Jian Wu , Yonghua Tong, Haojie Shang, Xiao Liu, Xiaozhuo Ba, 
Ding Xia, Ejun Peng, Zhiqiang Chen , Kun Tang

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s 
Republic of China

*These authors contributed equally to this work 

Correspondence: Zhiqiang Chen; Kun Tang, Email zhqchen8366@163.com; tangsk1990@163.com 

Abstract: Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially 
in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but 
also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has 
been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to 
improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) 
in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can 
eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of 
studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs 
targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest 
progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate 
the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer 
treatment. 
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Background
In recent years, several barriers to effective tumor eradication, including the formation of distant metastasis, angiogen-
esis, drug resistance, and immunosuppression, have been identified. Consequently, there has been an increasing interest 
in the classification of different cells within the tumor parenchyma; these endeavors have led to the emergence of the 
tumor microenvironment (TME) concept.1–6 Characterization of the TME has drawn attention to the deleterious role of 
cancer-associated fibroblasts (CAFs) in this context.7 Under normal conditions, fibroblasts maintain a quiescent state and 
mainly contribute to the secretion of collagen, which supports the formation and integrity of the extracellular matrix 
(ECM), the fundamental tissue scaffold.8,9 In the context of wound healing, fibroblasts become activated to facilitate 
tissue repair before undergoing apoptosis.10 Tumors are often likened to “cancerous wounds”11 that fail to heal and 
continuously stimulate fibroblasts through the secretion of cytokines such as TGF-β,12 preventing them from returning to 
their resting state and promoting tumor growth. Recent investigations, however, have uncovered the presence of cancer- 
restraining CAF (rCAF) subtypes, which have tumor suppressor properties.13 CAFs play significant roles in tumor 
proliferation, metastasis, chemotherapy resistance, cancer metabolism, immunotherapy resistance, and immune 
evasion,14 which will be comprehensively discussed in this review. Consequently, CAF-targeting therapies have 
emerged; however, despite promising preclinical findings, the desired levels of efficacy have yet to be achieved and 
the clinical implementation of these therapies remains limited.15
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The past few decades have hailed rapid advancements in nanotechnology, which have facilitated the development and 
delivery of targeted drugs for cancer therapy.16,17 However, results from clinical trials of anti-CAF drugs, such as 
vismodegib, navitoclax, and sibrotuzumab, have highlighted their uncontrollable toxicity and unstable action.7,18 Drug 
encapsulation in nanoparticles (NPs) promises to overcome these challenges. NPs can optimize drug properties, reduce 
degradation rates in the body, improve solubility, enhance targeting capabilities, and improve overall drug efficacy.19 

Various types of NPs are available, including those constructed from lipids, metals, polymers, biological macromole-
cules, and cell membranes; each type has distinct properties and characteristics, which can be matched to a specific 
application. Moreover, coupling CAF-specific peptides or antibodies to the surface of NPs enables efficient targeting and 
drug release within these cells.20,21

This review provides an overview of the characteristics of CAFs and their interactions with immune cells in the 
TIME. Furthermore, we present a comprehensive summary of nanomaterial selection and construction strategies, which 
are being used in the development of NPs for CAF-targeted immunotherapy.

TME and Cancer Therapy
Numerous studies have established the significance of the TME in tumor progression, which can be as important as the 
genetic and epigenetic alteration of tumor cells.22,23 The TME provides an external view of the changes occurring within 
tumor cells and evolves dynamically throughout tumor development. During the initial stages of cancer development, 
innate immune cells such as natural killer (NK) cells, macrophages, and dendritic cells (DCs) infiltrate the tumor and 
mount a rapid immune response.24,25 In addition, antigen-presenting cells, prime and stimulate lymphocytes, which are 
essential for tumor eradication. Tumor cells employ various mechanisms to evade or impair anti-tumor T cell activity; in 
addition, they recruit various pro-tumor immune cells, including myeloid-derived suppressor cells (MDSCs), regulatory 
T cells (Tregs), CAFs, macrophages, and neutrophils. The subsequent increase in the ratio of pro-tumor to anti-tumor 
immune cells contributes to tumor progression. Given the limitations of conventional tumor treatment approaches, 
attention has shifted toward immunotherapy as a potent means of anti-tumor eradication. Over the past few decades, 
diverse forms of cancer immunotherapy have been explored.26 Current immunotherapy strategies encompass: 1) onco-
lytic viral therapy, which uses transgenic viruses to infect tumors and establish a pro-inflammatory TME to enhance anti- 
tumor immune responses;27 2) tumor vaccines, which use tumor-associated antigens to prime tumor-specific T cells;28 3) 
cytokine therapy, which modulates cytokine patterns to activate the immune system;29 4) adoptive immune cell transfer, 
which involves the reinfusion of autologous, existing or genetically-engineered (eg, CAR-T cells) anti-tumor immune 
cells into the patient;30 and 5) immune checkpoint inhibitor (ICI) therapy.31 Immunotherapy has emerged as an effective 
and well-tolerated treatment approach in clinical practice. However, the development of immunotherapy resistance poses 
a significant challenge. To address this issue, attention have been refocused on specific immune and stromal cells within 
the TME. Consequently, targeted drugs have been developed to remodel the TME and mitigate immunotherapy 
resistance.26 Meanwhile, advancements in nanotechnology have optimized immunotherapy via the use of nanoscale 
drug carriers. This innovative approach enhances the efficacy of targeted drugs and provides a promising direction for 
overcoming immunotherapy resistance.32

CAFs Characteristics
CAFs Biology
Fibroblasts are the most abundant stromal cells in normal tissues; they play a crucial role in maintaining ECM stability 
and structural integrity.8 They typically originate from mesenchymal stem cells (MSCs) and remain in a quiescent state as 
individual cells primarily located near the basement membrane. Fibroblasts are activated during processes such as wound 
repair, tissue inflammation, and fibrosis, before subsequently undergoing apoptosis or returning to a resting state upon 
completion of the healing and remodeling process.33 During tumor development, a prolonged state of chronic inflamma-
tion, often referred to as the “tumor wound”, arises.11 This sustained state of injury and repair leads to the accumulation 
of numerous complex cytokines within the TME, triggering persistent fibroblast activation. These hyperactivated 
fibroblasts, otherwise known as CAFs, are characterized by heightened proliferation, increased migration, and resistance 
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to apoptosis.34 In addition, CAFs produce substantial amounts of ECM components and proteases, including collagen, 
matrix metalloproteinases, and plasmin.35 This accumulation of ECM building blocks, in turn, increases tumor stiffness, 
which impedes immune cell infiltration, promotes immunosuppression, and facilitates tumor immune evasion.36 CAFs 
also secrete numerous pro-tumor factors such as vascular endothelial growth factor (VEGF), which stimulates angiogen-
esis and promotes tumor proliferation and metastasis.37 Moreover, CAFs significantly contribute to the remodeling of 
cancer metabolism,38 particularly lipid metabolism39 and mitochondrial oxidative stress.40 Additionally, CAFs can 
induce resistance to chemotherapy or immunotherapy via the release of autocrine exosomes and the creation of self- 
established physical barriers within the tumor.41–44 Understanding the functions of CAFs in tumor tissues is crucial for 
the effective design and implementation of NP-based, CAF-targeting therapeutic strategies.

CAFs Origin
There is mounting evidence indicating that CAFs do not arise from a single cell source but rather represent a complex 
and heterogeneous cell population.45–47 Moreover, CAFs differ between tumors arising in different tissues and displaying 
tissue-specific characteristics.7 The majority of CAFs originate from fibroblasts in normal tissues with a particularly high 
fibroblast content, such as the breast, lung, and colorectal tissues. Additionally, innate stellate cells of the pancreas48 and 
liver49 are common sources of CAFs; upon activation these cells differentiate into CAFs with a muscle-like phenotype, 
characterized by the expression of α-smooth muscle actin (α-SMA).50 And bone marrow (BM)-derived fibroblasts can be 
recruited to the TME and transform into CAFs. Moreover, both BM- and tissue-derived MSCs serve as precursor cells for 
normal fibroblasts and can directly differentiate into CAFs.51–54 Finally, other cell types, such as epithelial or endothelial 
cells, adipocytes, and perivascular cells, can undergo metaplasia or trans-differentiation to transform into CAFs.55–57 The 
transition processes of CAFs are portrayed in the Figure 1.

