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J. P. Elhorst

1 Introduction

Spatial econometrics is a subfield of econometrics dealing with spatial lags among
geographical units. The early literature in this field started with contributions of
Moran (1948), Whittle (1954), and Ord (1975), followed by the seminal contribution
of Anselin (1988),1 and a series of textbooks by LeSage and Pace (2009), Elhorst
(2014), Kelejian and Piras (2017), and Beenstock and Felsenstein (2019).

According to Elhorst (2014), three generations of spatial econometric models
could be distinguished about halfway through the decade 2010–2020. The first gen-
eration consists of models based on cross-sectional data. The second generation
comprises non-dynamic models based on spatial panel data. These models might
just pool time-series cross-sectional data, but more often they also control for fixed
or random spatial and/or time-period specific effects. The third generation of spatial
econometric models encompasses dynamic spatial panel data models. Today (read:
2021), a fourth generation of spatial econometric models has developed: the general
nesting spatial (GNS) econometric model for spatial panels with common factors
(CF). This model accounts for local spatial dependence by means of an endogenous
spatial lag, exogenous spatial lags, and a spatial lag in the error term. It accounts
for dynamic effects by means of the dependent variable lagged in time, and the
dependent variable lagged in both space and time. Finally, it accounts for global
cross-sectional dependence by means of cross-sectional averages or principal com-
ponents with heterogeneous coefficients, which generalizes the traditional controls
for time-invariant and spatial-invariant variables by unit-specific and time-specific
effects. With these properties it is the most general spatial econometric model cur-
rently available. The aim of this paper is threefold. First, the full model is set out
mathematically. Second, the rationale behind each term that is part of the model is
explained. Third, potential objections or pitfalls of including certain terms are dis-
cussed from a statistical or an economic viewpoint. Finally, different kinds of data
are discussed: regional or macroeconomic data, microeconomic data, and economic-
historical data.

According to Elhorst (2010), the year 2007 marks a sea change in the spatial
econometricians’ way of thinking. Prior to 2007 they were interested mainly in
models containing one spatial lag, while after 2007 the interest in models containing
more than one spatial lag increased. For this reason he added the words “Raising
the Bar” to the title of his paper. The interest for common factors and the distinction
between weak and strong cross-sectional dependence, which occurred about halfway
through the decade 2010–2020, is another sea change in the spatial econometricians’
way of thinking, explaining the title of this paper.

1 See references in this book for a more comprehensive review, and Anselin (2010) for a recent update.
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2 Model

The general nesting spatial econometric model for spatial panels with common
factors reads as

Yt D �Yt�1 C �W Yt C �W Yt�1 C Xtˇ C W Xt� C P
r�T

r frt C ut

ut D �W ut C "t
(1)

where Yt D .y1t ; :::; yNt/
T denotes an N× 1 vector consisting of one observation

on the dependent variable yit for every unit i (i= 1, ..., N) in the sample at time
t (t= 1, ..., T). Yt�1 and WYt represent, respectively, the temporal and spatial lag
of Yt, and W Yt�1 the spatiotemporal lag of Yt, while τ, ρ, and η are the response
parameters of these variables, better known as, respectively, the serial, spatial and
spatiotemporal autoregressive coefficients. The N×N matrix W is a nonnegative
matrix of known constants describing the spatial arrangement of the units in the
sample. Its diagonal elements are set to zero to prevent units from explaining them-
selves. Xt is an N×K matrix of explanatory variables and WXt an N×K matrix of
contemporeous spatial lags of these explanatory variables. The impacts of these
variables are measured by, respectively, the K× 1 vectors β and θ. The N× 1 vectors
ut and εt denote the error terms of the model. It is assumed that ut follows a first-
order spatial autoregressive process with spatial autocorrelation coefficient λ, which
may be labeled as a spatial lag in the error term, and that "t D ."1t ; :::; "Nt/

T is
a vector of disturbance terms, where εit are independently and identically distributed
error terms for all i with zero mean and variance σ2. Since the spatial econometric
model in Equation (1) contains spatial lags in the dependent variable, in each of the
explanatory variables, and in the error term, it is also known as a general nesting
spatial model (Elhorst 2014). The determinants of the model described so far cap-
ture potential local spatial dependence (weak cross-sectional dependence) among
the observations.

The common factors frt (r= 1, ..., R) capturing potential global cross-sectional de-
pendence can take three forms. First, if two factors are considered, f1t D .1; :::; 1/T

and f2t D .�1; :::; �T /T , and the parameter restrictions �T
1 D .v1; :::; vN / and

�T
2 D .1; :::; 1/ are imposed, the model boils down to a dynamic GNS model with

cross-sectional and time-period fixed effects. Formally, the cross-sectional fixed
effects represent one common factor (f1t) which is constant over time but with het-
erogenous coefficients (Γ1). The time-period fixed effects represent another common
factor of length T (f2t) which changes over time but with homogenous coefficients
(Γ2). The total number of common factor parameters to be estimated in this setting
amounts to N+ T-1, since one of the T time dummies should be left aside to avoid
perfect multicollineairity with the cross-sectional fixed effects.

