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Abstract
Introduction
This study aims to evaluate the effect of technical-procedural factors on radiation dose during prostatic
artery embolization (PAE).

Methods
This was a single-center, retrospective study of 59 patients with benign prostatic hyperplasia (BPH) who
underwent prostatic artery embolization from March 2020 to September 2021. Computed
tomography angiography (CTA) was performed for vascular planning prior to PAE in all patients. The effect
of the following techniques on the dose area product (DAP) of PAE was evaluated: application of low-dose
protocol (LDP) for digital subtraction angiography (DSA), reduction of oblique projections by performing
PAE of at least one pelvic side utilizing anteroposterior projections only (AP-PAE), utilization of “roadmap”
technique instead of DSA for the delineation of pelvic arterial anatomy (RDMP-PAE), and cone-beam CT
(CBCT). The impact of the patient’s body mass index (BMI) on DAP was also calculated. The effective dose
(ED) of PAE and pre-PAE CTA was calculated from DAP and from dose length products, respectively, using
appropriate conversion factors.

Results
For the entire study population (n = 59), the mean DAP of PAE was 16,424.7 ± 8,019 μGy‧m 2. On simple
regression analysis, LDP, AP-PAE, and RDMP-PAE significantly contributed to DAP reduction during PAE
(30% (p = 0.004), 26.7% (p = 0.013), and 31.2% (p = 0.004), respectively). On multiple regression, LDP and AP-
PAE maintained their significant effect (p = 0.002 and p = 0.006, respectively). CBCT was associated with a
not statistically significant increase in DAP (10.1%) (p = 0.555). The ED of CTA represented 21.2% ± 10.6% of
the ED of PAE.

Conclusion
Of the four studied factors, LDP, AP-PAE, and RDMP-PAE proved to be relatively simple and widely available
techniques that could limit radiation exposure of both the operators and the patients during PAE. The
contribution of planning CTA to the overall radiation exposure of patients undergoing PAE appears to be not
negligible.

Categories: Radiology
Keywords: dose area product, computed tomography angiography, radiation dose, cone-beam computed
tomography, roadmap, digital subtraction angiography, prostatic artery embolization

Introduction
Prostatic artery embolization (PAE) has gained increasing acceptance as a minimally invasive treatment of
symptomatic benign prostatic hyperplasia (BPH), combining satisfactory clinical efficacy with an excellent
safety profile [1]. One of the few aspects of PAE that have raised skepticism is radiation exposure (both for
patients and for operators), which results from long fluoroscopy times, numerous angiographic runs, and
steep oblique projections [2,3]. In response, techniques to limit radiation dose during PAE have been
developed. Ιntraprocedural cone-beam computed tomography (CBCT) has been used by some groups as an
aid for the identification and selection of prostatic artery, with a consequent reduction in fluoroscopy time,
angiographic runs, and radiation exposure [4,5]; however, these benefits have been challenged by others [6].
A low-dose angiographic protocol (combined with image processing to compensate for the lower image
quality associated with this protocol) was found to result in a 74% reduction in radiation dose received by
the main operator during PAE compared to the standard protocol [7]. However, the utilization of such a low-
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dose protocol has not been reported in large PAE studies. PAE with anteroposterior (AP) imaging only and
intentionally unilateral PAE have also been proposed as options to limit radiation dose [8,9], but they have
not been adequately validated yet. Further research is therefore required to extensively test existing and
newer approaches for the reduction of radiation exposure during PAE and identify the most efficient and
practical of these solutions, which could be incorporated into the standard PAE procedure.

The present work reflects the recent experience of a single center in the utilization of several techniques
that could contribute to the reduction of radiation dose during PAE. The primary objective of this study is to
review these techniques and assess their benefits in terms of radiation dose reduction. The secondary
objective is to assess additional factors associated with the total radiation exposure during PAE and report
on the efficacy and safety of PAE in the studied patient cohort.

Materials And Methods
Patients
Patients with symptomatic BPH who were treated with PAE in a single tertiary center from March 2020 to
September 2021 with a follow-up time of at least two months were retrospectively reviewed. The inclusion
criteria for PAE were as follows: age ≥ 50 years, prostate enlargement (sonographically calculated prostate
volume of more than 35 mL), moderate-to-severe lower urinary tract symptoms (International Prostate
Symptom Score (IPSS) > 18), failure of medical treatment (5α-reductase inhibitors or selective α1-blockers
administered for at least six months), and urinary retention managed with indwelling bladder catheter with
at least three failed attempts of catheter removal prior to PAE. The exclusion criteria for PAE were as follows:
previous surgical or interventional prostate treatments, urinary tract infection, prostate or bladder cancer,
neurogenic bladder, bladder diverticula larger than 3 cm, bladder stones, and contraindications to
angiography [10]. Computed tomography angiography (CTA) was performed for treatment planning for all
patients prior to PAE (Table 1).

