
Special Issue: Hormones, Inflammation and Congestive Heart Failure

Cardiovascular risk of
adipokines: a review

Frédéric Dutheil1,2,3,4, Brett Ashley Gordon5,
Geraldine Naughton3, Edward Crendal3,
Daniel Courteix3,6, Elodie Chaplais3,6,
David Thivel6, Gérard Lac6 and
Amanda Clare Benson7

Abstract

Over the last two decades, the understanding of adipose tissue has undergone radical change.

The perception has evolved from an inert energy storage tissue to that of an active endocrine

organ. Adipose tissue releases a cluster of active molecules named adipokines. The severity of

obesity-related diseases does not necessarily correlate with the extent of body fat accumulation

but is closely related to body fat distribution, particularly to visceral localization. There is a

distinction between the metabolic function of central obesity (visceral abdominal) and peripheral

obesity (subcutaneous) in the production of adipokines. Visceral fat accumulation, linked with

levels of some adipokines, induces chronic inflammation and metabolic disorders, including glucose

intolerance, hyperlipidaemia, and arterial hypertension. Together, these conditions contribute to a

diagnosis of metabolic syndrome, directly associated with the onset of cardiovascular disease. If it is

well known that adipokines contribute to the inflammatory profile and appetite regulation, this

review is novel in synthesising the current state of knowledge of the role of visceral adipose tissue

and its secretion of adipokines in cardiovascular risk.
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Introduction

The high and sustained prevalence of meta-
bolic syndrome (MetS) is among the most
significant public health problems of the 21st
century.1 MetS prevalence has been expo-
nentially increasing globally for the past two
decades,1 and the understanding of adipose
tissue has also undergone a dramatic change
from an inert energy storage tissue to an
active endocrine organ. The severity of
obesity-related diseases is not directly
linked to the accumulation of total body
fat but rather to its distribution, and par-
ticularly to visceral localization. In the early
1980s, a distinction between the metabolic
function of central obesity (visceral abdom-
inal) and peripheral obesity (subcutaneous)
was proposed.2,3 Visceral adipose tissue
(VAT) is the adipose tissue that is stored
within the abdominal cavity around internal
organs (viscera), such as the kidneys and
intestines. VAT communicates with other
central and peripheral organs by synthesis
and secretion of a host of molecules that are
generally referred to as adipokines. VAT
accumulation, linked with levels of some
adipokines, induces chronic inflammation
and metabolic disorders, including glucose
intolerance,4,5 hyperlipidaemia,6–9 and
arterial hypertension.7 Together, these con-
ditions contribute to a diagnosis of MetS,
and consequently, VAT accumulation leads
to the onset of MetS and is directly linked
with cardiovascular disease (CVD) develop-
ment.10–13 Along with contributing to inflam-
matory profiles, adipokines are implicated in
appetite regulation and therefore, through
energy balance, directly contribute to abdom-
inal obesity.8,14,15 The strength of the relation-
ship between VAT and adipokines was so
apparent that a ‘‘visceral fat syndrome’’ was
regarded as more appropriate than MetS.16

Here, we present a review and synthesis of
existing literature regarding the roles of adipo-
kines secreted from VAT and the implications
for inflammation and cardiovascular risk.

Definition and importance of VAT

The concept of MetS has evolved through
several committees14,15,17,18 but not without
a certain amount of disagreement regarding
the specific diagnostic criteria linked to
MetS. Each iteration of the definition of
MetS has essentially described the clustering
of multiple metabolic and cardiovascular
risk factors.15 The first formalised concept
of MetS was proposed by the World Health
Organisation in 1999 as a high cardiovascu-
lar risk entity, incorporating multiple risk
factors for CVD.17 Within this syndrome,
the World Health Organisation highlighted
the importance of insulin resistance defined
as type 2 diabetes, impaired fasting glucose,
impaired glucose tolerance, or elevated glu-
cose uptake. Insulin resistance had to be
associated with at least two of the following
criteria: obesity (body mass index >30kg/m2