The second possibility is to maintain the cross-sectional fixed effects, but to re-
place the time dummies by time-specific cross-sectional averages of the dependent
variable at times t and t-1, i.e., Y t D 1

N

PN
iD1yi t , Y t�1 D 1

N

PN
iD1yi t�1, and/or

the time-specific cross-sectional averages of the explanatory variables at time t,
Xkt D 1

N

PN
iD1xikt, where k denotes the kth variable among the set of K explana-

tory variables. Furthermore, just as the cross-sectional fixed effects have heteroge-
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nous coefficients, one for each single unit in the sample and thus N in total, so does
each cross-sectional average. This implies that if all cross-sectional averages are
included, 2 for the dependent variable at times t and t-1, and K for the explanatory
variables at time t, the total number of common factor coefficients to be estimated
(including the cross-sectional fixed effects) increases to N+(2+K)N. Just as time-
period fixed effects, these cross-sectional averages may be treated as exogenous
explanatory variables based on the assumption that the contribution of each unit to
the cross-sectional averages at a particular point in time goes to zero if N goes to
infinity (Pesaran 2006, assumption 5 and remark 3). Elhorst (2021) provides a set
of commands with which this model can be estimated in Stata.

The third possibility is to approach the unobservable common factors by one or
more principal components. In that case the Γ parameters represent the factor load-
ings of the principal components. Shi and Lee (2017) develop a quasi maximum
likelihood (QML) estimator for the this model. This estimator does not require any
specification of the distribution function of the disturbance term, except that the
error term should have zero mean and variance σ2. This explains the term quasi. The
coefficient estimates are corrected for the Nickell bias and the impact of this bias on
the other coefficients in the equation. For this purpose, a Matlab routine called SFac-
tors has been developed, which the first author made available at his web site www.
w-shi.net. This routine is also made available at spatial-panels.com and extended to
include the determination of the log-likelihood function value and R2 of the model.
Since every principal component requires the estimation of 2N parameters, the total
number of common factor parameters to be estimated in this setting amounts to
2NR.

3 A spatial lag in the dependent variable: WYt

A spatial lag in the dependent variable implies that yit observed in cross-sectional
unit i is explained by yjt in other cross-sectional units j, j ¤ i , and vice versa. The
units j which are included depend on the specification of the spatial weight matrixW.
A linear regression model that contains a spatial lag in the dependent variable only
(WY) is known as a spatial autoregressive (SAR) model. It is one of the most widely
used spatial econometric models to introduce new methods of estimation or spatial
statistics. Two other popular spatial econometric models used for these purposes are
the spatial error (SE) model, which includes a spatial lag in the error term (Wu),
and the spatial autoregressive combined (SAC) model, which includes both types
of spatial lags (WY and Wu). Leading examples are Ord (1975), who introduces the
maximum likelihood (ML) estimator of the SAR and SE models; Anselin (1988,
pp. 82–86) and Kelejian and Prucha (1998, 1999), who introduce the instrumental
variables (IV) and generalized method-of-moments (GMM) estimators of the SAR,
SE and the SAC models; Lee (2004), who introduces the quasi maximum likelihood
(QML) estimator of the SAR model and also discusses the regularity conditions that
need to be imposed on the spatial weight matrix W;2 LeSage and Pace (2009, Ch.5),

2 The regularity conditions in this paper generalize those in Kelejian and Prucha (1998, 1999).
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who set out the Bayesian Markow Chain Monte Carlo (MCMC) estimator of the
SAR model;3 Bao and Ullah (2007), who investigate the finite sample properties
of the ML estimator of the SAR model; Ahrens and Bhattarchajee (2015), who
exploit the Lasso estimator and mimics two-stage least squares (2SLS) to estimate
the SAR model and the corresponding spatial weight matrix; Kyriacou et al. (2017),
who introduce the Indirect Inference (II) estimator of the SAR model; and Smirnov
(2021), who derives a closed-form consistent estimator of the spatial autoregressive
parameter in the SAR model and the spatial autocorrelation coefficient in the SE
model.

Despite the fact that so many different estimators of the SAR model have been
developed, it should be stressed that this does not imply that the SAR model also
makes sense from an economic-theoretical viewpoint. Many empirical studies justfy
the inclusion of a spatial lag in the dependent variable based on the simple finding
that its coefficient is significant. Two leading examples in this characterizing many
empirical studies are the following. When running Moran’s I test on the depen-
dent variable, the corresponding null hypothesis that this variable is not spatially
correlated often needs to be rejected. The robust Lagrange multiplier (LM) tests
developed by Anselin et al. (1996) to test for the SAR model (as well as the SE
model) as an extension of the standard linear regression model without any spatial
lags is also often provided as empirical evidence in favor of the SAR model. When
estimating the SAR model subsequently, one can easily find empirical evidence in
favor of a significant spatial autoregressive parameter ρ of WY for several poten-
tial specifications of W. However, this approach has severely been criticized in the
spatial econometric literature. First of all, researchers apparently do not realize that
Moran’s I test is unfocused and that the robust LM tests do not control for potential
spatial lags in the explanatory variables. Theoretically, it is possible that a standard
linear regression without any spatial lags is sufficient, even if the dependent variable
according to Moran’s I test is spatially correlated, since the explanatory variables
may also be spatially correlated and, moreover, in such a way that it fully covers
the spatial correlation in the dependent variable. According to Pinkse and Slade
(2010), this is also a primary criticism of standard spatial econometrics; researchers
try to fit their preferred model (usually a SAR model) onto every empirical prob-
lem rather than having the nature of the empirical problem inform which particular
model best answers the question. In addition, they criticize the SAR model for the
laughable notion that the entire spatial dependence structure is reduced to one single
unknown coefficient. Similarly, McMillen (2012) critiques the overuse of the SAR
model (and the SE model) as a quick fix for nearly any model misspecification
issue related to space. Corrado and Fingleton (2012) demonstrate by using a simple
Monte Carlo simulation experiment that the coefficient estimate for the WY variable
may be significant because it could be picking up the effect of omitted WX variables
or nonlinearities in the X variables if they are erroneously specified as being linear.
This makes the interpretation of a causal (spillover) effect difficult, i.e., to discern
whether the significant coefficient of the WY variable is due to omitted variables
or due to a causal effect of WY. Another important limitation of the SAR model,