Figure 1 The origin of cancer associated fibroblast (CAFs): the main original cell of CAFs are tissue normal fibroblasts, stellate cells, mesenchymal stem cells, endothelial 
cells, epithelial cells, adipocytes cells and perivascular cells. These cells can transform into CAFs by Epithelial–mesenchymal transition (EMT) pathway and Endothelial-to- 
mesenchymal transition (EndMT) or be activated by cytokines including TGF-β, SDF-1, WNT-3, IGF-3, CCL2, CCL5 and CXCL2.
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CAFs Heterogeneity
The heterogeneity of CAFs is influenced by their diverse origins and their spatial relationship with tumor cells within the 
TME.58–60 Distinct types of CAFs often vary in their surface markers and biological characteristics.50 Initially, CAFs 
were categorized into the myofibroblastic (mCAF) and inflammatory (iCAF) CAF subtypes.47 However, the advance-
ment of single-cell sequencing technology has facilitated the exploration of CAF subtypes and heterogeneity within the 
TME in more detail. Current research on the classification of CAFs primarily focuses on connective-tissue-rich tumors, 
such as those of breast and pancreatic cancers. Despite having different tissue specificities, CAFs demonstrate broad 
similarities.61 The three main CAF subtypes are: mCAFs, pro-inflammatory and immune regulatory CAFs (iCAFs), and 
antigen-presenting CAFs (apCAFs).59,62 mCAFs remodel the ECM and influence tumor tissue rigidity; they are therefore 
characterized by the expression of genes associated with collagen formation and smooth muscle contraction (eg, α-SMA) 
.63 mCAF subtypes can be further classified based on the surface expression of functional molecules (eg, TPM1,64 

POSTN,65 ACTA2, and MYL966), which is used to identify their origin and ability to promote tumor growth. Moreover, 
the different mCAF subtypes can morph into each other during different stages of tumor progression by varying their 
surface molecule expression. In breast cancer, a significant proportion of CAFs originate from PDPN+ CAFs (pCAFs), 
and turn into the Fbn1+Mfap5+ and Acta2+Thbs2+ CAFs in the later stages.67 Meanwhile, in non-small cell lung cancer 
(NSCLC), the COL13A1+ and COL14A1+ CAFs (with strong epithelial-mesenchymal transition [EMT] characteristics) 
dominate in the early stages of disease but later transition into the ECM37+ or ACTA2+ subtypes.68,69 The immunomo-
dulatory properties of iCAFs in the TME depend on the organ they reside in and the associated environmental factors. 
Tumor cells drive iCAFs to perturb certain elements of the TIME. Simultaneously, iCAFs modulate tumor cells through 
the secretion of their own substances, thereby enhancing immunosuppression and immune evasion.70,71 iCAFs express 
relatively low surface α-SMA levels, and are classified into various subtypes based on specific molecular marker 
combinations.47 For instance, iCAF subtypes can be designated as pCAFs or S100A4+CAF (sCAFs).67 Additionally, 
CAF subtypes can be distinguished based on the variation in the secretion of certain factors. Moreover, the iCAF and 
mCAF phenotypes are highly dynamic and can undergo interconversion. Commonly secreted mediators include leukemia 
inhibitory factor, interleukin (IL)-6, IL-8, IL-11, CXCL, and CCL family members; these mediators are implicated in 
pathways such as the Hedgehog, IL1R1/JAK/STAT, NF-κB, and classical complement pathways.59,70,72–74 iCAFs have 
been reported to inhibit the infiltration of DCs, B cells, and T cells, increase the recruitment of MDSCs and Tregs, and 
promote the polarization of M2 macrophages.59 The discovery of apCAFs indicates that not all CAFs have pro-tumor 
properties;46 however, the formation of these CAFs largely depends on whether they originate from endothelial or 
epithelial cells. Moreover, apCAFs typically occur in the late stage of cancer or in individuals with compromised immune 
function. Overall, few studies have characterized this CAF subtype, and its prevalence, formation, and antigen presenting 
functions remain unclear. Beyond the three common classifications of CAFs, metabolic CAFs (meCAF, involved in 
metabolism) and vascular CAFs (vCAFs, involved in angiogenesis) have also been identified.60,65 Despite a substantial 
body of research addressing CAF classification, no universally accepted categorization method exists. Therefore, 
considerable strides still need to be made to comprehensively classify CAF subtypes. The example of the subtypes of 
CAFs are shown in the Figure 2.

The Role of CAFs in the TME
CAFs and Tumor Cells
The interactions between CAFs and tumor cells are mutual. Tumor cells persist creating an education process to 
recruit and active CAFs consistently. This process is not only controlled by a wild range of tumor-secreted factors (eg, 
TGF-β, PDGF and IL-6) but also rely on some stimulation and the change of metabolite composition in the TME.7 

For instance, the accumulation of reactive oxygen species triggered by local hypoxia can induce the expression of 
CXCL12 and hypoxia inducible factor 1α to promote the transition of mCAFs.75–77 In the study of Kitamura et al, 
they found that cancer lactate can be reused by CAFs. CAFs can use monocarboxylate transporter 1 to utilize the 
lactate to enhance TCA cycle and upregulate the expression of IL-6.78 Activated CAFs can evolve along with the 
tumor cells and attach great importance in affecting multiple malignant behaviors. In breast cancer and prostate 
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cancer, it has been reported that CAFs can boost the tumor growth and induce tumorigenesis and this effect is mainly 
due to the interaction between CXCL12 (secreted by CAFs) and CXC-chemokine receptor 4 (CXCR4, expressed on 
tumor cells).79,80 Rapid tumor growth demands enough nutrients and oxygen so new vessel formation in the TME is 
necessary. CAFs-derived amounts of pro-angiogenesis factors including WNT2, VEGF, FGF2 and PDGFA can 
initiate and stimulate this procedure.81 Notably, CXCL12 secreted by CAFs can recruit the vesicular endothelial 
cells into TME and accelerate vessel formation.7,79,82 CAFs-derived TGF-β and CXCL12 can lead EMT in tumor 
cells, which contribute to invasion and metastasis. Moreover, CAFs can create gaps in ECM, basement membrane and 
vascular wall which make it favorable for tumor invasion and metastasis.83 Recent numerous researches have also 
proved that CAFs are indispensable in the resistance of cancer therapy. CAFs are capable of remolding ECM by 
secreting collagen and tenascin C (TNC) to form dense physical barriers which can prevent chemotherapeutic and 
immunotherapeutic drugs from penetrating into the deep parts of tumor.7,14,18 Moreover, CAFs-derived factors can 
increase the resistance ability of tumor cells. For instance, CAFs can cause resistance to cisplatin-based chemother-
apy. Cisplatin can increase TGF-β level to activate CAFs to produce IL-6, which can induce EMT and avoid 
apoptosis.84 And CXCL12/CXCR4 axis mentioned above can activate Wnt/β-catenin pathway to induce cisplatin 
resistance.82 Moreover, Xingbo Long et al showed that bladder cancer cells can promote the transformation of CAFs, 
which then upregulate the IGF1/ERβ pathway in bladder cancer cells to increase their ability of cisplatin resistance.85 

In general, CAFs and tumor cells can co-evolve along with cancer progression and the mutual interaction may result 

Figure 2 The heterogeneity of CAFs: the main subtypes of CAFs are defined by their features. In the classification of mCAFs, the overexpressed genes such as ACTA2, 
CD36 and PDPN are define as the subtype of mCAFs. And subtypes of the iCAFs with different functions are define by their secreted cytokines. The way of defining apCAFs 
are similar to myCAFs but the markers are usually human leukocyte antigens and cluster of differentiations (CD).
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in adverse outcomes. This is why CAFs has become the promising target for cancer therapy during recent years. 
What’s more, eliminating CAFs and tumor cells simultaneously is more important and effective than merely targeting 
CAFs or tumor cells.

Crosstalk Between CAFs and Immune Cells
CAFs and T Cells
T lymphocytes are the most important adaptive immune cells in the TME. They exert an adaptive immune response by 
recognizing specific tumor-related antigens.74–77 However, prolonged antigen exposure leads to the upregulation of 
immune checkpoint proteins (ICPs) on the surface of T cells, which impairs their ability to mount an effective immune 
response and results in reduced proliferation, loss of memory function, and exhaustion.78,79 CAFs play a significant 
role in inducing T cell exhaustion and have a potent capacity to induce the differentiation of Tregs. Notably, Sakai et al 
observed that the infiltration of Foxp3+ CD4+ T cells was accompanied by increased numbers of WNT2+ FGFR2+ 

CAFs.80 In vitro experiments have also demonstrated a significant increase in Tregs within the peripheral blood 
mononuclear cell (PBMC) population in the presence of CAFs.81 Nonetheless, the relationship between CAFs and 
Treg infiltration in tumors remains unclear, with some studies suggesting that partial CAF depletion actually promotes 
Treg infiltration into the tumor, thereby promoting tumor progression.82,83 The influence of CAFs on CD8+ T cells is 
also multifaceted. First, CAFs can effectively exclude CD8+ T cells from the tumor core, causing their 
marginalization.84 Second, CAFs can impede the activity and proliferation of T cells. In vitro studies have demon-
strated that co-culturing CAFs with PBMCs significantly reduced CD8+ T cell numbers and their ability to secrete 
cytotoxic molecules.81 CD8+ T cells and CAFs also show great relation in metabolic regulation. Weimin Wang. et al 
reported that CAFs can produce cysteine and glutathione to lead resistance to platinum-based therapy. While CD8+ 

T cells can control the release through IFN-γ.86 Additionally, CAFs themselves can express ICPs such as PD-L1, which 
induce ICP expression on the surface of CD8+ T cells and exacerbates their exhaustion. Notably, LRRC15+ CAFs have 
been positively associated with the expression of multiple exhaustion molecules, including TIM3, LAG3, and CD39, 
on T cells.85,86 (Figure 3)

CAFs and TAMs
Macrophages are the most abundant and extensively studied innate immune cells in the TME. Two distinct phenotypes of 
macrophages exist: M1 macrophages have anti-tumor properties, while M2 macrophages exhibit pro-tumor 
characteristics.87 CAFs and macrophages behave similarly within tumors, exerting their functions through autocrine 
and paracrine signaling mechanisms.88–90 For instance, the KRAS pathway induces M2 macrophage polarization and 
enhances the capacity of CAFs to secrete IL-6 and CXCL1.91 mCAFs and macrophages can communicate extensively 
with each other within the TME.92 Moreover, the presence and functions of tumor-associated macrophages (TAMs) and 
CAFs appear to be intertwined across various tumor types. In breast cancer, the presence of CD163+ and CD206+ TAMs 
positively correlate with that of α-SMA+ CAFs.89 Similarly, CD204+ TAMs in lung cancer exhibit concordant infiltration 
patterns with FDPN+ CAFs.93,94 The co-localization of TAMs and CAFs often implies drug resistance and immunosup-
pression, implying that these cell types can synergistically induce adverse effects. CAF-derived cytokines and chemo-
kines (eg, IL-6, IL-10, GM-CSF, and CXCL12) recruit monocytes into the TME, facilitating their polarization into M2 
TAMs.36,95–97 In gastric cancer, CAFs promote the transformation of M2 macrophages through periostin expression.98 