Feature or parameter Details or value

Equipment 64-row scanner (Optima CT 660, GE Healthcare, WI, USA)

Kilovoltage 120 kV

Milliamperage Automatic

Matrix 512 × 512 pixels

Collimation 64 × 0.625 mm

Slice thickness 1.25 mm

Pitch 0.984:1

Iodinated contrast 1.5 mL/kg of patient’s weight, 350 mg iodine/mL

IV injection rate 4.5-5 mL/s

Bolus triggering ROI just above aortic bifurcation, with a threshold of 250 HU

TABLE 1: Basic features/parameters of pelvic CTA (arterial phase only) utilized for this study.
CTA: computed tomography angiography; IV: intravenous; ROI: region of interest; HU: Hounsfield units

All procedures were performed with the same angiographic unit (Axiom Artis Zee, Siemens Healthineers,
Erlangen, Germany) and by the same first operator (five years of previous experience in PAE).

Written informed consent was obtained from all patients prior to PAE. The study was approved by the formal
research ethics review committee of the institution of the study (approval number: 1950/2021).

Technique
The basic PAE techniques for the present study were as follows. After local anesthesia, vascular access was
obtained via the common femoral artery with the Seldinger technique. A 4 or 5 French (F), 65-80 cm, reverse
curve catheter (Cobra 1, Simmons 1, MOT, Merit Medical, USA, or Boston Scientific, USA) was utilized for the
selection of the ipsilateral internal iliac artery (IIA) and for the cross-over maneuver. If the catheterization of
the contralateral IIA could not be accomplished with the same catheter, it was exchanged for a “vertebral” or
“Bern” one. Digital subtraction angiography (DSA) of the IIAs (with the standard “Body” protocol of the
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equipment) was performed with manual injection of 10-20 mL of iodinated contrast through the

angiographic catheter on anteroposterior and ipsilateral anterior oblique (30o-40o, often with additional

caudal-cranial angulation up to 10o) projections to document arterial anatomy and identify the origin of the
prostatic arteries. Oblique roadmaps were produced from the corresponding oblique DSAs (with the “DSA-
Roadmap” function of the equipment) and were used to guide the catheterization of the prostatic artery; this
was accomplished with a microcatheter (1.7-2 F, Velout, Tellus, or Stridesmooth Asahi Intecc Co., Japan) and
a double-angled 0.016-inch microguidewire (Meister-Asahi). Intra-arterial nitroglycerin was administered
through the microcatheter for vasodilation, and DSAs were acquired with manual injection of 2-4 mL of
contrast to study in detail the prostatic artery and its branches or anastomoses. Embolization was performed
until complete flow stasis with microspheres (Embosphere, Merit Medical, USA) (diameters: 100-500
microns).

The following modifications of the aforementioned basic techniques were applied in subgroups of patients,
and the effect of these modifications on radiation dose was evaluated.

Low-Dose Protocol Instead of the Standard “Body” Protocol for DSA

The preset LDP of the angiographic unit (Combined Applications to Reduce Exposure (CARE): Body CARE®-
1 protocol, Siemens) is characterized by reduced pulse width and increased edge enhancement compared to
the standard (“Body”) protocol (Figure 1).

FIGURE 1: Digital subtraction angiography (DSA) images (A,B) acquired
with similar tube angulation and no magnification from two patients in
the study show the pelvic arterial anatomy relevant to PAE. The
standard DSA protocol (“Body”) was applied in (A), and the low-dose
DSA protocol (“Body CARE”) was applied in (B). Prostatic arteries
(arrows in both images) can be easily identified in both images;
however, the application of low-dose DSA protocol was associated with
a significantly lower dose area product (DAP) (64.4 μGy‧ m2/frame
versus 152 μGy‧m2/frame), despite the much higher body mass index
(BMI) of the patient of image B (38 versus 27).