3 This book chapter is a substantial improvement of an earlier paper by LeSage (1997).
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as demonstrated by Elhorst (2010), is that the ratio between the marginal impacts
of changes to explanatory variables in one cross-sectional unit on the dependent
variable values in other units (spillover effect) and in the own unit (direct effect)
is independent of its coefficient β and therefore the same for every explanatory
variable, which is unlikely to hold in many applied settings. The appendix to this
paper contains a detailed description of the direct and indirect (spatial spillover
effects) that can be derived from the spatial econometric model in Equation (1). An
issue related to this and that is gaining more attention in the empirical literature is
that global spillovers are often difficult to justify. One speaks of global spillover
effects if changes in the explanatory variables X in one unit j impact the dependent
variable observed in another unit i, even if these two units are not connected to each
other according to the spatial weight matrix (wij D 0). Halleck Vega and Elhorst
(2015) show that these kind of spillovers can occur only if at least a spatial lag in
the dependent variable is part of the model, while Pinkse and Slade (2010, p. 115),
as well as Arbia and Fingleton (2008), Gibbons and Overman (2012), Corrado and
Fingleton (2012), Partridge et al. (2012), Lacombe and LeSage (2015), and Elhorst
et al. (2020b) argue that it is often difficult to form a reasonable argument to include
a spatial lag in the dependent variable even if it is easily found to be statistically
significant. For example, if teen smoking behavior is being analyzed then it would
be sound to argue that an individual’s propensity to smoke is directly influenced by
the smoking behavior of friends. However, if real per capita sales of cigarettes are
analyzed at the aggregate level of geographical units, then it is difficult to justify that
the average levels of consumption in different units affect one another. The resulting
global spillovers would mean that a change in price or income in one particular unit
potentially impacts consumption in all units, even if these units are unconnected.
Other examples than this one, which is taken from Halleck Vega and Elhorst (2015),
concern poverty rates (Partridge et al. 2012) and car use (Elhorst et al. 2020b).

The number of studies that do provide an economic-theoretical model under-
pinning of a spatial lag in the dependent variable is limited. According to Anselin
(2006), the SAR model is generally conceptualized as representing the empirical
counterpart to an equilibrium solution of strategic interaction or a spatial reaction
function, yi D R.y_i ; xi ), where yi stands for the level of decision variable y of
agent i, y_i reflects a function of the decision variables chosen by other agents,
xi is a vector of exogenous characteristics of i, and R is a functional form to
be specified. Xu and Lee (2019) show that if (i) N individuals maximize their
utilities, (ii) individual’s i benefit is proportional to this action and depends on
his own characteristics and those of others, yi .�

PN
jD1wijyj C X 0

iˇ C "i /, and
(iii) individual’s i cost equal 1

2y2
i , the utility function of individual i takes the form

Ui .yi / D yi .�
PN

jD1wijyj C X 0
iˇ C "i / � 1

2y2
i , and that his optimal action takes

the form of a SAR model. In other words, SAR can be regarded as a model on
the Nash equilibrium of a static complete information game with a linear-quadratic
utility function. The time dimension is not part of this setting but can be added in
a straightforward manner.

Pinkse et al. (2002) and LeSage et al. (2017) have used spatial econometric models
to show that, when one petrol station decreases its price, geographically nearby
service stations need to follow in order not to lose market share. The first of these
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two studies also provides an economic-theoretical model for this strategic behavior.
In the literature on strategic interaction among local governments, a spatial lag in the
dependent variable is theoretically consistent with the situation where taxation and
expenditures on public services interact with taxation and expenditures on public
services in nearby jurisdictions (Wildasin 1988; Besley and Case 1995; Brueckner
2003, 2006). For more references in this field see Allers and Elhorst (2011), who
argue that many studies of fiscal policy interactions are based on single equation
models of either taxation or expenditures, without specifying the underlying social
welfare function, without taking account of budget constraints and without allowing
for cost differences between jurisdictions. By taking this into account, they derive
an extended version of the linear expenditure system with policy interaction effects
that correspond to a system of several SAR models. Hanson (2005) develops an
augmented market-potential function derived from the Krugman model of economic
geography, reflecting the impact of scale economies and transport costs, to explain
wage curves. Behrens et al. (2012) derive a quantity-based structural gravity equation
system in which both trade flows and error terms are cross-sectionally correlated.
This system can be estimated using techniques borrowed from the spatial econo-
metrics literature, in particular the literature on SAR models extended to include an
error term with an autoregressive or an moving average spatial structure. One of the
first studies explaining interregional trade flows incorporating the effect of spatial
interactions is Keller and Shiue (2007). Blonigen et al. (2007), who develops an eco-
nomic-theoretical model of foreigh direct investments (FDI), shows that this model
results in a linear regression model extended to include an endogenous spatial lag
on FDI, measured by FDI into markets nearby the host country, and an exogenous
market potential variable among the set of explanatory variables, measured by the
size of markets nearby the FDI host country in terms of gross domestic product
(GDP). The signs and significance levels of the coefficients of these two variables
can be used to answer the question whether these outcomes are compatible with
horizontal, vertical, export-platform or complex vertical FDI.

