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ABSTRACT
Mauremys reevesii (Geoemydidae) is one of the most common and widespread semi-
aquatic turtles in East Asia. The unusually long lifespan of some individuals makes
this turtle species a potentially useful model organism for studying the molecular basis
of longevity. In this study, pooled total RNA extracted from liver, spleen and skeletal-
muscle of three adult individuals were sequenced using IlluminaHiseq 2500 platform. A
set of telomere-related genes were found in the transcriptome, including tert, tep1, and
six shelterin complex proteins coding genes (trf1, trf2, tpp1, pot1, tin2 and rap1). These
genes products protect chromosome ends fromdeterioration and therefore significantly
contribute to turtle longevity. The transcriptome data generated in this study provides
a comprehensive reference for future molecular studies in the turtle.

Subjects Genetics, Genomics, Zoology
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INTRODUCTION
Longevity has always been a trait of great interest to researchers, and numerous studies
have been performed on humans and model organisms to better understand its molecular
mechanisms, such as the maintenance of telomeric structure. Synthesized by telomerase
(Blackburn, Greider & Szostak, 2006; Bodnar et al., 1998), telomeres are specialized
structures at the ends of eukaryotic chromosomes that help to maintain genome integrity
by protecting chromosomes from rearrangements or fusion to each other (McClintock,
1939;Muller, 1938). Introducing telomerase into normal human retinal pigment epithelial
cells and foreskin fibroblasts significantly extends the lifespan of the cells (Bodnar et al.,
1998). Several protein complexes have also been implicated in longevity. For example,
the shelterin complex specifically recognizes and binds to telomeric DNA, preventing the
chromosome end from being detected as a DNA double-strand break (Palm & de Lange,
2008). Research on the naked mole rat (Heterocephalus glaber) suggests that shelterin
complex-encoding genes are related to the species’ longevity (Kim et al., 2011). Synthesized
telomeres are shaped and safeguarded by the shelterin complex, an essential component

How to cite this article Yin et al. (2016), De novo assembly and characterization of the Chinese three-keeled pond turtle (Mauremys
reevesii) transcriptome: presence of longevity-related genes. PeerJ 4:e2062; DOI 10.7717/peerj.2062

https://peerj.com
mailto:lwnie@mail.ahnu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2062
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2062


of telomere function (De Lange, 2005) that consists of six proteins: TRF1, TRF2, POT1,
RAP1, TIN2, and TPP1 (Bilaud et al., 1997; Broccoli et al., 1997; Chong et al., 1995; De
Lange, 2005; Houghtaling et al., 2004; Kim, Kaminker & Campisi, 1999; Li, Oestreich & De
Lange, 2000; Liu et al., 2004; Xin, Liu & Songyang, 2008; Ye et al., 2004; Zhong et al., 1992).

Turtles are an ideal model organism for research on the molecular basis of longevity.
They are the most morphologically distinct order to have originated from the late Permian
and early Triassic period (about 220 million years ago) (Li et al., 2008). In addition to their
characteristic shell, turtles also have many remarkable physiological traits, such as anoxia
(Lutz, Prentice & Milton, 2003) and cold tolerance (Packard et al., 1997), temperature-
determined sex differentiation (De Souza & Vogt, 1994; Mrosovsky, Dutton & Whitmore,
1984), and of particular note, a long lifespan. Many individuals have been recorded as
livingmore than 100 years (Gibbons, 1987; Shaffer et al., 2013). For example, theGeochelone
gigantean known asMarion’s tortoise lived formore than 150 years (Schmidt & Inger, 1957),
and Lonesome George, a Geochelone nigra, was reported to have lived more than 100 years.

In addition, previous reports have describedmany physical characters that are associated
with turtle longevity, such as being reproductively active at very advanced ages andnegligible
functional impairmentwith age (Miller, 2001). Some authors have linked longevity in turtles
to enhanced mechanisms of reoxygenation for surviving brain anoxia (Lutz, Prentice &
Milton, 2003). A study on European freshwater turtles (Emys orbicularis) found that
telomere length was only shortened negligibly in adults compared to circulating embryonic
blood cells (Girondot & Garcia, 1999). However, currently, we do not know whether turtle
longevity is associated with telomerase activity or the insulin/IGF-1 signaling pathway.