Moreover, CAFs exacerbate immunosuppression in breast cancer by secreting chitinase-3-like 1, which attracts M2 
TAMs and leads to CD8+ T cell depletion.99 In turn, TAMs maintain persistent CAF activation, which further contributes 
to breast cancer tissue fibrosis and sclerosis through the activation of the TGF-β signaling pathway.100 Additionally, 
macrophages cause MSCs to adopt CAF-like characteristics in vitro by upregulating markers such as α-SMA, FAP, and 
vimentin.53 The intricate interplay among CAF, TAMs, and tumor cells facilitates tumor initiation and progression 
(Figure 3).
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CAFs and MDSCs
MDSCs contribute significantly to the formation of the immunosuppressive TIME. Tumor-associated cytokines drive 
the differentiation of immature myeloid cells into MDSCs, which share biological similarities and exhibit close 
associations with CAFs.101 In lung cancer, a positive correlation has been observed between the expression of 
MDSC- (eg, CD14 and CD16) and CAF- (eg, FAP and PDGFR-β) associated surface markers, implying the co- 
infiltration of CAFs and MDSCs.102 Likewise, CAFs can recruit MDSCs or influence their functions through various 
pathways. For example, CAFs promote MDSC infiltration and increase the expression of adhesion molecules on 
MDSCs by secreting IL-6, IL-8, and CCL2.96,103,104 Moreover, CAFs play a role in MDSC differentiation, for 
instance, by inducing the expression of APOE and TREM-2 expression in MDSCs, thereby enhancing their ability 
to suppress CD8+ T cells92 (Figure 3).

CAFs and DCs
As professional antigen presenting cells, DCs prime T cells to recognize and eliminate tumors.105 CAFs have been found 
to downregulate the expression of MHC class I and II molecules on the DC surface, thereby impeding T cell priming.106 

In addition, CAFs interfere with the immunomodulatory function of DCs, establishing an immunosuppressive environ-
ment. Conversely, CAFs can recruit DCs to the tumor site via the CXCL12 and CCL19/CCR7 axes.107 In colon cancer, 
the secretion of WNT2 by CAFs significantly hinders the activation and maturation of DCs.108 Moreover, CAFs can 
inhibit DC function by promoting the expression of ICPs, such as CTLA-4, on the DC surface106 (Figure 3).

Figure 3 Crosstalk of CAFs and immune cells: CAFs can inhibit CD8+ T cells by inducing exclusion, dysfunction and exhaustion and they can also inhibit their proliferation 
while induce the proliferation of Tregs. CAFs can induce M2 polarization while M2 can also enhance the function of CAFs. This kind mutual support also can be found in the 
interaction of CAFs and MDSCs. CAFs also can disrupt the functions of DCs and NK cells while recruit mast cells.
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CAFs and Cancer Therapy
As previously mentioned, most CAFs inhibit the pro-tumor immune response within the TME. Therefore, over the past 
few years, a considerable number of immunotherapeutic approaches targeting CAFs have been developed (Table 1); 
some of these have successfully entered the preclinical and clinical trial stages.109 Three main CAF-targeting strategies 
have been employed: CAF elimination, CAF inhibition, and CAF modulation.61 Unlike most other immune cells, CAFs 
do not have a well-defined molecular signature; thus, current studies have mainly targeted the molecules FAP and α- 
SMA, which are highly expressed on the CAF surface.50,110 FAP targeting using FAP inhibitors (eg, PT630111 and 
sibrotuzumab112), DNA cancer vaccines,113,114 and CAR-T cells115 has been relatively well documented. Moreover, 
a dual-specificity antibody drug targeting CD137 and FAP (RO7122290) is being investigated in clinical trials.116 These 
drugs and therapeutic methods have all demonstrated similar tumor-inhibiting effects. However, results from a recent 
Phase II trial of an FAP-specific monoclonal antibody (PT100) showed no clinical benefits.117,118 Moreover, FAP-based 
oncolytic adenoviral vaccines are merely at the preclinical stage of development; this may due to concerns regarding their 
low efficacy and stability. Similarly, because CAR-T cell therapy is seldomly used in solid tumor, FAP-specific CAR-T 
cell therapy is unlikely to be applied to the treatment of all tumor types. Furthermore, not all CAFs express FAP, making 
it challenging to completely eliminate tumors by targeting FAP-positive cells. Moreover, as FAP is also expressed on 
healthy cells, targeting this molecule can result in off-target toxicity and adverse effects. Thus, FAP-specific CAR-T cell 
therapy is likely to induce cytotoxicity,119 while an α-SMA-targeting approach will likely increase Treg infiltration.120 

Table 1 Drugs for Targeting CAFs in Preclinical and Clinical Trials

Therapy Types Drugs Effects Cancer 
Models

Stage of 
Clinical 
Trials

Source

FAP-expressing cells 

depletion

PT630 FAP participates in matrix degradation but 

fails to inhibit tumors

BRCA Preclinical [136]

PT100 FAP-specific monoclonal antibody and 

inhibitors

COAD Phase II [117,118]

Sibrotuzumab Kill FAP-CAFs COAD Phase II [112]

RO7122290 Costimulates T cells for improved tumor cell 

killing in FAP-expressing tumors.

Solid tumors Phase I [116]

DC/CAF fusion 

cells-tumor vaccine

Stimulating T cells HCC Preclinical [113]

FAPα DNA vaccine FAPα-specific cytotoxic T lymphocyte 

responses

BRCA Preclinical [114]

FAP based CAR-T Ablate FAP-expressing cells Lung cancer Preclinical [119]

TGF-βInhibitor Galunisertib Inhibit CAFs activation HCC Phase II [123]

Vitamin A analogs ATRA Dampening multiple signalling cascades PDAC Preclinical [124]

Vitamin D analogs Calcipotriol Reduced markers of inflammation and fibrosis PDAC Phase II [128]

CXCL12-CXCR4 inhibitor AMD3100 T-cell accumulation and PD-L1 diminished PDAC Preclinical [131]

JAK inhibitors Ruxolitinib Alleviate tumor inflammation PDAC Phase II [132]

Hedgehog pathway Sonidegib Sensitizes tumors to docetaxel BRCA Phase I [133]

IPI-926 Depletes tumor-associated stromal tissue PDAC Preclinical [134]

GDC-0449 Conflicting effects PDAC Phase II [135]
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Therefore, restoring the stromal balance in tumor tissue rather than eliminating CAFs altogether has been put forward. 
And this can be achieved using TGF-β pathway inhibitors, such as rizaben and galunisertib.121–123 However, these 
inhibitors often induce side effects such as neutropenia, liver toxicity, and thrombosis. In addition, vitamin A (eg, all- 
trans retinoic acid [ATRA]124) and vitamin D (eg, calcipotriol125) analogs have been used to interfere with CAF 
activation.126,127 When used in combination with chemotherapy and radiotherapy, these inhibitors can effectively 
enhance the anti-tumor immune response within the TME and achieve tumor growth inhibition. Unfortunately, these 
approaches are still in the preclinical stage and may harm T cell immunity.128 Recently, Li et al have investigated the 
positive role of calcipotriol in tumor metastasis and recurrence after adjuvant photothermal therapy (PTT).129,130 

Targeting important pathways within CAFs is another research focus. Examples of pathway inhibitors include 
AMD3100,131 an inhibitor of the CXCL12-CXCR4 pathway; ruxolitinib,132 a JAK pathway inhibitor; and 
sonidegib,133 IPI-926,134 and GDC-0449 (vismodegib),135 inhibitors of the Hedgehog pathway. In preclinical studies, 
AMD3100 has shown promising results when used in combination with ICIs; however, precisely how it modulates the 
TME remains unclear.131 In a phase II clinical trial of pancreatic cancer, ruxolitinib has demonstrated expected outcomes, 
with beneficial effects primarily observed in patients with high C-reactive protein levels.132 Despite this partial response, 
ruxolitinib is still regarded as a promising drug. GDC-0449, an inhibitor of the Hedgehog ligand SHH, did not confer 
benefits when used in combination with gemcitabine for pancreatic cancer; in addition, over half of the patients 
experienced significant drug toxicity.135

As described above, targeting CAFs therapies are currently unresolved challenges in clinical trials. Moreover, the 
efficacy of individual CAF-targeting methods is limited, while the use of combination therapies often leads to more 
adverse drug reactions and increases treatment complexity. The emergence of nanotechnology has improved the precision 
of drug delivery while optimizing drug release mechanisms.17,20 Additionally, the unique properties of NPs bring forth 
diverse treatment modalities, such as PTT.20 Immune therapies utilizing specifically tailored nanomaterials have 
demonstrated remarkable results in the treatment of various tumors.16 Therefore, exploring the value of using NPs in 
targeting tumors and CAFs has been the new research orientation.