Although this is just a selection of several economic-theoretical studies motivating
the inclusion of spatial lag in the dependent variable, and there are certainly more
of studies of this type, their number remains relatively limited.

4 Temporal and spatiotemporal lags: Yt�1 andW Yt�1

The main reason to control for a temporal lag in the dependent variable, Yt�1, is
habit persistence. It takes time to change behavior. A household may not change its
consumption level and labor supply immediately in response to a change in prices
or its income. Similarly, a firm may react with some delay to changes in costs and
to changes in demand for its product. Moreover, time lags can arise from imperfect
information. Economic agents require time to gather relevant information, and this
delays the decision-making process. Institutional factors can also result in lags.
Households may be contractually obliged to supply a certain level of labor hours,
though other conditions would indicate a reduction or increase in labor supply. The
half-life of a change in one of the explanatory variables explaining the dependent
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variable, Yt, can be calculated as h D ln. 12 /=ln.�/. If, for example, � D 0.8, then
h D 3.1, which implies that it takes more than three time periods before the impact
on the dependent variable due to a change of one of the explanatory variables has
been halved. Only if � < 1

2 , the half-life is shorter than one time period.
Korniotis (2010) interprets the coefficients of the temporal and spatiotemporal

lags of the dependent variable, Yt�1 and W Yt�1, as measures of the relative strength
of internal and external habit persistence, where external habit persistence reflects the
time agents of a particular unit need to pick up information from their neighbors. An
econometric model that contains temporal and spatiotemporal lags of the dependent
variable, Yt�1 and W Yt�1, but not the spatial lag of the dependent variable, WYt, is
known as the time-space recursive spatial econometric model and has gained a lot of
attention in the spatial econometrics literature. According to Anselin et al. (2008),
this model is especially useful to study spatial diffusion phenomena. In a social
learning framework (e.g., Goyal 2009, ch. 5), the spatial reaction function may take
the form yi t D R.yi t�1; y�i t�1; xi /. LeSage and Pace (2009, ch. 7) refer to this
model as a classic spatiotemporal (partial adjustment) model and employ it to show
that high temporal dependence and low spatial dependence might nonetheless imply
a long-run equilibrium with high spatial dependence. Fogli and Veldkamp (2011)
adopt this model to investigate whether the labor force participation rate varies
with past participation rates in surrounding areas, based on decennial data of female
participation rates over the period 1940–2000at the U.S. county level. A way to view
these papers is that information diffusion can change preferences, but that people
require time to gather information, creating a delay in the decision-making process,
and hence spatial dependence takes time to manifest itself. The time-space recursive
model may also be extremely useful to analyse the rise and spread of the Covid-19
virus on a daily basis. New infections occur due to people who have recently been
infected in the own and in neighboring areas, but the transfer of the virus takes time,
i.e., in this particular case a couple of days.

Despite the popularity of the time-space recursive model, a basic question is
whether the removal of the spatial lag in the dependent variable, WYt, is supported
by the data. Indeed, some researchers are troubled with the idea that the spatial
autoregressive interaction between Y and WY is instantaneous (see Upton and Fin-
gleton 1985, p. 369 for one of the first discussions on this issue). Instead, they
suggest a model in which the autoregressive response is allotted one period to take
effect, Yt D �W Yt�1. By contrast, other reseachers do not seem to have problems
with the idea that Yt in one spatial unit is regressed on Yt of other spatial units,
Yt D �W Yt . Data frequency may also matter (daily, monthly, quarterly or annual
data). For that reason they do not preclude this specification in advance and suggest
to determine whether the data can help to determine the most appropriate model.
Elhorst et al. (2020b) deliberately include the variable WYt even though they ex-
pect that its coefficient will be zero. By investigating this, they are able to provide
empirical evidence in favor of this hypothesis.

An important restriction frequently overlooked is that the serial, spatial and spa-
tiotemporal autoregressive coefficients may not sum up to a value that is equal to
or greater than 1, � C � C � < 1, otherwise the spatial econometric model is not
stable, i.e., a change in one of the explanatory variables or a shock in the error term
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will have the effect that the dependent variable does not return to an equilibrium
value but instead explodes. If the variables Yt�1 and W Yt�1 are not included, as in
a static spatial econometric model, researchers are generally aware that the spatial
autoregressive parameter ρ of the variable WYt should take a value in the interval
�1=!min < � < 1, where ωmin is the smallest negative eigenvalue of W. However,
when these variables are also included, then this condition changes into �C�C� < 1.
Details on accompanying restrictions that should also hold but are less relevant
in empirical research are available in Elhorst (2014, Sect. 4.3). One outstanding
example in which this restriction is overlooked concerns the advanced study of Fogli
and Veldkamp (2011). These authors only include the variables Yt�1 and W Yt�1, as
a result of which � C� < 1 is required for stability. However, in their preferred model
they find 0.916 C 0.570 > 1. In a similar study based on a panel of 108 regions
across eight EU countries over the period 1986–2010, Halleck Vega and Elhorst
(2017) find that the sum of both coefficients is smaller than one (0.845+ 0.019 for
the total working population, 0.875+ 0.014 for the male, and 0.928+ 0.004 for the
female working population).