or an estimation of central obesity assessed by
waist-to-hip ratio), arterial hypertension, or
dyslipidaemia (hypertriglyceridaemia or low
high-density lipoprotein [HDL] levels). In
2001, the National Cholesterol Education
Program-Adult Treatment Panel then pro-
posed an updated definition of MetS that
recommended the estimation of abdominal
obesity (via waist circumference instead of
body mass index or waist-to-hip ratio) as one
of the five factors.18 The other factors
included elevated triglycerides, decreased
HDL cholesterol, arterial hypertension, and
elevated fasting blood glucose levels. The
main evolution of this new definition was
therefore that insulin resistance ceased being
an essential diagnostic factor, and instead, the
important role of VAT emerged, estimated
via a simple waist circumference measure-
ment. Nevertheless, none of the five factors
were essential criteria for diagnosis using the
National Cholesterol Education Program-
Adult Treatment Panel definition; MetS was
diagnosed if any three of the five factors were
present. It was not until 2005, and largely due
to several publications emerging at the start
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of the decade that highlighted the importance
of VAT, that the definition was updated. In
2005, the International Diabetes Federation
reinforced the role of VAT in the definition of
MetS: abdominal obesity became an essential
factor necessary for diagnosis that needed to
be associated with at least two of the other
four factors (elevated triglycerides, reduced
HDL cholesterol, hypertension, and elevated
blood glucose). This definition maintained
waist circumference as the preferred measure
because of its simplicity.14 The more recent
(2009) joint harmonizing statement identified
central obesity as one of the cluster of risk
factors associated with both CVD and type 2
diabetes.15 Despite ongoing discussion
regarding the waist circumference ‘cut-off’
used for defining MetS, a general acceptance
was reached concerning the important role of
VAT. MetS is defined as a constellation of
metabolic anomalies induced by abdominal
(visceral) obesity.15

VAT: A metabolically active
organ – adipokines

Over the last two decades, the understanding
of adipose tissue has undergone radical
change. The perception of adipose tissue
has evolved from an inert energy storage
tissue, primarily storing triglycerides,19 to an
active endocrine organ. Historically, it was
possible to assign an endocrine function to
adipose tissue via the conversion of andro-
gens to oestrogens by aromatase, resulting in
a decrease in circulating testosterone levels
and, reciprocally, in the production of oes-
trogens.20 However, this could not be
described as an adipokine, because the
secretion was not specific to adipose tissue.

Adipose tissue communicates with other
organs via the synthesis and secretion of a
multitude of molecules typically referred to
as adipokines. A growing number of adipo-
kines are known to intervene directly with
metabolic homeostasis,21,22 highlighting the
central role of adipose tissue in regulating

energy homeostasis of the entire body. The
primary adipokines secreted by VAT that
play a role in inflammation, metabolism, or
CVD include: tumour necrosis factor alpha
(TNF-a),23 interleukin-6 (IL-6),24 interleu-
kin-1-beta, adiponectin,25 resistin,26 serum
amyloid A-3 (SAA3),27 alpha 1-acid glyco-
protein, pentraxin-3, interleukin-1 receptor
antagonist, macrophage migration inhibi-
tory factor 28, plasminogen activator inhi-
bitor-1 (PAI-1),29 visfatin,30 and vascular
endothelial growth factor (VEGF).31

Overviews of all productions/secretions ori-
ginating from adipose tissue can be found in
various recent reviews,32,33 but those not
listed above are implicated in the extracel-
lular matrix without a further role yet
described in the pathophysiology of meta-
bolic syndrome, inflammation, or CVD. The
pathophysiology of metabolic syndrome
includes: insulin resistance, dysregulation
of appetite and obesity, chronic inflamma-
tion, and its final complication, CVD. We
therefore want to clarify the role of each
adipokine involved in the pathophysiology
of metabolic syndrome.