The Advantages and Functions of NPs
In the past few decades, medical nanotechnology has developed rapidly, and many inorganic biologically inert materials 
have been applied to nanomedicines. Compared with common drug molecules, nanomedicines have better performance 
in targeting, stability, long-term efficacy, versatility and safety.137 The advantages of nanomedicines benefit from their 
functions. 1) NPs have a stealth effect, that is, they are in a state of immune escape so they will not be quickly cleared in 
the body. The surface charge of NPs can make them not be cleared in the glomerular filtration membrane, especially for 
some small molecules. Neutral and hydrophilic polymers can improve the stability and reduce biological interactions in 
Vivo, and thus prolong the retention time in tissues and blood. The application of polyethylene glycol (PEG) as 
a modification group is the best proof.138 Bio-derived NPs can also bring this stealth effect. Nanomedicine based on 
red blood cell (RBC) membrane can improve the stability owing to the low immunogenicity and similar characteristics to 
RBC in blood. Albumin has become a good drug carrier because its size and charge characteristics are not filtered by 
glomeruli. Recently, CD47 has been found as a sign of ‘don ‘t eat me ‘signal to macrophages, which has also led to an 
increasing number of modified with CD47-modified NPs to achieve stealth effects.138 2) NPs provide the basis for the 
design of multifunctional drugs, which can accurately target tumor. Ph response strategy and redox response strategy are 
the main methods. They can take advantage of the specific Ph changes in tumor tissue and the specific overactive redox 
environment. More interestingly, these can bring the cutting effect of PEG, which is conducive to the release and uptake 
of drugs. At the same time, NPs modified with cell-specific markers can achieve the expected precise targeting effect. For 
example, nanoparticles modified with macrophage surface marker CD80, CD86 and other molecules can accurately 
locate macrophages, integrate into the cell.137 As discussed in this review, NPs modified with CAF surface marker FAP 
show a high targeting effect on CAF. 3) Some effects of NPs can be triggered in vitro. Light, magnetic field, and 
ultrasound can trigger effects such as self-luminescence (commonly used in surgical tracers) and photothermal effects 
(metal nanoparticles, carbon-based nanoparticles, nano-polymers). This feature makes it more versatile, and in the 
application, doctors can more actively grasp the timing of treatment.137
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In cancer therapy, nanomedicines need to enter the tissue through blood vessels, then infiltrate into it to 
release, and eventually be taken up by targeted cells. Macromolecular drugs can infiltrate into solid tumor tissues 
through blood vessels and accumulate in tumor tissues, which is the enhanced permeability and retention (EPR) 
effect. This effect is thought to be fundamental for the design of nanomedicine and it is affected by the size, 
shape, softness and surface properties.139,140 In the research from Shrey Sindhwani, they thought that the way of 
entering tumors by processing endothelial cells is more common than EPR effect for NPs141 And there is also 
a concern that the EPR effect may cause an increased risk of metastasis.142 Moreover, EPR effect is limited in 
clinical applications due to its heterogeneity which is caused by the individual differences between patients.140 

Although there exist some controversies, enhancing EPR effect is still an effective method to improve curative 
effect in the current. CAF is the barrier for NPs to enter tissue due to its effect on the ECM (CAF makes the 
tumor become solid, which is not conducive to the penetration of drugs, and impair the diffusion of drugs. CAF 
can also absorb drugs, which will cause a decrease in drug concentration.7 Therefore, the depletion of CAFs in 
cancer therapy can be considered as a way to enhance the EPR effect from the biological perspective. However, 
this method can bring risks because that eliminating CAFs may promote tumor progress, which is similar to the 
risk from EPR effect. So, there also exist many researches on disrupting the functions of CAFs and inhibiting its 
activation. We have summarized the examples to show how NPs are applied for targeting CAFs in Table 2. The 
types, the targeting sites, the loaded drugs and the targeting strategies are listed. All of these will be discussed 
thoroughly in the following sections.

Table 2 Constructed NPs and Their Effects for Targeting CAFs

Materials 
Type

NPs and 
Nanomaterials

Targeting 
Sites

Loaded Drugs Pharmacological Effects Source

Liposomes 
and lipo- 

based

DSPE-PEG2000 CFH/OM-L 
(Tenascin C)

Oxymatrine Reversing EMT, inactivate CAFs, M1 
polarization and NK activation

[143]

DSPE-PEG2000 FH (Tenascin C) Navitoclax, doxorubicin CAFs selective apoptosis; facilitating 
drugs penetration

[144,145]

LNCs – Paclitaxel and acriflavine Inhibit CAFs and whole tumor [146]

DSPE-PEG-2000, DSPE- 

PEG-NHS, DSPE-PEG- 
AEAA

– Fraxinellone CAFs depletion and remolding TME [147]

PEG-lip – Salvianolic acid B Inhibiting CAFs activation, remolding 
TME

[148]

LPD – sTRAIL Inactivate CAFs, remolding TME and 
induce drugs infiltration

[149]

IR780/DPPC BMS Reducing CAFs, inducing CTL activation 
and blocking PD-1/PD-L1

[150]

DSPE-PEG2000 HA and GA Aprepitant, berberine 
and curcumin

Inhibit CAFs activation [151,152]

Nanoliposome – Doxorubicin, resiquimod 
(R848) and losartan 

(LOS).

Reduces the activity of CAFs [153]

(Continued)
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Table 2 (Continued). 

Materials 
Type

NPs and 
Nanomaterials

Targeting 
Sites

Loaded Drugs Pharmacological Effects Source

Metallic SPIONs – Sodium citrate CAFs apoptosis [154]

Gold-core silver-shell – – Attenuated CAFs functions [155]

Gold NPs Docetaxel CAFs as NPs reservoirs [156]

SPIONs FGF2 Inactivate CAFs [157]

3nm GNPs – – Attenuated CAFs functions [158]

GNPs – – Transform to quiescence; disturb CAFs 

communication

[159,160]

Gold shell, SPIOs, PLGA Her2 Doxorubicin Reduce CAFs and remodel TME [161]

6nm USPOINs CCK2R – Magnetic damage [162]

SPOINs – Relaxin Inactivate CAFs [163]

GIONF – – CAFs depletion [164]

Polymeric 

micelles

TPP, PLGAs – Resveratrol CAFs depletion and inactivation [165]

ONP-302 – – CAFs dysfunction and apoptosis [166,167]

SN38 Triptolide-naphthalene 

sulfonamide

Reduce CAFs activity [168]

Self-assembled Chol-R9 FAP siCXCL12 Inactivate CAFs [20]

Drug self-polymerized Cyclopamine (CPA) and 

paclitaxel (PTX)

CAFs depletion and tumor inhibition [169]

ZGP-PEOz-PLA, FA-PEOz 

-PLA, PEOz - PLA

FAP Doxorubicin CAFs deletion [170]

MLNPs – Docetaxel CAFs deletion [171]

Cellax-DTX polymer – Docetaxel CAFs depletion [172]

SN38 – GDC-0449 Reducing CAFs [173]

PAMAM FAP Doxorubicin CAFs as NPs reservoirs [174]

Self-assembled CAP FAP Doxorubicin CAFs depletion [175]

PLGA-PEG – Sunitinib Remolding CAFs [176]

PEG-PBLG – Tranilast Remolding CAFs [177]

PLGA – siRNA for hepatocyte 
growth factor

Inhibit hepatocyte growth factor 
secreted from CAFs and prevent CAFs 

activation

[178]

mPEG-PLGA – Baicalein Prevent CAFs activation [179]

Amphipathic hydroxyethyl 

starch-polycaprolactone

– LY2157299 and 

photosensitizer 

indocyanine green

Enhance CAR-T therapy effects and 

inhibit CAFs activation
[180]

(Continued)
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NPs Targeting CAFs in Cancer Therapy
Drug Delivery Systems for Targeting CAFs
Liposomes and Lipids
Liposomes, which are characterized by high biocompatibility, sustained release, and effective immune cell targeting, 
have revolutionized drug delivery.188 Owing to its exceptional hydrophilicity and hydrophobicity, PEG is frequently 
employed as a linker to connect drugs and liposomes. Recent studies have explored the potential use of PEG in the 
development of CAF-targeting NPs.189 The targeting efficiency of liposomes can be further improved by attaching 
peptides or antibodies that recognize specific biomarkers.190 While FAP is commonly used as a CAF biomarker for 
guiding NPs,191 TNC,192 which is expressed in the ECM, has also been increasingly used to target CAFs. The FH and 
CFH peptides exhibit high binding affinity for TNC;193 thus, by conjugating these targeting moieties to NPs, the precise 
targeting of CAFs can be achieved. Moreover, optimized liposome-based NPs, such as lipid nano-capsules, have 
demonstrated even higher efficiency than conventional liposomes.194 Additionally, DSPE-PEG2000, known for their 
stable chemistry, can serve not only as raw materials for liposome synthesis but also as efficient drug carriers. 
Conjugation of DSPE-PEG2000 to liposomes extends the half-lives of these delivery systems.144,145 Several traditional 
Chinese medicines, including oxymatrine,143 salvianolic acid B (SAB),148 and fraxinellone (Frax)147 have also shown 
great potential as fibroblast modulators when conjugated to DSPE-PEG2000. Multifunctional lipo-based NPs are also 
developing currently. For instance, thermosensitive lipid NPs can be constructed using the photothermal agent IR-780 
and the phospholipid Dipalmitoylphosphatidylcholine (DPPC) (Figure 4).150 Furthermore, the potential of using lipo-
some complexes with polymeric micelles or biomacromolecules in targeting CAFs has been investigated. Notably, lipid- 
coated protamine DNA (LPD) complexes exhibit exceptional transfection efficiency, making them suitable for the 
delivery of drugs that regulate intracellular metabolism and pathways. Indeed, loading LPD complexes with TNF- 
related factors has been shown to effectively inhibit CAFs and induce their apoptosis.149

Metals and Metal Oxides
Metallic NPs and their derivatives possess several advantageous properties, including sustained release, local heat 
generation, high photothermal sensitivity, high affinity, and improved irradiation effects. These unique characteristics 
enable them to effectively target CAFs and remodel the TME.162,195,196 Among the types of metallic NPs, gold NPs 

Table 2 (Continued). 