Another empirical regularity which is often found but many researchers are not
aware of is � D ���. Parent and LeSage (2010, 2011) show that imposing this
parameter constraint might avoid overidentification problems, while Elhorst (2010)
shows that under this constraint the impact of a change in one of the explanatory
variables gradually diminishes over both space and time, i.e., these two effects can
be separated from each other mathematically. The impact of a change in one of
the explanatory variables over space falls by the factor ρW for every higher-order
neighbor, and over time by the factor τ for every next time period. Due to this
property, Lee and Yu (2015) label it as the separable space-time filter. Although this
empirical regularity does not have to be met in theory, empirical evidence in favor
of it has been found in many studies. For example, in the short empirical application
on housing prices accompanying the work of Shi and Lee (2017, Table 4), the
authors find a positive and significant value for η of 0.05405, while the constraint
� D ���, which equals 0.05405 � �Œ.�0.05527/ � 0.68981	, cannot be rejected
statistically. Since the degree of habit persistence τ in most studies is positive, this
empirical regularity implies that ρ and η have opposite signs, i.e., if the spatial
lag has a positive sign, the spatiotemporal lag has a negative sign, as a result of
which the net effect of these two terms is smaller than the positive effect of the
spatial lag. Many researchers are puzzled by such a finding, perhaps because it has
a stronger statistical than an economic-theoretical background. Lee and Yu (2015)
discuss several limitations of imposing this empirical regularity. First, if � D 0 or
� D 0, the spatiotemporal lag W Yt�1 will automatically also have no effect since
� D 0, which rules out diffusion and external habit persistence as in Korniotis
(2010). Second, the omission of W Yt�1 causes inaccuracy in forecasting when this
variable is part of the true but unknown data generating process. Third, it rules out
the possibility that ρ and η have the same sign, provided that τ is positive. Fourth,
since both τ and ρ are smaller than one in absolute value, so will η.
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5 Spatial lags in the explanatory variables: WXt

Halleck Vega and Elhorst (2015) and Elhorst and Halleck Vega (2017) provide
four reasons why to include spatial lags in the explanatory variables. First, since
a spatial econometric model may potentially contain K spatial lags in the explanatory
variables, one in the dependent variable, and one in the error term, the spatial lags
in the explanatory variables are dominating, i.e., K relative to K+ 2. In view of this
it makes sense to focus on these spatial lags first.

Second, the SAR, SE and SAC models are of limited use in empirical research
due to initial restrictions on the spillover effects they can potentially produce. In the
SAR and SAC models the ratio between the spillover effect and the direct effect is
the same for every explanatory variable, while in the SE model the spillover effects
are set to zero by construction. Only in the SLX, SDE, SD and GNS models can
the spatial spillover effects take any value. Table 1 gives of overview.

Third, the spatial weight matrix of spatial lags in the explanatory variables can
easily be parameterized, for example, according to an exponential or inverse distance
matrix, or as a gravity type of model, which has a stronger background in economic
theory. Consequently, this setup offers the opportunity to consider a broader spectrum
of potential specifications of the spatial weight matrix than the traditional first-
order binary contiguity matrix or the pre-specified exponential and inverse distance
matrices (with or without a cut-off point).

Fourth, econometric-theoretical researchers are mainly interested in spatial econo-
metric models containing spatial lags in the dependent variable, the error term, or
both (i.e., the SAR, SEM, and SAC models, respectively), because of the econo-
metric problems and often complicated regularity conditions accompanying the es-
timation of these models. The reason they do not focus on the spatial econometric
model with spatial lags in the explanatory variables is because their inclusion does
not cause severe additional econometric problems, provided that the explanatory
variables X are exogenous and the spatial weight matrix W is known and exoge-
nous. This causes a gap in the level of interest in spatial lags between econometric
theoreticians and practitioners. One of the advantages of the SLX model over other
spatial econometric models or of including WX variables in general is that non-
spatial econometric techniques can be used to test for potential endogeneity of the

Table 1 Spatial econometric models with different combinations of spatial lags and their flexibility
regarding spatial spillovers

Type of model Spatial lag(s) Flexibility spatial spillovers

SAR, Spatial autoregressive model a WY Constant ratios

SEM, Spatial error model Wu Zero by construction

SLX, Spatial lag of X model WX Fully flexible

SAC, Spatial autoregressive combined model b WY,Wu Constant ratios

SDM, Spatial Durbin model WY, WX Fully flexible

SDEM, Spatial Durbin error model WX, Wu Fully flexible

GNS, General nesting spatial model WY, WX, Wu Fully flexible
a Also known as the spatial lag model
b Also known as the SARAR model
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X and the accompanyingWX variables. It concerns the Hausman test for endogeneity
in combination with tests for the validity of the instruments to assess whether they
satisfy the relevance and exogeneity criterions. The methodology behind these tests
is explained in Halleck Vega and Elhorst (2015) and applied to the cigarette demand
data set of 46U.S. states over the period 1963–1992. One of their main findings is
that the price of cigarettes in the own state is endogeneous, but the price in neigboring
states, reflecting the spatial lag of this explanatory variable, is not. In principle,
these kind of tests can also be used to test whether the variables used to instrument
the spatial lag in the dependent variable, WYt, are relevant and exogenous when
applying IV/GMM estimators to estimate the parameters of a spatial econometric
model, but remarkably, this is rarely done (see Drukker et al. 2013).