VAT, insulin resistance, and
adipokines

Individuals with obesity characteristically
have an imbalance in their adipokine profile,
increasing their potential to develop meta-
bolic disturbances (MetS) and more specif-
ically altered insulin sensitivity.34 The key
adipokines involved in insulin resistance are
resistin, adiponectin, TNF-a, IL-6, visfatin,
SAA3, and PAI-1.

Resistin derives its name from insulin
resistance and the reactive hyperinsulinae-
mia it induces by fixing itself to insulin
receptors on adipocytes, liver, and mus-
cles.35 Resistin levels increase in the presence
of obesity and may play a causal role in type
2 diabetes development.26

Adiponectin is only secreted by adipose
tissue.25,36 Contrary to other adipokines,
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concentrations of adiponectin are reduced in
obese individuals,37 potentially due to gluco-
corticoids and TNF-a.38 Augmentation of
adiposity engenders a retro-inhibition of
adiponectin production.37 Adiponectin syn-
thesis is regulated by insulin and insulin-like
growth factor-1, leading to an increased
concentration of this adipokine.38

Adiponectin plays an anti-diabetic role
within the liver and skeletal muscles by
increasing insulin sensitivity at these sites.
It acts by raising cytoplasmic GLUT4 trans-
porters towards the plasma membrane,
therefore facilitating glucose uptake by the
tissues. Weight loss-derived reductions in
VAT also increase adiponectin concentra-
tions, which may further increase insulin
sensitivity,39,40 despite the weight loss-related
lower insulin production. Hence, elevated
levels of adiponectin may decrease the risk
of type 2 diabetes.41

Insulin resistance is characterised by
increased concentrations of free fatty acids
in the plasma and muscles, which contribute
to impaired insulin signal transduction.
Adiponectin may enable better fatty acid
oxidation, as well as help reduce muscle and
liver triglycerides, contributing to its anti-
diabetic action.

The secretion of TNF-a by adipose tissue
is increased in overweight individuals23 and
is correlated with the percentage of adipose
tissue and the severity of insulin resistance.42

TNF-a acts locally through paracrine mech-
anisms, inducing adipocyte insulin resist-
ance by deactivating the insulin receptor as
well as its substrate (IRS-1).43 The same
mechanism is apparent in skeletal muscle,
because TNF-a is also produced by adipose
tissue macrophages situated between myo-
cytes.24 However, obese mice with a genetic
deletion of the TNF-a code or its receptors
experienced only minor protective effects
from weight gain, hyperglycaemia, or insu-
lin resistance.44,45 This may indicate that
TNF-a has only a limited role in the patho-
genesis of insulin resistance.

Within the adipose tissue, IL-6 is secreted
by both the adipocytes and the macro-
phages.24 IL-6 is an endocrine cytokine
acting distally from the secretion site. Its
concentrations correlate well with VAT46

and hepatic insulin resistance.47 Organs pri-
marily targeted by this adipokine are liver,
bone marrow, and the vascular endothe-
lium.46 In mouse models, chronic exposure
to IL-6 caused hepatic insulin resistance.48,49

Visfatin is primarily produced by VAT.
An increase in visfatin levels in obesity
is related to the preservation of insulin
sensitivity, enhanced glucose uptake by
adipocytes, and inhibition of hepatocyte
glucose release.50

Although not as well investigated as
other adipokines, the SAA3 protein is also
produced by VAT, and its plasmatic con-
centrations have been found to correlate
well with insulin resistance.27 Furthermore,
PAI-1-deficient mice are reportedly pro-
tected from the development of insulin
resistance,51 with numerous studies confirm-
ing the physiological implications of PAI-1
in insulin resistance.52

VAT, energy balance, appetite,
and adipokines

Individuals with MetS typically have ele-
vated circulating leptin levels. However,
these patients appear to resist the hypothal-
amic action of leptin.53 Leptin is a peptide
hormone secreted by adipose tissue. Leptin
secretion rates are two to three times higher
in subcutaneous than omental fat tissue
in both obese and non-obese women.54