Mauremys reevesii (Geoemydidae) is widespread and common in China, the Korean
Peninsula, and Japan (Van Dijk et al., 2014). Due to its longevity, it has substantial cultural
significance in China as an auspicious omen. In this study, total RNA extracted from
liver, spleen, and skeletal muscle of three adult females were used to generate a pooled
cDNA library, which was subsequently sequenced on an Illumina Hiseq 2500 platform.
Next generation sequencing (NGS) technologies have been broadly applied in genome and
transcriptome sequencing (Reis-Filho, 2009), due to their greater sensitivity, which supplies
accurate results that can detect previously unknown and/or rare genes. The two primary
aims of our study were as follows: (1) to better understand the molecular mechanism
behind the long lifespan of turtles by identifying longevity-associated genes, and (2) to
generate transcriptome data as a useful resource for future studies of turtle longevity and
other traits.

MATERIALS & METHODS
Ethical approval
Procedures involving animals and their care were approved by the Animal Care and Use
Committee of Anhui Normal University under approval number #20140111.

Sample collection and RNA extraction
Three adult female turtles were collected from our plant at Wuhu, Anhui, China. The liver,
spleen, and skeletal muscle were collected and dissected. Tissue samples were stored at
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−80 ◦C. Total RNA was extracted from the tissues separately using a Trizol kit (Invitrogen,
CA, USA) according to the manufacturer’s protocol. Extracted RNA was quantified with
Nanodrop (Thermo, CA, USA) and the integrity and size distribution were checked with
agarose gel electrophoresis. High-quality RNA from all three tissues was pooled for cDNA
synthesis and sequencing.

cDNA library construction and sequencing
Two micrograms of pooled total RNA was used for cDNA library construction using
TruSeq R© RNALT Sample Prep Kit v2 (Illumina, CA, USA) according to themanufacturer’s
protocol. We then prepared the synthesized cDNA for sequencing library construction by
performing end-repair, 3′-end adenylation, as well as adapter-ligation and enrichment.
Sequencing was performed using an Illumina Hiseq 2500 platform (Quail et al., 2008) at
Genergy Bio-technology Co., Ltd. (Shanghai, China).

Sequence data processing and de novo assembly
The raw reads generated by the Illumina sequencer were saved as fastq format files. Adapter
sequences were trimmed and low-quality reads were removed from the raw reads using
Trim Galore (version 0.3.5) software. FastQC (version 0.10.1) was used to check the quality
of pretreated data; reads that achieved a high Phred score (>28) were used for the assembly.
We used Trinity (Grabherr et al., 2011), with a k value = 25, to perform de novo assembly
on the trimmed and quality-checked reads. Sequence data were partitioned into many
individual de Bruijn graphs, representing the transcriptional complexity at a given gene
or locus. Each graph was processed independently to extract full-length splicing isoforms
and to tease apart transcripts derived from paralogous genes. The final Trinity output was
analyzed. Gene expression level was calculated using RSEM software (version 1.2.3) (Li &
Dewey, 2011).

Blast against turtle’s reference proteomes
We used Blastx to query allM. reevesii transcripts to the proteomes of the green sea turtle,
the western painted turtle, and the soft shell turtle, which were downloaded from the
GenBank. The e-value cutoff was set to 1×e−10 and the maximum target number was
set to 20. The top results were selected as the annotation of the gene (termed as ‘‘unique
protein’’). A Venn diagram of the homologous genes across the three turtle proteomes was
generated with VENNY (Oliveros, 2007).

Functional annotation
Sense and component strands of potential protein coding sequences (CDS) were predicted
using Transdecoder in Trinity software v2.0.2 package (http://transdecoder.github.io/),
based on a Markov model with default parameters. CDS were then translated into amino
acid sequences with reference to a standard codon table. We used Blastp to search the
Swissprot/Uniprot database (Balakrishnan et al., 2005) with our potential protein sequences
as queries. The e-value cutoff was set to 1×e−3. A gene name was assigned to each contig
based on the top Blastp hit.