Just as for the spatial lag in the dependent variable, the number of studies that
do provide an economic-theoretical underpinning of spatial lags in the explanatory
variables is limited. In their spatial econometric textbook, LeSage and Pace (2009)
provide several motivations for including spatial lags in general and for considering
the spatial Durbin model in particular, although most of these motivations are sta-
tistically rather than economic-theoretically driven. Ertur and Koch (2007) develop
an economic-theoretical model of economic growth that results in a spatial Durbin
model, i.e., a model in which economic growth is regressed on economic growth in
neighboring economies, on the initial income level in the own and in neighboring
economies, and on the rates of saving, population growth, technological change and
depreciation in the own and in neighboring economies. Yesilyurt and Elhorst (2017)
develop an economic-theoretical model of military expenditures as a ratio of GDP
which likewise results in a spatial Durbin model. In this model the expenditures in
one country are explained by their counterparts in neighboring countries, as well as
economic, political, and strategic factors that mark the own and neighboring coun-
tries. Costa da Silva et al. (2017) develop a spatially augmented population growth
model building on Glaeser (2008) that results in a dynamic GNS model. Heijnen and
Elhorst (2018) develop an economic-theoretical model explaining the diffusion of
waste disposal taxes across municipalities. In this model, spillover effects may occur
for two reasons. First, (illegal) dumping of waste will become more prevalent, which
may not be confined to the municipality that introduces a waste disposal tax. Second,
if a particular municipality introduces a waste disposal tax, the policymakers and
citizens of neighboring municipalities obtain valuable information about the impact
of this taxing scheme, which may help them to decide whether it is also suitable
for them. Their economic-theoretical model of these spillover effects results again
in a spatial Durbin model. In the economic-theoretical game model of Xu and Lee
(2019), a spatial Durbin model results if the benefits of individual i take the form
yi .�

PN
jD1wij yj C X 0

iˇ C PN
jD1wijX 0

j � C "i /.

6 A spatial lag in the error term: Wut

A spatial lag in the error term does not require a theoretical model for a spatial or
social interaction process, but instead, is consistent with a situation where determi-
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nants of the dependent variable omitted from the model are spatially autocorrelated,
or with a situation where unobserved shocks follow a spatial pattern.

In contrast to the spatial econometrics literature, the (G)VAR literature is more
focused on the impact of idiosyncratic shocks to the dependent variable in a given
unit on that of the unit itself and on neighboring units, where the impact of neigboring
areas is sometimes labeled contagion. These effects can be simulated by replacing
the second N � N matrix on the right-hand side in Equations (3) and (4) in the
appendix to this paper by a N � 1 vector S D .:::; si ; :::/, where si is generally set
to one standard error of the error term representing the shock, and premultiplying
this N � 1 vector by the N � N spatial multiplier matrix to get an N � 1 vector of
responses to a shock in a particular unit. For applications, see Lacombe and LeSage
(2015), Elhorst and Zigová (2014), and Elhorst et al. (2021).

An important and well-known econometric property of a spatial lag in the error
term is that it does affect the efficiency of the parameter estimates of the right-hand
side variables in the spatial econometric model, but not its consistency. This property
has so far been underused to test for misspecification problems. A Hausman test can
be used whenever there are two consistent estimators, one of which is inefficient,
while the other is efficient. Pace and LeSage (2008) develop this test to compare
OLS and SEM estimates. According to LeSage and Pace (2009, p. 62), rejection of
the null hypothesis of equality in OLS and SEM coefficient estimates can be useful
in diagnosing the presence of omitted variables that are correlated with variables
included in the model. The test statistic follows a chi-squared distribution with
degrees of freedom equal to the number of regression parameters under test. Three
different outcomes are possible (Elhorst and Halleck Vega 2017). First, the OLS
and SEM coefficient estimates are not significantly different from each other and
the spatial autocorrelation coefficient is not significant. When this occurs, extension
of the OLS model with spatial autocorrelation is not necessary and may be left aside.
Second, the OLS and SEM coefficient estimates are not significantly different from
each other, but the spatial autocorrelation coefficient is significant. If this occurs,
SEM yields a significantly higher log-likelihood function value than OLS, as a result
of which the conclusion must be that the spatial error term is capturing the effect
of omitted variables. However, since the null hypothesis cannot be rejected, it may
concurrently be concluded that these omitted variables are not correlated with the
included variables and thus that the SEM re-specification of the OLS model leads to
an efficiency gain. Third, the OLS and SEM coefficient estimates are significantly
different from each other and the spatial autocorrelation coefficient is significant
(the probability that the spatial autocorrelation coefficient will be insignificant here
is negligible). This outcome points to misspecification problems due to omission
of relevant explanatory variables. By replacing OLS and SEM by respectively SLX
and SDEM, and SDM and GNS for the three potential outcomes set out above, both
for static and dynamic versions of these models, similar tests can be carried out for
more advanced spatial econometric models. Such an approach may help to test for
misspecification problems on a broader scale than has been done up to now.
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7 Cross-sectional and time-period specific effects

The standard reasoning behind spatial specific effects is that they control for all
space-specific time-invariant variables whose omission could bias the estimates in
a typical cross-sectional study (Baltagi 2005). The spatial specific effects may be
treated as fixed or as random effects. In the fixed effects model, a dummy variable
is introduced for each spatial unit, while in the random effects model, vi is treated as
a random variable that is independently and identically distributed with zero mean
and variance σv.