Additional parameters for LDP and for the standard protocol are provided in Table 2.
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Parameter Imaging protocol

 Body 1 Body CARE 1 Fluoroscopy CBCT

Kilovoltage 70 kV 70 kV 73 kV 90 kV

Pulse width 80 ms 50 ms 12.5 ms 12.5 ms

Dose 3,000 μGy/fr 1,200 μGy/fr - 0.360 μGy/fr

Edge enhance (natural) 45% 50% 20% 40%

Edge enhance (subtraction) 10% 25% - -

Angle - - - 200°

Angulation step - - - 1.5°/fr

TABLE 2: Basic parameters of the different protocols applied in the angiographic unit for this
study.
kV: kilovolts; ms: milliseconds; Body 1: standard DSA protocol; Body CARE 1: low-dose DSA protocol; CBCT: cone-beam computed tomography; fr: frame

For the purposes of this study, LDP was considered as having been successfully applied when all DSA
acquisitions of a PAE procedure had been acquired with this protocol.

Reduction of Oblique Projections

Although these projections are fundamental in the delineation of the prostatic artery (particularly its
origin), they are also associated with significantly higher radiation doses than anteroposterior (AP) views.
With a recently described approach [8], it is possible, in cases with larger prostatic arteries and with
favorable anatomy, to perform PAE utilizing only anteroposterior fluoroscopy and/or DSA (AP-PAE). In the
present study, AP-PAE was considered as having been successfully applied when embolization of the
prostatic artery of at least one pelvic side had been accomplished with AP projections only. It should be
noticed that in all modern angiographic systems, the X-ray generator is under the table; therefore, in a
supine patient, projections of AP-PAE are actually posteroanterior and not anteroposterior. However, the
acronym AP (instead of PA) was preferred to avoid confusion with the acronym of the prostatic artery and to
be consistent with previous references to the technique.

Utilization of Roadmap Images Instead of DSA Runs for the Demonstration of the IIA Branches and for Anatomic
Orientation

In the context of this study, this approach was termed “RDMP-PAE” and entailed the acquisition of
roadmaps (after the activation of the “Roadmap” function, fluoroscopy, and manual contrast injection)
instead of DSAs for all contrast injections through the angiographic catheter and for both pelvic sides. The
same technique was applied for some superselective injections through the microcatheter; however, after
the prostatic artery had been selected, at least one DSA run per pelvic side was performed, pre- and post-
embolization, to maximize image detail and ensure the identification of smaller branches and anastomoses.

Cone-Beam Computed Tomography (CBCT)

This was selectively applied to elucidate arterial anatomy when there was uncertainty on pre-procedural
CTA and on intraprocedural DSA. For this purpose, “proximal” CBCT was performed with an injection of 45
mL of iodinated contrast (diluted 50% with normal saline) into the IIA, through the angiographic catheter, at
a rate of 5 mL/second by a mechanical injector and with a delay of four seconds. CBCT was also performed in
selected cases to confirm the presence of small but potentially hazardous anastomoses of the prostatic
artery with other arterial branches (vesical, rectal, and penile). In these cases, contrast injection was
performed distally through the microcatheter (“distal” CBCT) and required manual injection of 3 mL of
contrast (same dilution as before) at approximately 0.5 mL/second and with a two-second delay. For both
techniques, CBCT was performed using a five-second rotational scan of 200° (Table 2). The acquired images
were transferred to a dedicated workstation (Leonardo, Siemens), where three-dimensional reconstructions
and maximum intensity projections were produced.

Finally, the following techniques and parameters were always applied in all patients to reduce radiation
exposure. All DSA runs were acquired at a rate of one frame (fr)/second. Fluoroscopy was performed at seven
pulses (p)/second and was reduced to 2-4 p/second during the injection of the embolic. At this phase of the
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procedure, tight collimation (including only the prostatic area and the site of potential anastomoses) was
also applied. No magnification was used during the DSA runs. The preset digital “zoom” function (×2)
provided by the manufacturer was instead applied to the acquired images.

Assessment and recording of radiation dose
After each PAE procedure, the total dose area product (DAP) (μGy‧m 2) was recorded by the angiographic unit
and extracted for analysis. The dose length product (DLP) (in mGy‧cm ) of pre-procedural planning CTA was
also recorded. For each patient, the effective dose (ED) of CTA was calculated from DLP using 0.015
mSv/(mGy‧cm) as the conversion factor [11,12]. The ED of the PAE procedure for each patient was calculated

from DAP using the conversion factor for “Pelvic arterial embolization” (0.0026 mSv/(μGy‧m2)) [11,13].