Gene ontology (GO) analyses (Ashburner et al., 2000) on all predicted protein sequences
were conducted using InterProScan, set to default parameters (Zdobnov & Apweiler, 2001).
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The GO terms associated with each assembled sequence of the turtle transcriptome were
then classified into biological processes, molecular functions, and cellular components.
InterProScan was also used to predict the functional domains, signal peptides, and other
protein characters by blasting to the Conserved Domain Database Interpro.

We then employed the KEGGAutomatic Annotation Server (KAAS)with default settings
(Moriya et al., 2007) to perform a KEGG pathway analysis (Kanehisa & Goto, 2000) on each
contig. Telomere-related genes were filtered from the annotation results.

Analysis of candidate longevity-associated genes
Candidate genes associated with turtle longevity were screened from the logfile generated
by Blastp. Two shelterin genes (i.e., pot1 and tin2) were not detected in this step. To
search the lost but should be existed genes in M. reevesii transcriptome, we used released
pot1 (XM_007063192.1) and tin2 (XM_005290151.2) genes to blastn against the primary
assembledM. reevesii transcriptome data. And the pot1 and tin2 genes were finally screened
out that escaped from functional annotation.

The filtered longevity-associated genes were then blasted to theNRdatabase using Blastn,
to verify the accuracy of previous annotations. Candidate gene fragments were aligned,
overlapping fragments were assembled into one sequence, and separated fragments were
concatenated into a single sequence. FPKM values of each fragment were also checked
using the results from the RSEM software.

Screened genes were translated into amino acids, using MEGA 6.06 (Tamura et
al., 2013) and according to a standard codon table. Amino acid sequences were then
aligned with published data using the online alignment tool MAFFT (version 7)
(http://mafft.cbrc.jp/alignment/software/) (Katoh et al., 2002), with default settings.
BioEdit 7.2.3 (Hall, 1999) was used to display the alignment results.

RESULTS
Sequencing and de novo assembly
Total RNA extracted from liver, spleen, and skeletal muscle were used to generate a pooled
cDNA sample and subsequently sequenced. A total of 160,998,396 paired-end raw reads
of 100 bp length were generated and stored in fastq format (GenBank accession number:
SRX1469958). We obtained 152,214,434 (94.5%) high-quality reads with an average length
of 98.8 bp. The results of de novo assembly yielded 459,911 isoforms, which clustered
into 230,085 transcripts with average length of 660 bp and median length of 342 bp. 190
transcripts encompassed over 100 isoforms and 6,051 transcripts encompassed over 10
isoforms with an average of two isoforms per transcript overall. Additionally, the highest
number of isoforms found in one transcript was 1,048. These results may indicate the
widespread existence of alternative splicing in M. reevesii. GC content for the entire final
assembly and all protein coding sequences were 46.67% and 51.16%, respectively. Repetitive
elements and microsatellites were also analyzed (File S1).

Yin et al. (2016), PeerJ, DOI 10.7717/peerj.2062 4/15

https://peerj.com
http://mafft.cbrc.jp/alignment/software/
https://www.ncbi.nlm.nih.gov/nucleotide?term=SRX1469958
http://dx.doi.org/10.7717/peerj.2062/supp-1
http://dx.doi.org/10.7717/peerj.2062


Figure 1 M. reevesii homologous gene detection in diverse turtle proteomes.

Table 1 Summary of Blastx search results ofM. reevesii transcriptome.

Database Unigene hits Unique protein

Chelonia mydas 19,892 18,263
Pelodiscus sinensis 19,144 27,267
Chrysemys picta bellii 8,558 27,198

Comparison with turtle’s reference proteomes
The assembly quality of theM. reevesii transcriptome was assessed with a Blastx comparison
to the reference proteomes of three turtles: the green sea turtle (Chelonia mydas), the
Chinese soft-shell turtle (Pelodiscus sinensis), and the western painted turtle (Chrysemys
picta bellii) (Fig. 1 and Table 1).x Chelonia mydas exhibited the highest degree of similarity.
The comparison to P. sinensis and C. picta yielded slightly more unique proteins than
transcripts hits, but overall, we obtained a total of 22,776 positive transcripts hits.