Materials 
Type

NPs and 
Nanomaterials

Targeting 
Sites

Loaded Drugs Pharmacological Effects Source

Protein Apoferritin, ferritin 
nanocage

FAP ZnF16Pc CAFs depletion, increase CTLs 
infiltration

[181,182]

H-ferritin FAP Navitoclax Killing CAFs [183]

HSA, CAP-TSL FAP Paclitaxel CAFs depletion and tumor inhibition [184]

Cell 

membrane

Fibroblasts membrane – SPN Killing CAFs [185]

Tumor cells and 
fibroblasts membrane

– Paclitaxel, PFK15 Reprogram TME [186]

Tumor cells membrane 
and thermosensitive LNPs

– BMS Disrupt CAFs and ECM, inhibit PD-1/ 
PD-L1

[186]

Red blood cells 
membrane, PEG-PLGA

FnBPA5 Retinoic acid, 
Doxorubicin

CAFs depletion and tumor inhibition [187]

Tumor cells membrane – Indocyanine green and 

calcipotriol

Modulate phenotype of CAFs and 

enhance PPT effects

[129]
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Figure 4 Design, characteristics and effects of IR780/DPPC/BMS. (A) Scheme of IR780/DPPC/BMS. (B) Synthetic route of IR780-PEG-ODC. (C) In vitro NIR-triggered drug 
release profiles. (D) Transmission electron microscope (TEM) images of IR780/DPPC/BMS at different temperatures. (E) Cellular uptake and responsive drug release in 4T1 
tumor cells. (F) In vivo photothermal effect. (G) Tumor volumes of 4T1 tumor-xenografted mice in different treatment groups. (H) The quantitative analysis of pulmonary 
metastatic nodules in various treatment groups. (I) Detection of released cytokines in primary tumor after synergistic immuno-photothermal therapy. *:P<0.05; **:P<0.01; 
***P<0.001. Reprinted from Cancer Letters, volume 522, Tan Y-N, Li Y-P, Huang J-D, et al. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing 
drug penetration and T lymphocytes infiltration in metastatic tumor. 238–254, Copyright 20221, with permission from Elservier.150
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(GNPs) and iron NPs are the most commonly used. CAFs exhibit a 7-fold higher rate of GNP uptake and a 3-fold 
longer rate of GNP retention than tumor cells (Figure 5).197 The therapeutic effect of GNPs can be further enhanced by 
combination with docetaxel (DTX); this may be because GNPs sensitize CAFs to external factors and promote drug 
absorption. Thus, GNPs not only serve as ideal carriers for CAF-targeted therapies but also remodel CAFs into drug 
repositories, leading to sustained effects. In vitro studies have demonstrated that GNPs can reduce radiotherapy 
resistance in tumor and CAF co-culture models by suppressing CAF activity.198 Additionally, GNPs promote the 
transition of CAFs from an activated to a resting state; this may occur through the regulation of cellular lipid 
metabolism and the disruption of communication between tumor cells and CAFs via altered soluble factor 
secretion.159,160 The functional properties of GNPs are influenced by their size; 3 nm is considered as the optimal 
GNP diameter.158 Furthermore, multifunctional and optimized GNPs-related NPs have recently been developed. 
Hybrid gold and silver NPs, with a core-shell structure, have been designed to modulate CAFs even more effectively 
than conventional GNPs.155 In these particles, gold acts as the Trojan-horse for precise silver delivery, which in turn 
effectively interferes with CAF-mediated communication pathways.199 Gold-shell-based photothermal NPs also 
enhance the CAF killing ability of GNPs and promote targeted drug release.163 Among the iron-based NPs, super-
paramagnetic iron oxide nanoparticles (SPOINs) have demonstrated exceptional in vivo compatibility.156,162,200 

Citrate-coated SPOINs can be easily absorbed by CAFs within 15–30 minutes of treatment.154 Due to their magnetic 
properties, SPOINs can induce the mechanical destruction of CAFs under low-frequency magnetic conditions,201 with 
smaller SPOINs proving most effective. Additionally, when exposed to alternating current magnetic fields, SPOINs 
can be used as a thermal therapy and induce apoptosis in CAFs.154 Finally, SPOINs have a large surface area and are 
richly decorated by various functional groups, which serve as favorable drug attachment sites.156 As such, this type of 
NP can enhance the half-life, solubility, and therapeutic effects of drugs. Notably, biomolecules such as relaxin202 and 
fibroblast growth factor (Figure 6) 157 have been successfully conjugated to SPOINs to inhibit CAF differentiation and 
activation, ultimately reducing the extent of fibrosis in the TME. Moreover, the combination of gold and iron 
architectures enhances the CAF-targeting efficiency of NPs constructed using either metal alone. For instance, the iron- 
oxide-modified GNPs are preferentially absorbed by CAFs, where they act as a thermal source to effectively kill CAFs, 
reduce tumor stiffness, and ultimately lead to complete tumor elimination.163

Polymeric Micelles
In recent years, polymeric micelles have been rapidly adapted as NPs for use in cancer therapy. Their significant 
advantage lies in their ability to penetrate into cells independently of the properties of their drug cargo.164,203,204 Poly 
(lactic-co-glycolic acid) (PLGA) is one of the commonly used nanomaterials.205 An example is ONP-302, a PLGA-based 
NP specifically designed to target TAMs and CAFs. With a diameter ranging from 400 to 800 nm and a negative surface 
charge of 35 to 50 mV, ONP-302 selectively targets CAFs, inhibits their cancer-promoting function, and induces their 
apoptosis.166,167 PLGA-like polymers are commonly employed to construct multi-response and sequential delivery NPs 
(Figure 7).165,206 FAP serves as the molecular target, while pH-responsive groups like folic acid, benzimidazole, and β- 
cyclodextrin are conjugated to PLGA-like polymers to form the complete CAF-modulating agents.170 Certain molecules, 
such as amphiphilic peptides, 9-arginine, and PEG5K-P(MMESSN38)5K (PSN38) (Figure 8), possess both hydrophilic 
and hydrophobic properties.168,173 These molecules have the ability to self-assemble into carrier cages when exposed to 
the appropriate medium. While these NPs exhibit excellent drug-loading properties, the addition of cell localization 
groups, such as FAP, is often necessary. Other polymers that have been reportedly used for CAF targeting include 
a complex of carboxymethylcellulose and DTX, which preferentially accumulates in CAFs and causes their depletion.172 

Micellar-like NPs synthesized from poly (ethylene glycol)-b-poly(lactide)-co-poly(N3-α-ε-caprolactone) demonstrate 
similar effects.171 Furthermore, the positive surface charge of cationic poly(amidoamine) (PAMAM) enables better 
drug penetration into CAFs.174 Finally, the self-assembly of anti-CAF agents and anti-neoplastic drugs into NPs has been 
identified as a promising approach for cancer therapy.175
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Figure 5 Docetaxel (DTX)-Mediated Uptake and Retention of Gold Nanoparticles (GNPs) in Tumor Cells and in CAFs. (A) Schematic diagram of functionalized GNP. (B) 
TEM of GNPs. (C) Zeta Potentials for pure GNPs. Scheme of transportation of GNPs in cells (D) and effects of DTX on cell division (E). Confocal microscopy images of 
GNPs transportation (F) and effects of DTX on cell division (G). (H) Effect of DTX on GNP. Retention of NPs in the presence of DTX in tumor cells (I) and CAFs (J). (L) 
Retention of GNPs in tumor cells and CAFs (K) post recovery. *:P<0.05. Reprinted from Alhussan A, Bromma K, Perez MM, et al. Docetaxel-mediated uptake and retention 
of gold nanoparticles in tumor cells and in cancer-associated fibroblasts. Cancers (Basel). 2021;13(13):3157. Creative Commons.197
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Proteins
Ferritin and albumin are the primary protein types utilized in the construction of NPs for CAF targeting. These proteins 
possess similar chemical characteristics and are natural biomacromolecules that elicit minimal immunogenic 

Figure 6 Fibroblast growth factor 2 (FGF2) engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in pancreatic tumor. (A) Schematic representation 
of conjugation of FGF2 to SPION. (B) Binding of FGF2-SPION on non-activated human pancreatic stellate cells (hPSCs) and activated hPSCs. Western blots demonstrating the 
differentiation-related biomarkers (C) and representative immunofluorescence images showing the effect of FGF2 and FGF2-SPION on the protein expression of α-SMA and col-1 in 
TGF-β-activated hPSCs (D). Effect of FGF2-SPION on hPSCs migration (E) and contractility (F). (G) Effect of FGF2-SPIONs on the tumor stroma and gemcitabine efficacy in 3D 
heterospheroids. (H) Magnetic driven iron oxide accumulation. *P<0.05; **P<0.01. Reprinted from Mardhian DF, Vrynas A, Storm G, et al. FGF2 engineered SPIONs attenuate tumor 
stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics. 2020;4(1):26–39. Creative Commons.157