Follow-up
Clinical and imaging (transabdominal ultrasound) follow-up was scheduled at approximately three, six, and
12 months post-PAE and then every six months. Changes (compared to baseline measurements) in IPSS,
prostate volume, and post-void residual (PVR) were recorded. Clinical success was defined as a post-
treatment IPSS of ≤15 points with a decrease of at least 25% from the baseline, with no need for additional
treatment and (for patients with indwelling bladder catheter) as permanent catheter removal with
spontaneous micturition and PVR < 100 mL.

Statistical analysis
Descriptive statistics were calculated for quantitative and qualitative data. The normality of variables was
assessed using skewness, kurtosis, and Shapiro-Wilk test. The four aforementioned techniques (LDP, AP-
PAE, RDMP-PAE, and CBCT) were examined as determinants of DAP with simple regression analysis in the
form of independent samples t-test. The effect of body mass index (BMI) on DAP was also evaluated using a
simple regression analysis. Factors with a statistically significant effect on DAP were then studied with
multiple linear regression. The Kaplan-Meier method was used to calculate the clinical success rates of PAE
over time. Statistical significance was defined as a p-value of <0.05.

Results
General
A total of 66 patients underwent PAE during the study period. Seven of them were excluded (for two of them,
no follow-up was available; the other five patients were excluded for reasons described below). The baseline
data for the 59 patients that were eventually included in the study are provided in Table 3.

Variable Mean ± SD

Age (years) 71.5 ± 10.9

BMI 26.8 ± 2.9

PV (mL) 94.6 ± 41.2

PVR (mL) 106 ± 84

IPSS (mean ± SD) 25 ± 5

TABLE 3: Baseline demographic and clinical data of the patients (n = 59) in this study.
SD: standard deviation; BMI: body mass index; PV: prostate volume; IPSS: International Prostate Symptom Score; PVR: post-void residual

Prior to PAE, 39 patients suffered from moderate or severe lower urinary tract symptoms, while 20 had
indwelling bladder catheters. Bilateral PAE was performed in 47/59 patients (79.6%), while the rest

underwent unilateral PAE. For the 59 patients in the study, the mean DAP was 16,424.7 ± 8,019 μGy‧m2

(range: 3,127-39,416 μGy‧m2).

Determinants of DAP
During the first nine months of the study, PAE was performed with the standard DSA protocol (“Body”
protocol, no LDP) in 24/59 patients. After a brief training and familiarization of the operators with the LDP
(“Body CARE 1”) of the system and during the last nine months of the study, all PAE procedures (35/59
patients) were performed with LDP. In all these procedures, image quality was satisfactory, and no switch to
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the standard protocol was required. LDP resulted in significantly lower DAP values on simple regression
analysis (30% reduction, p = 0.004). Both LDP and standard protocol were unintentionally applied in a
separate case, which was excluded.

AP-PAE was successfully performed in 31/59 (52.5%) patients. Embolization of both pelvic sides with AP-
PAE was achieved in 6/31 patients; embolization of only one pelvic side with AP-PAE was achieved in 25/31
patients (the other pelvic side in these patients was embolized with oblique views from the beginning, as per
basic technique). In three other patients, AP-PAE was unsuccessful and was followed by oblique projections.
These three patients were excluded from the study, although the failed AP approach in them accounted for a
mean of only 3.2% of the total DAP. In 28/59 patients, PAE was performed with the basic technique (oblique
projections from the beginning, no AP-PAE attempted). Compared to this group, AP-PAE achieved a 26.7%
reduction in DAP (p = 0.013).

In the first 35 patients of the study, the procedure entailed the constant acquisition of DSAs for the mapping
of the arterial anatomy. RDMP-PAE was applied in the last 24 patients of the study, after the observation
that roadmaps (instead of DSAs) were adequate for the delineation of the main splanchnic branches of the
IIA and particularly of the prostatic artery origin. Compared to the standard technique, RDMP-PAE resulted
in significantly lower DAP (31.2% reduction, p = 0.004). In one separate case, DSAs were performed to clarify
arterial anatomy after the RDMP technique, and this patient was excluded from the study.

CBCT was performed in 8/59 patients (nine CBCT scans in total, seven “proximal” and two “distal”).
Although CBCT was associated with a 10.1% increase in DAP, the difference compared to non-CBCT cases
was not statistically significant. More detailed data on the effects of LDP, AP-PAE, RDMP-PAE, and CBCT on
DAP are provided in Table 4.