This adipokine plays a major role in
long-term energy homeostasis. Circulating
concentrations of leptin decrease during
periods of fasting, triggering different
energy-saving adaptive mechanisms. These
include increased appetite via stimulation of
neuronal hypothalamic pathways,55 decreased
production of thyroid hormones,56 inhib-
ition of the reproductive axis,57 and
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depression of the immune system.58 The
energy cost of maintaining optimal efficiency
of the immune system is estimated to be
approximately 15% of total energy expend-
iture of the organism59 and may play an
integral part in the regulation of energy
balance. Leptin resistance impairs the cata-
bolic pathway that normally reduces appe-
tite and increases energy consumption and
results in excess weight being maintained.
Therefore, leptin resistance is likely to
be highly prevalent among individuals
with MetS.

Although the central effect of adiponectin
on energy homeostasis remains unclear
and controversial,60 it is well established
that adiponectin regulates energy balance in
peripheral tissues through modulation
of glucose and fatty acid metabolism.61

In the short term, high doses of adiponectin
supplementation may reduce caloric intake
in spontaneously hypertensive rats.62

However, it is apparent through animal
models that supplementation with adipo-
nectin does not induce long-term caloric
restriction.63 Despite this, adiponectin sup-
plementation is protective of body mass
gains in rats, even when fed high-fat diets,
by decreasing visceral fat accumulation.63

Decreased levels of IL-6 may trigger
weight gain.64 It has been found that genet-
ically modified mice without IL-6 develop
obesity, which suggests an important role of
IL-6 in the regulation of energy balance.
Therefore, elevated circulating IL-6 concentra-
tions in individuals withMetS may indicate, as
with insulin and leptin, the development of
resistance to IL-6.

In contrast to IL-6, PAI-1-deficient mice
are protected from the development of
obesity, suggesting that PAI-1 is implicated
in the regulation of energy balance.51

It has been hypothesised that resistance
to visfatin may be important in the regula-
tion of body weight,65 and this is supported
by rare polymorphisms of the visfatin gene
conferring protection from obesity.66,67

Visfatin could be orexigenic68,69 and promote
cell survival during starvation.70 In obesity,
visfatin concentrations are increased in
blood50 but decreased in cerebrospinal
fluid.65 Further studies are needed to clarify
visfatin’s role in appetite regulation.71

VAT, low-grade chronic inflam-
mation, and adipokines

Adipokines secreted from VAT can contrib-
ute to inflammation by both promoting
(pro-inflammatory) and inhibiting (anti-
inflammatory) the process.

Resistin is considered an inflammatory
marker,72 and its gene expression is regu-
lated by pro-inflammatory agents, such as
TNF-a, PAI-1, and IL-6. A probable link
exists between blood levels of resistin and
obesity as well as a positive association
between resistinaemia and PAI-1.72

Adiponectin has anti-atherogenic and
anti-inflammatory properties via its effects
on TNF-a and C-reactive protein (CRP).
Adiponectin either directly or indirectly
modulates the inflammatory cascade by
modifying the action and production of
inflammatory cytokines, thus possibly play-
ing an important role in the pathophysi-
ology of atherosclerosis.25

IL-6 plasma concentration is the most
important factor in the mediation of the
hepatic response to acute stress (tissue
damage, infection, etc.). It acts by coordi-
nating the defence mechanisms of the organ-
ism (inflammation) to eliminate damaged
cells and pathogenic agents and initiate
tissue repair.73 During the inflammatory
response, CRP is synthesised by the liver
and stimulated by IL-6 to bind to the plasma
membrane of damaged cells and activate
cascading of the complement, which leads to
cellular death.74 Therefore, CRP is a strong
marker of metabolic risk. Adipose tissue in
an important contributor to a state of
chronic systemic inflammation, characteris-
tic of MetS, by secreting large volumes of
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IL-6 into the plasma, which results in CRP
production.74 Systemic inflammation pro-
voked by increased IL-6 concentrations and
the subsequent synthesis of CRP may be a
side effect of an initially normal physio-
logical response that becomes deleterious
with the development of IL-6 resistance.