Transcripts expression level
The expression of each transcript was quantified using RSEM software, set to default
parameters. Statistical results are shown in Table 2. The transcripts with the highest levels
of expression were related to metabolism and translation activity.
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Figure 2 Length distribution of identified ORF (open reading frames) from theM. reevesii transcrip-
tome assembly.

Table 2 Statistics of FPKM distribution of assembled unigenes.

Unigenes

>1,000 FPKM 101
>100 FPKM 809
<10 FPKM 218,717 (95.1%)
Max FPKM 12367.8
Min FPKM 0
Total 230,085

Functional annotation
The results of our functional annotation revealed 42,918 (18.7%) transcripts that were
predicted to potentially code for proteins. These were then translated into amino acid
sequences by referring to a standard codon table. After a blastp search on the resultant
amino acid sequences, we obtained a total of 534,077 hits, the best of which corresponded
to 18,846 unique protein accessions in the Swissprot/Uniprot database. Length distribution
for all opening reading frames ranged from 40 bp to 34,967 bp, with an average length
of 874 bp (Fig. 2). The Blastp top-hit species distribution of gene annotations showed
the highest homology to Chelonia mydas (6,654 annotation results) and Pelodiscus sinensis
(5,747 annotation results) (Fig. S1). Those two species supplied 65.8% of all annotation
information due to their close phylogenetic relationships toM. reevesii.
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Table 3 Statistics of predicted protein domains and site characters.

Domains Counts

Zinc finger, C2H2-like 1,943
Immunoglobulin-like fold 1,734
Fibronectin, type III 1,605
Zinc finger C2H2-type/integrase DNA-binding domain 1,543
Ankyrin repeat 1,517
Cadherin 1,217
P-loop containing nucleoside triphosphate hydrolase 1,106
G protein-coupled receptor, rhodopsin-like 1,037
Src homology-3 domain 856
EGF-like, conserved site 802
PDZ domain 788
Immunoglobulin subtype 744
Protein kinase domain 720
Leucine-rich repeat, typical subtype 720
Sushi/SCR/CCP 654
Low-density lipoprotein (LDL) receptor class A repeat 593
Thrombospondin, type 1 repeat 584
Pleckstrin homology domain 569
EF-hand domain 538
Small GTPase superfamily 494

The results of a gene ontology (GO) analysis assigned 11,695 unique proteins to 4,031
terms for biological processes, molecular functions, and cellular components. Within
biological processes, metabolic (26%) and cellular processes (26%) were the most well-
represented. Next, the majority of the proteins assigned to molecular functions were
associated with binding (85%). Finally, within cellular components, cell (33%) and
membrane (31%) proteins were the most well-represented (Fig. 3).

The most abundant conserved protein domain found in our data was the zinc finger
C2H2 domain, followed by the immunoglobin-like fold and fibronectin-III. Zinc finger-
associated conserved protein domains are 8% of all conserved domains, and 62.7% of those
are associated with zinc finger C2H2 (Table 3).

The KEGG pathway analysis annotated 4,486 transcripts into 338 pathways, with 3.5
KEGG pathways per transcript on average. Of all the annotated sequences, a large portion
(1,581, or 35.2% of 4,486) were related to metabolism, specifically of carbohydrates (332
sequences), lipids (247 sequences), and amino acids (291 sequences). Next, 855 sequences
(19.1%) were involved in signal transduction. The most well-represented was the PI3K-Akt
signaling pathway (ko04151; 224 sequences), which could be activated by IGF-1, followed
by the MAPK signaling pathway (ko04010; 159 sequences). Finally, 483 sequences (10.8%)
were associated with the immune system, including the T cell (ko04660) and B cell
(ko04662) receptor signaling pathways.
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Figure 3 Gene ontology (GO) functional categories of theM. reevesii assembly.
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Table 4 Sequence length and comparison of tert and TERT betweenM. reevesii and C. picta, C. mydas,
P. sinensis andH. sapiens.