The standard reasoning behind time specific effects is that they control for all
time specific spatial-invariant variables whose omission could bias the estimates in
a typical time-series study. The time specific effects may be treated as fixed or as
random effects. In the fixed effects model, a dummy variable is introduced for each
time period, while in the random effects model, ξt is treated as a random variable
that is independently and identically distributed with zero mean and variance σξ.

In addition, it is assumed that the variables vi and ξt if specified as being random
are independent of each other and independent of εit (with variance 
2

" ). To test this
assumption of zero correlation between the random effects components, a Hausman
specification test might be used (Baltagi 2005, pp. 66–68; Lee and Yu 2012). How-
ever, one may question whether this test is really needed. Experience shows that
spatial econometricians tend to work with space-time data of adjacent spatial units
located in unbroken study areas, otherwise potential spatial spillover effects and the
spatial weight matrix cannot be adequately measured. Consequently, the study area
often takes a form similar to all counties of a state or all regions in a country. Under
these circumstances the fixed effects model is more appropriate than the random
effects model, because the idea that a limited set of regions is sampled from a larger
population must be rejected.

The same holds for time specific effects. Most researchers use data over a consec-
utive time span, otherwise dynamic effects cannot adequately be analysed. Conse-
quently, the study period often covers all its time periods. Under these circumstances
the fixed effects model is more appropriate than the random effects model, because
the idea that a limited set of time periods is sampled from a larger population must
be rejected.

8 Cross-sectional averages

One objection to time period fixed effects is that each time dummy has the same
homogeneous impact on all observations in period t, while it is likely that, for
example, business cycle effects hit one unit harder than another unit. The time
needed and the extent to which a unit is able to recover from a shock may also
differ from one unit to another. An alternative is to replace these time dummies by
time-specific cross-sectional averages of the variables Y t , Y t�1, and Xkt (k= 1, ...,
K) that have different heterogeneous impacts on the observations in each time pe-
riod t. Since the numbers of parameters to be estimated increases rapidly with
the number of common factors, most empirical studies try to keep the number of
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cross-sectional averages to a minimum. Cicarelli and Elhorst (2018) find that, using
cigarette demand data of 69 Italian regions over the period 1877–1913, controlling
for Y t and Y t�1 only already effectively filters out the common time trends in the
data. The cross-sectional averages of the explanatory variables in their model are
not needed.

The idea to link the individual observations to cross-sectional averages and to
estimate this relationship for each individual observation, in regional studies often
regional observations to its counterpart observed at the national level, dates back
to Thirlwall (1966) and Brechling (1967), and is known as the (regional) cyclical
sensitivity literature. A critical overview of 13 studies on regional unemployment
cyclical sensitivity models can be found in Elhorst (2003, Sect. 2.1). Importantly,
regional unemployment rates tend to move in tandem with the national unemploy-
ment rate, but within the common rises and falls over time, the extent to which
a region’s rate responds to changes in the national rate can be quite heterogeneous.
This implies that studies on cyclical sensitivity that appeared back in the 1960s have
paid attention to what can be termed common factors, and that spatial econometric
studies have started to pay attention again to this important type of cross-sectional
dependence. This literature also contrasts two-step procedures that have been pro-
posed in the literature, where the observations are first taken in deviation from their
national average (US) as in Blanchard and Katz (1992) or continental average (EU)
as in Decressin and Fatás (1995).

Although this literature lost interest, the prevalence of recessionary shocks, and
notably the financial, euro and covid-19 crises, makes it ever more pertinent to
study cyclical sensitivity. Moreover, since the common factor literature based on
cross-sectional averages developed by Pesaran (2006) is gaining more attention,
the cyclical sensitivity literature comes back into the picture again. Of particular
importance is that heterogeneity is considered in both strands of literature and that
common factors can be embedded in the economic-theoretical literature on cyclical
sensitivity. In line with this, Halleck Vega and Elhorst (2016) and Ciccarelli and
Elhorst (2018) also attempt to interpret the estimated common factor coefficients,
another strength of this approach which unfortunately has hardly been explored up
to now.

9 Principal components

A potential disadvantage of principal components is that they are often difficult to
interpret, especially if they are compared with cross-sectional averages. Up to now,
not many empirical studies have attempted to interpret the factor loadings of the
principal components.

To find out which set of common factors is able to filter out common factors most
effectively, the cross-sectional dependence (CD) test developed by Pesaran (2015)
may be used. This test is based on the correlation coefficients between the time-
series observations of each pair of units with respect to a particular variable, in this
case the residuals of Equation (1), resulting in N(N– 1) correlations. Denoting these
estimated correlation coefficients between the time-series for units i and j as κij,
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the test statistic is defined as CD Dp
2T=.N.N � 1/

PN�1
iD1

PN
jDiC1�ij . It is a two-

sided test statistic whose limiting distribution converges to the standard normal
distribution, and thus –1.96 and 1.96 as critical values at the 5% significance level,
provided that N goes to infinity faster than T or when T is fixed, reflecting the case
in most spatial econometric studies.

Elhorst (2021) compares the performance of a dynamic spatial panel data model
applied to the cigarette demand data set of 46U.S. States over the period 1963–1992
when using spatial and time period fixed effects, cross-sectional averages, and prin-
cipal components. It is found that only the model with spatial and time period fixed
effects is able to produce a CD-test on the residuals that takes a value in the interval
[–1.96,+1.96]. It should be noted, however, that two other recent studies point to dif-
ferent results. Cicarelli and Elhorst (2018) find that the dynamic model with cross-
sectional averages outperforms its counterpart with spatial and time-period fixed
effects. Similarly, Elhorst et al. (2020b) find that the dynamic model with principal
components outperforms its counterpart with spatial and time-period fixed effects.
The conclusion must be that the best model to control for common time trends might
differ from one empirical study to another.