Visfatin mediates a complex cellular sig-
nalling process stimulated by oxidative stress
resulting in vascular endothelial inflamma-
tion. The exact role of visfatin in inflamma-
tion is unclear with increased concentrations
associated with an augmentation in both pro-
and anti-inflammatory blood cytokines.75

The SAA3 protein is a component of the
acute inflammatory phase. However, its role
as an independent predictor of MetS is
unclear.76

VAT, cardiovascular risk, and
adipokines (Figure 1)

Deregulation of numerous adipokines has
been implicated in obesity, type 2 diabetes,

arterial hypertension, CVD, and an increas-
ing list of other pathologies.33 If the increase
in circulating concentrations of leptin result-
ing from an inflammatory response is bene-
ficial in controlling acute infection,77 the
opposite is true in the case of chronic
inflammation, such as in MetS. Genetically
modified obese mice deficient in leptin are
protected from atherogenic pathology, des-
pite the accumulation of other cardiovascu-
lar risk factors, thus suggesting that leptin
may be directly involved in the development
of CVD.78 It also appears that leptin may be
a key driver of blood pressure and heart rate
responses in animals, although these effects
have not been replicated in humans to date.79

Additionally, a prospective study in humans
revealed that increased circulating leptin
concentration is a predictive risk factor for
CVD, independent of other factors.80

Resistin is also involved in cardiovascular
risk via its role in promoting endothelial
dysfunction. It does so by inducing the
secretion of cell adhesion molecules (CAM)

Figure 1. Cardiovascular risk of adipokines.
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and endothelin-1 by the endothelial cells81

or through proliferation of aortic smooth
muscle cells.82 Calcification of coronary
arteries, an index of atherosclerosis, is also
associated with increased resistin levels.72

Resistin has a negative association with
HDL.72

Plasma concentrations of adiponectin are
decreased in obese patients and patients with
diabetes, as well as patients with coronary
artery disease.83 Adiponectin inhibits the
formation of atherosclerotic plaque via two
mechanisms.84 First, it inhibits atheroma-
tous formation on the intima by repressing
the expression of pro-inflammatory cyto-
kines and adhesion molecules. Second, it
inhibits cholesterol uptake via repression of
low-density lipoprotein receptor expres-
sion.85 Adiponectin has also been shown to
correlate inversely with dyslipidaemia and
arterial hypertension,85 as well as with other
components of MetS.85

TNF-a accelerates atherosclerosis by indu-
cing expression of adhesion molecules (vascu-
lar CAM-1, intercellular CAM-1, monocyte
chemotactic protein-1, and selectin-E) in
the endothelial and vascular smooth muscle
cells86 and by altering endothelium-dependant
vasodilation87–89 or promoting endothelial
cell apoptosis.90,91 TNF-a was also linked
with impaired left ventricular regional myo-
cardial function.92,93

IL-6 triggers an increase in fibrinogens
and the number and activity of platelets,
leading to increased risk of clot formation.94

Additionally, vascular endothelial and
smooth muscle cells are also targets of the
IL-6 adipokine. IL-6 produces an increase in
adhesion molecule expression and activation
of the renin-angiotensin system, leading to
inflammation of vascular walls and the
development of pre-atheromatous lesions.95

IL-6 has been linked with impaired endothe-
lium-dependent and -independent vaso-
dilation89 and with insulin-dependent
vasodilation.96 Moreover, IL-6 induces
CRP production, which is a predictive risk

factor for CVD and evolution towards type
2 diabetes.97,98

The pro-inflammatory and pro-
atheromatous SAA3 protein has been iden-
tified as a predictive marker for coronary
artery disease or cardiovascular events.76

Fibrinolysis is an anti-thrombotic physio-
logical process that dissolves blood clots
once they are no longer needed for haemo-
stasis. Augmentation of the strongest
physiological fibrinolysis inhibitor, PAI-1,
is considered a major risk factor for CVD.99