https://doi.org/10.2147/IJN.S447350                                                                                                                                                                                                                                    

DovePress                                                                                                                                         

International Journal of Nanomedicine 2024:19 3348

Huang et al                                                                                                                                                           Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 7 On-demand responsive nanoplatform mediated targeting of CAFs and down-regulating mtROS-PYK2 signaling for antitumor metastasis. (A) Disintegration of the 
on-demand successively responsive HPBC@TRP/NPs and its therapeutic mechanism. (B) TEM images of HPBC@TRP/NPs. (C) Zeta potential reversal characteristic. (D) 
Evaluation of the relative cell viability and mechanism of the apoptosis signal pathway. (E) CLSM images of α-SMA activated CAFs in 4T1/NIH3T3 cells treated with PFD and 
HPBC@TRP/NPs. Down-regulation of the mitochondrial oxidation system and cancer associated fibroblasts in vitro: Western blot protein expression levels of PYK2 (F), α- 
SMA (G), and TGF-β (G) in 4T1/NIH3T3 co-cultured cells. (H) Enhanced in vivo therapeutic effect. (I) Normalization of the tumor ECM to remodel TME. (J) Modulation of 
TIME in 4T1/NIH3T3 tumors after treatments. Reprinted from Zuo T, Zhang J, Yang J, et al. On-demand responsive nanoplatform mediated targeting of CAFs and down- 
regulating mtROS-PYK2 signaling for antitumor metastasis. Biomater Sci. 2021;9(5):1872–1885. 2021 © Royal Society of Chemistry.165
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Figure 8 Prodrug polymeric micelles integrating CAFs and synergistic chemotherapy for gastric cancer (GCs). (A) Schematic overview of the composition and synergistic 
mechanisms. (B) TEM images of PSN38 and PSN38@TPL-nsa NPs. (C) Low dose of TPL inactivated CAFs and inhibited CAFs. (D) Apoptotic analysis of BGC-823 and 
MKN45 cells after the treatment of TPL, SN38 or a combination of SN38 and TPL for 24 h in the co-culture and mono-culture model respectively. (E) The antitumor 
efficiency of PSN38@TPL-nsa in GC PDX model. (F) PSN38@TPL-nsa remodeled GC microenvironment in vivo. Reprinted from Zheng S, Wang J, Ding N, et al. Prodrug 
polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. J Nanobiotechnology. 2021;19(1):381. Creative 
Commons.168
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reactions.207–209 The presence of amino acid residues within these protein-based NPs provides multiple binding sites for 
drug loading, and their amphoteric nature allows for pH-responsive behavior within the TME.210 Ferritin and albumin 
have been employed as nanocarrier cages, to which FAP -specific single-chain variable fragments have been conjugated 
to target CAFs (Figure 9).181,184 These NPs have been recently modified to encapsulate ZnF16Pc, a common photo-
sensitizer, for use in photodynamic therapy (PDT).181,182 These NPs not only selectively eradicate CAFs to halt tumor 
progression but also activate T cells and enhance the efficacy of ICI therapy.

Cell Membranes
Cell membranes have recently gained significant attention as NP biomaterials as they closely resemble the cellular 
components of the TME. Cell membrane surfaces exhibit a greater diversity of receptors and target molecules than the 
surfaces of synthetic NPs, allowing them to more effectively simulate the biological characteristics and functions of their 
source cells.211–213 Currently, the application of CAF-targeting cell membrane NPs is not widespread, and the main 
sources of cell membranes include RBCs, tumor cells, and fibroblasts. RBC-based NPs can protect peptides used in cell 
targeting from degradation.187 For instance, the FnBPA5 peptide exhibits a strong affinity for CAFs and the ECM, but its 
rapid metabolism poses a challenge. Encapsulating the external peptide segment of PLGA-PEG-FnBPA5 within RBC- 
based NPs enhances its targeting ability.187 The homology between the CAF membranes of NPs and those of their target 
cells makes them ideal for modulating CAFs.185,214 Moreover, when used as adjuvants, tumor cell membranes can 
activate immune responses to enhance the efficacy of anti-fibrotic drugs.186 Furthermore, the hybridization of the two 
types of cell membranes was more effective than using a single type, as it resulted in the targeted damage of both CAFs 
and tumor cells in the TME (Figure 10).215

Strategies of NPs Construction for Targeting CAFs
CAF Depletion
Modifying the NPs surface with molecules specific for CAF surface markers represents the most common method of 
CAF targeting. For instance, targeting FAP, a surface marker expressed by 90% of CAFs, to deliver drug payloads to 
CAFs has been shown to significantly inhibit tumor growth.216 In a recent study, Shin, H designed antigenic peptide 
epitopes derived from the FAP protein and conjugated them to lipid NPs containing CpG adjuvants which is FAPPEP- 
SLNPs and it can be acted as a nano-vaccine, effectively activating T cell immunity and eliminating FAP-positive 
CAFs.217 And in the research of Guo et al, they synthesized dipeptide Z-glycine-proline to target FAP to eliminate CAFs 
barriers.218 Additionally, TNC, a component of the ECM expressed by CAFs,144,192 has been targeted using a stable 
peptide called FH.143 Some studies have also proposed targeting α-SMA. Depletion of α-SMA+ CAFs in an α-SMA- 
thymidine kinase hybrid transgenic mouse model resulted in the inhibition of tumor angiogenesis but also increased 
hypoxia, subsequently inducing EMT and stemness. Furthermore, targeting α-SMA has been shown to increase Treg 
infiltration into the tumor and exacerbate immunosuppression in the TME.219,220 Although the direct use of α-SMA- 
targeting immunotherapeutic drugs has not achieved the desired results, their value should not be dismissed in the context 
of NPs-based therapeutics.169,219 NPs can be used to deliver CAF-sensitive drugs rather than directly targeting α- 
SMA.169 Furthermore, NPs can accommodate a complex formulation of both anti-tumor and anti-CAF drugs169 to 
remove the side effect of merely targeting CAFs.221

The direct NP-mediated elimination of CAFs typically uses one of two strategies. The first strategy is using NPs to 
load non-specific cytotoxic drugs, and then conjugate the targeting molecules such as CAF surface biomarkers to NPs 
surface. The second strategy encompasses anti-fibrotic drugs, which exhibit a high affinity for CAFs but require 
modification and encapsulation within NPs due to their pharmacokinetic limitations. In some solid tumors with high 
infiltration of CAFs, the EPR effect will decrease. Depletion of CAFs can “loosen” the TME to assist nanoparticles enter 
the deep tumor tissue. Both mentioned strategies can improve their effect through the enhanced EPR effect provided by 
CAF depletion.

In the first strategy, the CAF-targeting NPs can reduce fibrosis, improving the penetration of anti-tumor drugs into the 
tumor tissue and suppressing CAF function. Additionally, the anti-tumor drugs can themselves eliminate CAFs, leading 
to favorable therapeutic outcomes. Several promising candidates, which achieve both tumor inhibition and CAF 
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Figure 9 Targeting CAFs by dual-responsive lipid-albumin NPs to enhance drug perfusion for pancreatic tumor therapy. (A) Diagram of dual-responsive lipid-albumin NPs 
(HSA-PTX@CAP-ITSL) (B) TEM images of HSA-PTX, CAP-ITSL and HSA-PTX@CAP-ITSL. (C) The PTX release profiles of different formulations incubated with FAP-α. 
(D) cellular uptake after TGF-β activated NIH 3T3 cells incubated with different formulations. (E) Rhodamine B distribution of different treatment groups. (F) IR thermal 
images of subcutaneous tumor-bearing mice in different treatment groups.(G) H&E staining, α-SMA staining and Caspase-3 staining of tumor tissues. Reprinted from J Control 
Release, volume 321, Yu Q, Qiu Y, Li J, et al. Targeting cancer-associated fibroblasts by dual-responsive lipid-albumin nanoparticles to enhance drug perfusion for pancreatic 
tumor therapy. 564–575, Copyright 2020, with permission from Elsevier.184
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Figure 10 Metabolic Reprogramming by Dual-targeting Biomimetic NPs for Enhanced Tumor Chemo-Immunotherapy. (A) Scheme of PTX/PFK15-SLN@[4T1-3T3] NPs. (B) 
Western blot assay of 4T1 membrane (4T1m), 3T3 membrane (3T3m), 4T1-3T3 membrane (4T1m-3T3m), and SLN@[4T1-3T3] NPs for 4T1 membrane marker CD44and 3T3 
membrane marker FAP-α. (C) CLSM images of the SLN@[4T1-3T3] NPs and a physical mixture of SLN@4T1 NPs and SLN@3T3 NPs. (D) Representative TEM images of PTX/ 
PFK15-SLN and PTX/PFK15-SLN@[4T1-3T3] NPs. (E) CLSM images of 4T1, 3T3, B16F10, Pan02 and C166 cells stained with DAPI and cultured with DiD-labeled SLN@[4T1- 
3T3] NPs. (F) Representative CLSM images in tumor sites. The dotted line inside indicated CAFs. (G) Antitumor effect evaluation in vivo. (H) Representative flow cytometric 
images of the tumor CD4+ T cells, CD8+ T cells and Treg cells (gated by CD25). Reprinted from Acta Biomater, volume 148, Zang S, Huang K, Li J, et al. Metabolic reprogramming by 
dual-targeting biomimetic nanoparticles for enhanced tumor chemo-immunotherapy. 181–193, Copyright 2022, with permission from Elsevier.215
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depletion, have been identified; these include acriflavine (ACF),146 paclitaxel (PTX) (Figure 10),215 DTX,172 and 
navitoclax (Nav).183 LNC-encapsulated PTX and ACF have been shown to inhibit tumor growth in vitro.146 