Technique Number of patients DAP (mean ± SD) (μGy m2) p

LDP - applied 35 13,981.5 ± 6,910.2 0.004*

LDP - not applied 24 19,987.8 ± 8,321.1  

AP-PAE - applied 31 14,004.8 ± 6,999.1 0.013*

AP-PAE - not applied 28 19,104 ± 8,338.9  

RDMP-PAE - applied 25 13,013.7 ± 6,141.3 0.004*

RDMP-PAE - not applied 34 18,932.8 ± 8,384.1  

CBCT - applied 8 18,000.4 ± 10,404.3 0.555

CBCT - not applied 51 16,177.6 ± 7,680  

TABLE 4: Effect of technical factors on DAP (simple regression analysis).
LDP: low-dose protocol; AP-PAE: anteroposterior prostatic artery embolization; RDMP-PAE: roadmap prostatic artery embolization; CBCT: cone-beam
computed tomography; SD: standard deviation; DAP: dose area product; *: statistically significant

Of the aforementioned determinants, LDP and AP-PAE maintained their significance in multiple regression
analysis. LDP had the greatest and most statistically significant effect on DAP; the utilization of LDP in a

PAE session was associated with an average reduction of DAP by 5,443 μGy‧m2. BMI was also an important
determinant of DAP on both simple and multiple regression (Table 5).
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Technique B
95% CI for B

β p
Lower bound Upper bound

(Constant) -9605.703 -24288,112 5076,705  0.195

RDMP-PAE -2869.910 -6439,862 700,042 -0.178 0.113

AP-PAE -4874.663 -8285,882 -1463,445 -0.306 0.006*

LDP -5443.083 -8836,404 -2049,762 -0.336 0.002*

ΒΜΙ 1233.650 684,703 1782,596 0.454 <0.001*

TABLE 5: Effect of technical factors and of BMI on DAP (multiple regression analysis).
LDP: low-dose protocol; AP-PAE: anteroposterior prostatic artery embolization; RDMP-PAE: roadmap prostatic artery embolization; BMI: body mass index;
B: unstandardized regression coefficient; CI: confidence interval; β: standardized regression coefficient; *: statistically significant

Effective dose and contribution of CTA
The mean ED of PAE was calculated at 42.7 ± 20.8 mSv. Pre-PAE CTA was associated with a mean ED of 7.8 ±
3.3 mSv (range: 3.2-20.3 mSv). This represented 21.8% ± 11% (range: 8%-63%) of the ED of the PAE
procedure. The effect of the patient’s BMI on ED of planning CTA was statistically significant (p = 0.001).

Clinical outcomes
Follow-up time ranged from two to 23 months (mean: 12.02; median: 11 months). For the total patient
cohort, the clinical success was 91.6%, 83.1%, 83.1%, and 83.1% at three, six, 12, and 18 months post-PAE,
respectively. To better reflect the center’s current practice of PAE (with the application of LDP in all
patients), the respective subgroup (in which LDP, with or without other techniques, was applied (n = 35))
was separately examined. The clinical success rates for this subgroup, which underwent PAE with even lower

DAP (13,981.5 ± 6,910.2 μGy‧m2) were not significantly different from the rest (p = 0.968) (Figure 2).

FIGURE 2: Kaplan-Meier curves showing the clinical success rates of
the two main subgroups of the study.
Red line: the subgroup with the application of LDP, with or without other techniques; blue line: the rest of the
patients

Differences were not statistically significant (p = 0.514).

LDP: low-dose protocol

Only minor complications were observed in the treated patients (acute urinary retention, n = 3, one of them
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in the LDP subgroup; transient, self-limiting hemospermia, n = 2, one of them in the LDP subgroup; and
small groin hematoma, n = 1, of the LDP subgroup).

Discussion
The techniques that were evaluated in this study and proved effective in reducing radiation dose during PAE
are easy to apply and require equipment that is incorporated in every modern angiographic unit; moreover,
they were applied in “real-life” conditions in consecutive (nonselected) PAE candidates in a tertiary center.
Of note, the benefit of radiation dose reduction was combined with a satisfactory clinical success rate,
comparable to those of large studies from high-volume centers [14] and with the absence of any significant
complications.

LDP proved to be the easiest and most efficient technique to limit radiation dose during PAE. Although the
study group included large patients, the anatomic detail provided by LDP was adequate, and no switch to the
standard protocol was required. In a previous study, Andrade et al. used the same equipment and an LDP for

PAE and recorded even lower DAP (11,680 μGy‧m2 or 74% lower than their standard protocol) [7]. However, a
detailed comparison with the present results is not possible, since the aforementioned study included a
small number of patients, and BMI (also an important determinant of DAP) was not reported.