PAI-1 is secreted by the liver (hepatocytes),
vascular vessels (endothelial cells), and adi-
pose tissue.100 An increase in circulating
PAI-1 concentrations is frequently observed
in abdominal obesity.101 PAI-1 is also
increased (mRNA and secretion) in VAT.29

The association between PAI-1, cardiovas-
cular events, and metabolic disorders is well
established.52 Moreover, PAI-1 was also
linked with impaired right ventricle free
wall mechanics.102

VEGF is produced by many types of cells,
including fibroblasts, macrophages, neutro-
phils, endothelial cells, and T cells.103 VEGF
is also secreted by the adipose tissue.
Although not normalized for adipocyte
number, VEGF protein expression and
secretion may be fat-deposit dependent and
highest in the omental fat deposits.31 VEGF
is necessary to initiate the formation of
immature vessels and to maintain vessel
homeostasis.104 However, elevated circulat-
ing VEGF levels are believed to play a role in
type 2 diabetes microvascular complications
even if the link between VEGF and type 2
diabetes and its complications might be
indirect and more complex than expected.105

Visfatin appears to be associated with a
greater risk of cardiovascular disease than
benefit. While visfatin is positively corre-
lated with HDL cholesterol, it is also
expressed by plaque macrophages and has
a role in plaque destabilization.75 In add-
ition, elevated plasma visfatin levels increase
the risk of myocardial infarction.106
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Adipokines in chronic
inflammatory diseases and the
influence of TNF-blockade
on the adipokine profile

Lastly, we want to acknowledge that some
chronic inflammatory diseases, such as
rheumatoid arthritis, spondyloarthritis, or
psoriasis, are associated with the develop-
ment of MetS and a higher risk of CVD.
Rheumatoid arthritis (RA) is the prototype
of chronic inflammatory disease associated
with metabolic syndrome and accelerated
atherosclerosis. In patients with RA
undergoing anti-TNF-a therapy because of
severe disease refractory to conventional
therapy, a positive correlation between
body mass index of the patients and serum
leptin levels was observed.107 In these
patients there was a correlation between
leptin levels and VCAM-1.107 This is of
potential relevance, because biomarkers of
endothelial cell activation were elevated in
patients with RA. Furthermore, anti-TNF
blockade improved endothelial function in
these patients108 and decreased the levels of
endothelial cell activation biomarkers.109

Additionally, in patients with RA undergo-
ing anti-TNF-a infliximab therapy because
of severe disease, high-grade inflammation
was independently and negatively correlated
with circulating adiponectin concentrations.
In contrast, low adiponectin levels clustered
with MetS features, such as dyslipidaemia
and high plasma glucose levels, that have
been reported to contribute to atherogen-
esis in RA.110 However, the interaction of
high-grade inflammation with low circulat-
ing adiponectin concentrations was not
mediated by TNF-a in these patients.110

Moreover, in patients with RA undergoing
anti-TNF-a therapy, a strong association
between serum resistin levels and labora-
tory markers of inflammation, particularly
CRP, was observed.111 A positive association
between parameters of disease activity in
psoriasis and resistin concentrations was also

reported in patients with moderate-to-severe
psoriasis.112 Finally, in a study that included
patients with RA with severe disease
undergoing anti-TNF-a-infliximab therapy,
visfatin levels were not associated with
inflammation or metabolic syndrome.113

However, in patients with ankylosing spon-
dylitis undergoing anti-TNF-a therapy, vis-
fatin concentration correlated with insulin
resistance.114

Summary

This review synthesised the current literature
on the role of key adipokines associated with
cardiovascular risk in MetS. Since the iden-
tification of leptin in 1994, the discovery of
additional adipokines has enhanced the
understanding of the role of visceral adipose
tissue in metabolic and cardiovascular path-
ology. It has been shown that visceral adi-
pose tissue is a highly active endocrine organ
that secretes numerous adipokines that have
both pro- and anti-inflammatory properties
contributing to inflammation, appetite regu-
lation, insulin resistance, and cardiovascular
risk, all implicated in metabolic syndrome.
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