Moreover, FAP-guided thermosensitive liposome-coated human serum albumin-PTX NPs can induce hyperthermia in 
the tumor stroma to enhance the release of chemotherapy drugs to eliminate CAFs (Figure 9).184 Self-polymerizing 
micelles containing cyclopamine (CPA) and PTX can reshape the TME by regulating Hedgehog signaling.169,222 NPs 
generated using the cellax-DTX polymer (with a size of 120 nm), specifically accumulate in α-SMA+ CAFs, leading to 
their depletion. This strategy reduces the density of the TME, consequently increasing tissue perfusion. Furthermore, 
cellax-DTX NPs have been shown to deplete TAMs, thereby disrupting the lines of communication between TAMs and 
CAFs, subsequently inducing CAF depletion.172 Nav promotes the apoptosis of CAFs by preventing the binding of the 
pro-apoptotic molecules BAX and BAK to BCL-2.223,224 Although the application of naked Nav is limited by its toxicity 
and hydrophobic nature,225 the use of Nav encapsulated in FAP-labeled H-ferritin (HFn) cages has demonstrate 
promising anti-CAF effects in vivo.183 The action of such FAP-labeled HFn cages has now been validated in various 
studies. For instance, ZnF16Pc can be encapsulated within these cages to induce PDT.181,182 In another study exploring 
the nano-drug loading of Nav, a TNC-linked peptide was used as a targeting ligand, resulting in similar levels of 
efficacy.144 Moreover, although the co-delivery of Nav and doxorubicin (DOX) does not enhance therapeutic efficacy, it 
allows for a reduction in the dosage of DOX, thereby alleviating its side effects. The use of FAP- and folate-conjugated 
dual-responsive NPs loaded with DOX has shown excellent therapeutic efficacy by facilitating endolysosomal escape170 

and removing stromal barriers via CAF elimination; the mechanism of CAF depletion may rely on the downregulation of 
α-SMA expression on CAFs and their subsequent inhibition. The absence of side effects may be attributed to the fact that 
NP-mediated anti-tumor effects may indirectly influence α-SMA expression on CAFs. In breast cancer, Her2-DOX- 
SPIONPs@PLGA@Au induces a photothermal effect, which reduces CAF infiltration, promotes DOX release, and 
enhances immunogenic cell death.161 Retinoic acid (RA), a vitamin A metabolite, has been shown to disrupt Golgi 
apparatus function in CAFs.226 Encapsulation of the RA-DOX complex within FnBPA5-RBC-PEG-PLGA promotes 
CAF targeting, inhibits the Golgi functions of CAF, and facilitates DOX penetration.187 DOX NPs loaded with sulfated 
hyaluronic acid and mifepristone operate via a similar mechanism to the previously mentioned NPs.227 The incorporation 
of triptolide (TPL), an active ingredient of Tripterygium wilfordii, in PSN38@TPL-nsa can inhibit CAFs, reversing their 
pro-tumor functions and increasing their sensitivity to chemotherapy by inhibiting the NF-κB pathway168 (Figure 8). 
PFK15, an inhibitor of glycolysis, was loaded into hybrid membrane NPs composed of tumor and fibroblast cell 
membranes. The resulting NPs could interfere with glucose metabolism in both cell types, thereby promoting the 
infiltration of CD8 T cells into the tumor (Figure 10).215 Additionally, fibroblast membrane NPs can be loaded with 
photosensitive materials to achieve similar effects.185 For instance, in the case of IR780/DPPC/BMS, the IR780 
component induces PTT, DPPC facilitates thermosensitive release, and BMS inhibits the PD-1/PD-L1 pathway. When 
exposed to radiation, this system can disrupt ECM integrity and CAF function. Of note, this effect does not specifically 
target CAFs, but rather facilitates the capture of tumor-associated antigens and enhances the sustained release of PD-1 
inhibitors via the PTT-induced degradation of the ECM (Figure 4).150,228

In the second strategy, the NPs or the encapsulated drugs themselves exhibit strong CAF-targeting and -modulating 
abilities. For example, 3-nm GNPs are easily absorbed by CAFs and downregulate key CAF markers (eg, N-cadherin, α- 
SMA, vimentin, FSP-1, and S100 family proteins) to inhibit CAF activation and motility. Additionally, GNPs can reduce 
the CAF-mediated secretion of HGF, IL-6, IL-8, TGF-β1, and PDGF-α, thereby disrupting the communication between 
CAFs and tumor cells.158 Additionally, the use of GNPs modified to contain iron oxide (GOINFs) has been validated. 
These NPs function as efficient nano-heaters and outperform GNPs in the near-infrared (NIR) spectral range.163 Similar 
to gold, iron exhibits a pronounced thermal effect and can be effectively delivered to CAFs. Following a brief exposure 
to an alternating magnetic field, SPIONs can induce caspase 8-dependent apoptosis in CAFs.154 Furthermore, a relatively 
novel, promising approach using ultra-small iron oxide NPs exploits the magnetic properties of iron to mechanically 
damage both tumors and CAFs.201 Other non-metallic materials with similar CAF-eliminating capabilities also exist. For 
instance, PLGA-derived ONP-302 can delay tumor growth and reverse the exhausted and immunosuppressive pheno-
types of CD8+ T cells.166 In addition, ONP-302 induces the polarization of macrophages toward the M1 subtype, inhibits 
the expression of pro-tumor genes in CAFs, and promotes CAF apoptosis. The NP-mediated delivery of small interfering 
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RNA has also emerged as an effective strategy for targeting CAFs. CAFs secrete CXCL12 to retain their immunosup-
pressive properties and facilitate tumor growth and migration via the activation of the CXCL12/CXCR4 pathway. 
Therefore, utilizing the PNP/siCXCL12/monoclonal antibody approach to effectively block CXCL12 expression in 
CAFs could be a promising strategy to reduce tumor growth and angiogenesis.20

Inhibiting CAF Activation
Using NPs to revert activated CAFs back to a resting state represents a feasible CAF-modulating strategy. However, the 
presence of cytokines, such as TGF-β1, IL-10, and IL-6, within the TME can persistently activate CAFs and significantly 
reduce the efficacy of CAF-targeting drugs.9 Therefore, it is crucial for NPs formulations to maintain optimal drug 
concentrations in the tumor and elicit long-lasting effects. Many studies have focused on targeting TGF-β1, the main 
inducer of fibroblast activation.12 In the recent research of Zheng et al, they found that mPEG-PLGA loaded baicalein 
could inhibit CAFs activation through blocking TGF-β signaling pathway.179 Moreover, in another study by Mardhian 
et al, the SPOIN-mediated delivery of fibroblast growth factor 2 has been shown to inhibit the pSmad2/3 pathway and 
activate ERK1/2 signaling, thus, effectively interfering with TGF-β1-induced CAF activation. This in turn reduced α- 
SMA and collagen-1 expression in CAFs and inhibited the formation of new CAFs via the differentiation of stellate cells 
(Figure 6).157 Moreover, the liposomal delivery of oxymatrine can restore the ECM and collagen content of the TME to 
normal levels, downregulate HMGB1, and inactivate stellate cells, consequently reducing the TGF-β1 concentration.143 

Similarly, PEG-encapsulated SAB inhibits TGF-β1 secretion, which may increase the expression of tumor suppressor 
factors such as CXCL9 and CXCL10, recruit CD4+ T cells, CD8+ T cells, and M1 macrophages, while reducing the 
infiltration of MDSCs, Tregs, and M2 macrophages.148 CAFs may be the cause of limited therapeutic effects of CAR-T 
in solid tumors. So, Tang et al utilized amphipathic hydroxyethyl starch-polycaprolactone to load TGF-β inhibitor 
(LY2157299) and photosensitizer indocyanine green. This co-loaded NPs can enhance the CAR-T effects and maybe 
a promising application.180

Moreover, anti-tumor drugs are often used to reduce CAF activation. Pirfenidone, a TGF-β1 antagonist, is commonly 
used in the treatment of idiopathic pulmonary fibrosis. In a recent study, Zuo et al developed pirfenidone-containing 
HPBC@TRP/NPs, which allow pirfenidone to effectively reach the TME without degradation in the peripheral tissues 
and rapidly exert its therapeutic effects. Simultaneously, another core drug, resveratrol, enters the cells and is released 
through lysosomes, where it activates the mtROS-PYK2 pathway to induce mitochondria-driven apoptosis (Figure 7).165 

In the study of Li et al, they used glycyrrhetinic acid (GA) to target hepatocellular carcinoma and HA to target hepatic 
stellate cells, and then constructed GA&HA-modified liposomes to load aprepitant (APR) and curcumin (CUR), which is 
CUR-APR/HA&GA-LPs. In vivo and in vitro, CUR-APR/HA&GA-LPs can prevent hepatic stellate cells transforming 
into CAFs.151 In another study from Wu et al, they utilized the same construction methods in Li et al study and showed 
that the berberine also presented the same effects of targeting CAFs as APR.152

NPs can improve drug delivery into cells. This approach not only enables the targeting of CAFs but also ensures 
optimal drug doses are delivered to the tumor site.198 GNPs serve as a prime example in this regard. GNPs (with a size of 
20 nm) not only suppress the expression of CAF markers (specifically α-SMA and fibronectin), diminishing their 
responsiveness to activators, but also disrupt intercellular communication by interfering with TGF-β1, TSP1, PDGF, 
and uPA release from tumor cells.159 Additionally, GNPs promote the expression of FASN, SREBP2, and FABP3 in their 
target cell, thereby increasing the cellular lipid content and causing the cell to adopt a resting phenotype.159 Another 
noteworthy example involves the use of an LPD-coated secretable TNF-related apoptosis-inducing ligand (sTRAIL). 
This construct exhibits stable expression and release within CAFs, inducing apoptosis in adjacent cancer nests while 
concurrently inhibiting CAF activation.149

Disrupting CAF Function
This type of NPs mainly targets CAF indirectly, causing non-specific cellular damage, which affects CAF functions and 
products. To date, this approach has proved more effective than others in reversing the immunosuppressive state of the 
TME. For instance, Frax (with a diameter of 145 nm) is absorbed by both tumor cells and CAFs. Once in the cells, Frax 
reduces the expression of CUGBP1, thereby interfering with the TGF-β1 and IFN-γ pathways and attenuating tumor 
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fibrosis.147 Additionally, Frax reduces the amounts of immunosuppressive cells such as MDSCs in the TME and 
enhances the infiltration of CD8 T cells. Moreover, the action of Frax can be further boosted by combining it with 
tumor vaccines. The presence of surface molecules, such as CXCR4 and CD44, on PLGA NPs coated with tumor cell 
membranes inhibits the migration of tumor cells toward CAFs and promotes the infiltration of T cells, particularly IFNγ 
+CD8+ T cells into the tumor.229 By utilizing hyperthermia, FAP-guided, thermosensitive, liposome-coated human serum 
albumin -PTX NPs selectively target the tumor stroma and eliminate CAFs, facilitating the release of chemotherapy 
drugs (Figure 9).184 In the study of Panagi et al, they developed tranilast-loaded micelles, which can be uptake by CAFs 
thus inhibiting the expression of TGF-β. In the breast cancer model constructed by 4T1 and EO771, tranilast-loaded 
micelles can reduce the content of HA and collagen, which induce CD8 T cells penetrate.177 Another study reported the 
development of a NIR-responsive, membrane-coated PD-1/PD-L1 inhibitor; its primary function was to enhance the 
capture of tumor-associated antigens by DCs and activate T cells, while its secondary function was to eliminate CAFs via 
PTT.186 Polymer-coated, sunitinib-containing NPs enhance the infiltration of T cells into the tumor while reducing the 
proportions of Tregs and MDSCs in the TME. They also remodel the TME by exerting effects on CAFs, collagen, and 
blood vessels, as well as altering the cytokine composition of the TME by facilitating the transition from a T helper (Th)2 
to a Th1 immune response.176 In the recent study from Li et al, they chose losartan to reduce the activity of CAFs. And 
they used nanoliposome to co-load resiquimod, DOX and losartan to construct the multifunctional NPs to remodel 
TME.153