AP-PAE was another effective dose-limiting technique in both simple and multiple regression analyses. As
emphasized in its original description [8], AP-PAE relies heavily on preprocedural CTA and is more likely to
succeed in cases with larger PAs and with favorable anatomy. Compared to this first report, in the present
series, AP-PAE could be successfully applied in significantly more patients (52.5% versus 26%), perhaps as a
result of the newer equipment and of increased experience; AP-PAE failed in less than 10% of the patients in
whom it was attempted (three patients, eventually excluded from the study), and even in these cases, the
additional dose attributed to AP-PAE was negligible. Of note, a variant of the herein adopted AP-PAE
technique was utilized in a large multicenter PAE study [9] and also contributed significantly to dose
limitation.

RDMP-PAE was a significant determinant of dose reduction only on simple regression analysis. However, in
practice, RDMP provides adequate image quality and anatomic detail with a lower dose than a corresponding
DSA run; therefore, the RDMP technique is currently used by the authors instead of DSA, prior to
superselective prostatic catheterization in almost all PAE procedures. A similar approach for the reduction of
angiographic runs has been proposed for uterine fibroid embolization [15].

The herein presented results regarding CBCT are at variance with those of other studies, in which CBCT was
used as the standard modality for vascular planning (instead of CTA) and contributed significantly to the
reduction of overall radiation exposure [4,5]. This variance is probably explained by the different role of
CBCT in the present study, where CBCT was applied only in a minority of patients with particularly
challenging anatomy and/or complex anastomoses; it is therefore not surprising that CBCT failed to achieve
a reduction in radiation exposure in this demanding subgroup of patients who would anyway require longer
fluoroscopy times and numerous DSAs. It should also be noticed that in the present study, no attempts were
made to reduce radiation dose during the CBCT scans (e.g., with a low-dose CBCT program).

The mean DAP value for the entire patient cohort of this study (16,424.7 ± 8,019 μGy‧m2) is lower than the

overall mean DAP (18,100.6 μGy‧m2) reported in a systematic review [2] on radiation exposure during PAE.
As already noticed, the current status in the center of the present study is better reflected by the subgroup of
patients who underwent PAE with LDP (with or without other techniques), and in this subgroup, an even

lower mean DAP was recorded (13,981.5 ± 6,910.2 μGy‧m2). This is comparable to the results of a recent

report (mean DAP: 14,890 ± 9,250 μGy‧m2) in which CBCT and a large display monitor proved valuable in
limiting radiation exposure during PAE [5]. Different combinations of techniques, depending on the local
availability, preferences, and expertise, may therefore be almost equally effective in radiation reduction
during PAE.

Finally, although CTA is very commonly used for vascular planning prior to PAE, limited data exist regarding
the contribution of this planning CTA to the total radiation exposure of patients undergoing PAE. The
single-phase (arterial only) CTA protocol utilized in this study resulted in an ED that was lower than
elsewhere reported [11]; nevertheless, this ED still represented a not negligible percentage of the ED of the
PAE procedure (mean: 21%). Therefore, it would be worth investigating the role of low-dose techniques in
planning CTA for PAE.

The limitations of the present work include its retrospective nature and the absence of direct dose
measurements. Moreover, although patients with challenging arterial anatomy, stenoses, and tortuosities
were treated, the impact of these factors on DAP was not specifically analyzed.

Conclusions
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LDP, AP-PAE, and RDMP-PAE are relatively simple techniques that can be applied with standard
angiographic equipment to limit radiation exposure during PAE. This benefit is not associated with any
compromise in the safety and efficacy of PAE. The contribution of planning CTA to the total radiation
exposure of patients undergoing PAE appears to be not negligible.

Additional Information
Disclosures
Human subjects: Consent was obtained or waived by all participants in this study. The formal research
ethics review committee of Tzaneio General Hospital issued approval 1950/2021. Animal subjects: All
authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In
compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services
info: All authors have declared that no financial support was received from any organization for the
submitted work. Financial relationships: Hippocrates Moschouris declare(s) personal fees from Asahi
Intecc. Honoraria was paid to the author for scientific presentations. Other relationships: All authors have
declared that there are no other relationships or activities that could appear to have influenced the
submitted work.
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