M. reevesii C. picta C. mydas P. sinensis H. sapiens

Tert (nt) 3,693 4,095(97%) 4,065(96%) 3,522(88%) 3,399(70%)
TERT (aa) 1,230 1,352(96%) 1,354(93%) 1,173(81%) 1,132(60%)

Longevity-related genes
Candidate genes related to longevity were screened out from the total pool of annotated
genes. Specifically, fragments of tert, tep1 and six (trf1, trf2, tpp1, pot1, tin2 and rap1)
shelterin proteins were found (File S2). Genes were translated referring to standard codon
table and aligned with public database.

Tert gene, encoding the catalytic subunit of telomerase enzyme, has been drawn a lot
of attention by biologists. We obtained a 3,817 bp of tert gene fragment including two
conserve domains in 3′′ terminal: RNA binding domain of telomerase (TRBD) and reverse
transcriptase (RT) domain are essential for the gene function. The tert gene sequence
length and identity were compared with other turtles and human (Table 4). Nucleotide
conservation is interestingly higher than amino acid conservation, the similar results were
also found in Nothobranchius furzeri (Hartmann et al., 2009).

FPKM values are approximately 10 of all aforementioned genes and genes that were
closely related in function (File S3). The similar expression levels indicated that the
candidate genes were accurately identified.

DISCUSSION
Profile of the M. reevesii transcriptome
More than 15-Gb high-quality data were generated with Illumina sequencing in this study.
A total length of 16,478,555 bp (0.75% of 2.2 Gb) for 42,918 assembled transcripts were
annotated that encoded for mRNA in M. reevesii transcriptome, functional annotation of
themRNAs provided fully information of transcripts andwhole profile of the transcriptome
that could be used in further study. The most abundant domain, C2H2 zinc finger, was
consistent with the results found in mammalians and humans, the fact that the motif is
the most prevalent and the largest sequence-specific DNA-binding protein family (Lander
et al., 2001; Tupler, Perini & Green, 2001). The conservation and evolution of this domain
could be further studied (Englbrecht, Schoof & Böhm, 2004).

Lastly, our functional annotation results also revealed a small amount of contaminated
transcripts associated with viruses. While such data are negligible, they should nonetheless
be excluded in future studies.

The active expression of telomere-associated genes may contribute
to turtle longevity
Telomere shortening is now considered themolecular clock that triggers cell and organismal
senescence (Harley & Goldstein, 1978). To prevent premature shortening, telomere length
is maintained by telomerase, previously considered to be inactive in human somatic
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cells (Kim et al., 1994; Shay & Bacchetti, 1997). Using RNA-seq technology, we were
able to find two coding genes of the telomerase complex—TERT and TEP1—in the
M. reevesii transcriptome. Both genes are essential for proper telomerase function: transient
expression of TERT has been found to reconstitutes telomerase activity (Weinrich et al.,
1997), while TEP1 is a component of the ribonucleoprotein complex (Poderycki et al.,
2005). While TEP1 has been closely linked to telomerase activity (Nakayama et al., 1997),
other research has thrown doubt on this connection (Uchida et al., 1999). Thus, the exact
function of TEP1 is a subject for further research. The presence of these two genes might
implies that activated telomerase is present in turtle somatic tissues to protect the turtle
from senescence.

We were able to detect all the reported six genes that encode shelterin proteins in our
data. Expression of these genes could prevent the telomeres from shortening during cell
division and thus were predicted having a significant effect to the longevity of this species.

CONCLUSION
In this study, the transcriptome of the Chinese three-keeled pond turtle was sequenced
using the Illumina Hiseq 2500 platform. A de novo assembly was then evaluated to uncover
longevity-related candidate genes, mainly associated with telomere function, which offer a
clue to the mechanisms behind turtle longevity. Future studies will incorporate RT-PCR
and immunohistochemical techniques to test the gene expression levels and telomerase
activity in different tissues. Finally, we believe the transcriptome data generated here can
serve as a valuable resource for any investigations of turtle longevity and other notable
characters in this order.

Abbreviations

tert telomerase reverse transcriptase
tep1 telomerase protein component 1
trf1 Telomeric Repeat Binding Factor 1
tpp1 Tripeptidyl peptidase 1
rap1 Ras-related protein 1
pot1 Protection of telomeres 1
tin2 TRF1-interacting nuclear factor 2
FPKM Fragments per Kilobase of transcript per Million mapped reads
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