CAFs contribute to tumor development and drug resistance by activating the Hedgehog signaling pathway in 
a paracrine manner. In a study by Wang et al the use of SN38-coated NPs containing the Hedgehog pathway inhibitor 
GDC-0449 effectively suppressed the expression of key drug resistance molecules (eg, GLI-1 and UGT1A) while 
reducing collagen content within tumor tissues.173 Additionally, Kovacs et al have discovered that gold-silver-gold 
composite NPs possess potent anti-metastatic properties and can inhibit the pro-tumor effects of CAFs, ultimately 
reducing the migration and invasiveness of tumor cells.155 In colorectal cancer, CAFs can secrete hepatocyte growth 
factor to promote tumor progression. Based on this, Shen et al designed siRNA to interfere the expression of hepatocyte 
growth factor and used PLGA to deliver the siRNA. When combined with chemotherapy, the novel PLGA-siRNA NPs 
can overcome the chemotherapy-induced hepatocyte growth factor upregulation and then inhibit the CAFs activation. 
This loop showed great potential of targeting CAFs to alleviate chemotherapy resistance.178 There also exist an approach 
which is inserting molecules for disrupting CAFs function on the surface of NPs rather using NPs to load them. Liu et al 
inserted integrin β1 inhibiting peptide FINIII4 on their PLGA loaded DOX NPs. This made the NPs can respond to FAP 
and induce the combination of FINIII4 and integrin β1 to disrupt the functions of CAFs to decrease the density of 
tumor.230

Conclusions and Future Perspectives
Although we had gained a considerable understanding of CAFs, many questions remain unanswered. The incomplete 
understanding of CAF biology may be a contributing factor to the occurrence of many unexpected outcomes in clinical 
studies targeting CAFs.7 Consequently, many studies investigating the use of NPs as CAF-targeted therapies are still 
someway away from being adopted into the clinic.18 Currently, there is no explicit consensus on the tumor models used 
to study CAFs. The construction of these models faces challenges such as the selection of an appropriate cellular source 
for CAF generation (the most commonly used cells are embryonic fibroblasts231 and fibroblasts from original tissue 
sources232), the method of model establishment (eg, xenograft models or spontaneous tumor models),9 and the most 
physiologically relevant tumor cell to CAF ratios (existing studies suggest tumor cells to fibroblast ratios ranging from 
1:1 to 1:10).9,231–233 The cancer type is also an important consideration in studies of NPs-mediated CAF targeting. It is 
therefore crucial to choose research models that are optimized for the study of a specific cancer type. During the process 
of tumor development CAFs exhibit considerable heterogeneity, particularly in terms of their cellular origins and surface 
marker expression.9 Thus, the optimal approach involves inducing tumor formation in situ, as it better aligns with the 
requirements of studying CAFs and replicates the natural occurrence of tumors. Furthermore, there is room for 
improvement in the way the cellular CAF sources are handled during the study of cell-membrane-encapsulated NPs. 
For instance, in the research of Li et al and Zang et al, the source of CAFs current is TGF-β-treated NIH/3T3 cells, which 
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is evidently inaccurate.185,215 The primary purpose of cell membrane encapsulation is to mimic the target cell, thereby 
increasing the targeting efficacy of the therapeutic approach. However, using highly artificial cell membranes may impact 
the therapeutic efficacy of NPs.

Currently, the main CAF-targeting NPs are constructed using lipids, metals, and various polymers. These materials 
have been extensively studied and have shown considerable success in CAF-targeted therapy studies. However, in recent 
years, emerging materials such as hydrogels,234 nanoenzymes,235 and metal or carbon rods have gained increasing 
attention.236 These nanomaterials offer certain advantages over existing ones and have shown promising results in 
targeting tumor cells. Future research will explore whether these more optimized nanomaterials meet the diverse 
therapeutic requirements. Increasingly, specific targeting ligands (eg, FAP20,154,164), nanomaterials, and drugs are being 
combined to form complexes. However, this singular approach resembles that of drug-modified nanomaterials and does 
not fully exploit the unique properties of nanomaterials. Consequently, these nanoscale particle drugs eventually enter 
systemic circulation and undergo hepatobiliary metabolism, highlighting the importance of addressing how NPs can be 
engineered to evade rapid clearance from the body.165 Recently, Zuo et al developed the HPBC@TRP/NPs system, which 
effectively protects the core drug-loaded NPs, thereby achieving improved therapeutic efficacy.165

Current strategies for NPs construction primarily focus on eliminating CAFs. However, previous basic and clinical 
trials have shown that normalizing the tumor stroma and TME may limit tumor occurrence and progression more 
effectively than direct CAF elimination.112,117,118 Therefore, the future design of NPs targeting CAFs should place more 
emphasis on inhibiting CAF activation and interfering with CAF functions.15 Consequently, compounds such as vitamin 
A/D and CXCL12-CXCR4/JAK pathway inhibitors are promising CAF-modulating drug candidates, as these drugs have 
already shown considerable efficacy in targeting CAFs in the clinical trials setting.124,125,131,132 Additionally, strategies 
that simultaneously target CAFs and kill tumor cells have been proven more effective than drugs that target each cell type 
individually. Therefore, in the future development of NPs targeting CAF, the principle should be centered around killing 
tumor cells, while using CAF- targeting as complementary approach. Targeting CAFs inhibits tumor progression, while 
killing tumor cells promotes the normalization of the tumor stroma and the TME; thus, targeting both cell types 
simultaneously represents a synergistic approach. Currently, the main approach for targeting CAFs is through the surface 
modification of NPs with FAP- or TNC-binding molecules.143,157 However, FAP is not a universal CAF marker; 
moreover, CAF markers can vary at different stages of tumor development. Therefore, a better approach would be to 
use NPs encapsulated in a CAF membrane. Additionally, the therapeutic benefits of multifunctional NPs that eliminate 
tumor cells and target CAFs would be more significant than those derived from combination therapies. The development 
of a more specialized repertoire of CAF-targeting NPs will undoubtedly lead to superior therapeutic outcomes.197

In summary, the NPs-mediated targeting of CAFs has achieved remarkable outcomes, indicating that their application 
will likely form an essential component of tumor immunotherapy. However, before CAF-targeting NPs enter clinical 
studies, important aspects, including the toxicity and metabolic properties of the nanomaterials used, need to be 
considered.237 In the future, the development of CAF-targeting drugs will be driven by advancements in cutting-edge 
research techniques such as single-cell sequencing, bispecific antibodies, flow cytometry, and high-resolution imaging. 
Concurrently, nanomaterials used for the construction of CAF-targeting NPs will continue be optimized in accordance 
with the therapeutic requirements. This highlights the need for more extensive collaboration between experts in the fields 
of materials science and biomedicine.

Abbreviation
CAFs, cancer-associated fibroblasts; rCAFs, cancer-restraining CAF; myCAF, myofibroblastic CAFs; iCAF, inflamma-
tory CAFs; apCAF, antigen-presenting CAFs; meCAF, metabolic CAFs; vCAF, vascular CAFs; EMT, epithelial- 
mesenchymal transition; TME, tumor microenvironment; TIME, tumor immune microenvironment; ECM, extracellular 
matrix; NPs, nanoparticles; NK, natural killer cells; DCs, dendritic cells; MDSCs, myeloid-derived suppressor cells; 
Tregs, regulatory T cells; VEGF, vascular endothelial growth factor; α-SMA, α-smooth muscle actin; MSCs, mesench-
ymal stem cells; LIF, Leukemia Inhibitory Factor; ICPs, immune checkpoint proteins; ICI, immune checkpoint inhibitor; 
PBMCs, peripheral blood mononuclear cells; TAMs, tumor-associated macrophages; BM, bone marrow; NSCLC, non- 
small cell lung cancer; IL, interleukin; ATAR, all-trans retinoic acid; PTT, photothermal therapy; PDT, photodynamic 
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therapy; PEG, polyethylene glycol; FAP, fibroblast activation protein-α; TNC, tenascin C; SAB, salvianolic acid B; Frax, 
fraxinellone; LPD, lipid-coated protamine DNA; GNP, Gold nanoparticle; DTX, docetaxel; SPOIN, superparamagnetic 
iron oxide nanoparticle; PLGA, Poly(lactic-co-glycolic acid); EPR, enhanced permeability and retention effect; PSN38: 
PEG5K-P(MMESSN38)5K; PAMAM, the positive surface charge of cationic poly(amidoamine); RBC, red blood cells; 
ACF, acriflavine; PTX, paclitaxel; Nav, navitoclax; CPA, cyclopamine; DOX, doxorubicin; TPL, triptolide; NIR, near- 
infrared; sTRAIL, secretable TNF-related apoptosis-inducing ligand; DPPC, dipalmitoylphosphatidylcholine; APR, 
aprepitant; CUR, curcumin.
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