10 Data

Most spatial econometric studies are based on geographical data. Units of obser-
vations might be zip codes, neighborhoods, cities, municipalities, regions, counties,
states, jurisdictions, or countries. Spatial econometric models are also used to explain
the behavior of economic agents other than geographical units, such as individuals,
firms, or governments. One example is a hedonic price equation in which the price
of each house is explained by the price and characteristics of other houses that
have sold prior and in the neighborhood of that house (Kelejian and Piras 2017,
p. 13). Elhorst et al. (2020a) illustrates that the popularity of spatial econometric
studies based on microeconomic data sets is increasing by providing an overview
of all studies that appeared in the last four volumes of the journal Spatial Economic
Analysis that are based on relatively large microeconomic data sets (up to 382,000
observations).

Another type of data that deserves more attention are economic-historical data.
Keller and Shiue (2007) study interregional trade by examining the spatial pattern
of rice price differences in 121 Chinese prefectual markets between the years 1742
and 1795. Groote et al. (2009) employ a dynamic econometric model with lags in
both space and time to measure the impact of infrastructure improvements on the
standard of living in municipalities located in the north of the Netherlands during the
period 1815/1835–1890. Ciccarelli and Elhorst (2018) adopt a dynamic spatial panel
data model with common factors to explain the non-stationary diffusion process
of cigarette consumption across 69 Italian provinces over the period 1877–1913.
The need for more studies of this type and, related to that, the need to use more
advanced models, such as the one set out in this paper, appears from the debate that
is currently going on in the literature on persistence studies (Kelly 2019; Voth 2020).
A substantial literature on persistence finds that historical characteristics or events in
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specific places determine current socioeconomic outcomes. Kelly (2019) analysed
27 persistence studies that appeared in four leading economic or econometric jour-
nals over the period 2001–2019 and concludes that the residuals of the equations
adopted in those studies appear to be substantially spatially autocorrelated in most
cases. One reason for this, according to Voth (2020), is that cross-sectional differ-
ences are the main source of variation. Kelly (2019) and Voth (2020) also discuss
several remedies: the inclusion of cross-sectional fixed effects, clustered standard
errors, and noise simulations. However, a more fundamental modelling approach
would be one that accounts for dynamic effects, local spatial dependence and global
cross-sectional dependence within one simultanous framework.

11 Conclusion

The general nesting spatial (GNS) econometric model for spatial panels with com-
mon factors (CF) is the most general spatial econometric model currently available
for empirical research. Hopefully, this paper encourages more scholars to work with
this model in their empirical research. At the same time, they should be warned
that this is a difficult model to work with since the estimation results produced
by this model are often quite puzzling, especially in the beginning. This advanced
model requires extensive research experience in spatial econometrics and sufficient
economic-theoretical knowledge of the problem at hand. Often the results are not in
line with initial expectations, but after thinking them over and debating them with
other researchers, progress towards an acceptable model specification can be made
step by step.

Appendix

Direct and indirect (spatial spillover effects)

Direct interpretation of the coefficients in the dynamic GNS model with common
factors in Equation (1) is difficult, because they do not represent marginal effects
of the explanatory variables (LeSage and Pace 2009). By considering the reduced
form of the model

Yt D .IN � �W /�1 .� C �W / Yt�1 C .IN � �W /�1 .Xtˇ C W Xt�/ C R; (2)

where R is a rest term covering all the remaining terms (intercept, spatial and time-
period fixed effects, common factors, and/or the error terms), the matrix of (true)
partial derivatives of the expected value of the dependent variable, E(Yt), with respect
to the kth explanatory variable of Xt in unit 1 up to unit N can be seen to be

�
@E .Yt /

@X1kt
:::

@E .Yt/

@XNkt

�

D .IN � �W /�1 .IN ˇk C W �k/ : (3)
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This N×N matrix of partial derivatives denotes the effects of a change of a par-
ticular explanatory variable in a particular unit on the dependent variable of all
other units in the short term. Note that this N×N matrix is actually the product of
two N×N matrices. The first of these two matrices, the inverse of .I � �W /, better
known as the spatial multiplier matrix, is not worked out further since a simple
analytical expression for this inverse does not exist. Similarly, the long-term effects
can be seen to be

�
@E .Yt /

@X1kt
:::

@E .Yt/

@XNkt

�

D ..1 � �/ IN � .� C �/ W /�1 .INˇk C W �k/ : (4)

LeSage and Pace (2009) and Debarsy et al. (2012) define the direct effect as the
average of the diagonal elements of the matrix on the right-hand side of (3) or (4),
and the indirect effect as the average of either the row sums or the column sums
of the off-diagonal elements of these matrices (since the numerical magnitudes of
these two calculations of the indirect effect are the same, it does not matter which
one is used). If the spatial weight matrixW does not change over time, the outcomes
are independent from the time index; this explains why the right-hand sides of these
equations do not contain the symbol t. A synonym for the indirect effect is spatial
spillover effect.

The significance levels of the short and long-term direct and spatial spillover
effects can be bootstrapped (see Elhorst 2014, Section 2.7.2 for details) or be deter-
mined by the delta method (Arbia et al. 2020).
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